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Abstract: An analysis is made for film condensation on a rotating disk situated in a large 
body of pure saturated vapor. The centrifugal field associated with the rotation sweeps the 
condensate outward along the disk surface, and gravity forces need not be involved. The 
problem is formulated as an exact solution of the complete Navier-Stokes and energy 
equations. 
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1. INTRODUCTION 
 
Since the pioneering work of Nusselt in 1916 [1], studies of condensation heat transfer have been largely 
concerned with the situation of gravity-induced flow. In such natural condensation processes, it is the gravity 
force alone which brings about the removal of the condensed liquid from the cooled surface and, in this way, 
controls the condensation rate. Unfortunately, the magnitude of the gravity force is beyond our control, and so it 
appears that there are definite limits to any natural condensation process. This limitation becomes especially 
severe when applications at high altitudes are considered, e.g., space vehicle power plants. In these situations, 
the gravity force diminishes to a negligible value and natural condensation is impossible. 
 
To overcome the limitations inherent in natural condensation, a conventional alternative such as pumping or 
blowing might be used. But, a more intriguing idea is to create an artificial "gravity" by use of a centrifugal field, 
and this is the problem on which attention will be focused here. The system to be studied, as shown 
schematically in the sketch, Fig. 1, is a cooled rotating disk at uniform temperature Tw situated in a large 
quiescent body of pure saturated vapor. It will be assumed that the condensed 0 liquid forms a continuous film 
on the disk. Fluid in this film will be moved radially outward along the disk under the action of the centrifugal 
force field (inqualitatively the same way that gravity causes condensate to flow downward in the natural 
condensation process). 

  
The prime results of this investigation are the heat-transfer characteristics   of   the   
system.    Heat-transfer coefficients are presented for fluids having Prandtl num-
bers in the range 0.003 to 100. Other results which are to be given include the film 
thickness, temperature profiles, and torque moment requirements. Readers who are 
primarily interested in results are invited to pass over the section on Analysis. 
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Aside from the practical aspects of the problem, there is a strong theoretical 
motivation, namely, that the problem can be formulated as an exact solution of the 
Navier-Stokes and energy equations. Very few cases are known which permit such 
rigorous determination of the temperature and velocity fields. 

Fig. 1 
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2. ANALYSIS 
 
General Considerations. To achieve our ultimate goal of finding heat-transfer results, it is first necessary to 
analyze, in detail, the velocity and temperature distributions in the condensate layer. The problem is, of course, 
governed by the basic conservation laws: Mass, momentum, and energy; and it is these which constitute the 
starting point for our study. Since it will be supposed that the condensate is incompressible and that properties 
are constant, there will be a total of five unknowns to be considered: The three velocity components, the 
pressure, and the temperature. Correspondingly, there are five equations at our disposal: Three from the Navier-
Stokes equations (momentum conservation), and one apiece from mass and energy conservation. Solving such a 
set of five nonlinear partial differential equations would appear, at first glance, a too formidable task. 
Fortunately, we can draw on the experience of von Karman [2], who successfully solved the simpler problem of 
a disk, rotating in a large quiescent body of single phase fluid. 
 
The Conservation Equations and Their Transformation. The equations expressing conservation of mass, 
momentum, and energy for an incompressible, constant-property fluid may be written in cylindrical co-ordinates 
as 
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The viscous dissipation terms have been deleted from the energy equation on the assumption that their effect will 
be negligible. The retention of these terms would still permit the formulation of an exact solution. The gravity 
force has been omitted, but it could be included in equation (4) as part of the pressure without altering the 
analysis. Rather than deal with this formidable array of partial differential equations, we may transform them to a 
set of ordinary differential equations, which are easier to solve.  The new variables which comprise the 
transformation are:  
(a) new independent variable 
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Under the transformation, equations (1) through (5) become 
 

FH 2−=′       (1a) 

         (2a) 22 GFFHF −+′=′′

      FGGHG 2+′=′′       (3a) 

        HHHP ′−′′=′       (4a) 

         θθ ′=′′ H(Pr)       (5a) 

The primes denote differentiation with respect to η and Pr represents the Prandtl number. Inherent in the 
transformation, there are two important suppositions about the nature of the velocity and temperature fields 
which are worthy of discussion. First, there is the property of angular symmetry, i.e., ∂/∂φ = 0. Second (and more 
important) is that, except for a simple stretching of Vr and Vφ, the velocity and the temperature profiles do not 
change shape at different values of r. In particular, the assumption that the temperature distribution depends only 
on z (since η ~ z) implies the existence of a condensate layer whose thickness is uniform over the disk. The fact 
that equations (1a) through (5a) are ordinary differential equations shows that the transformation (6) is consistent 
with the basic conservation laws. 
 
Our prime interest is in the temperature distribution and the heat transfer, and hence our objective is the solution 
of equation (5a). Unfortunately, the integration of equation (5a) cannot be carried out without a prior (or 
simultaneous) knowledge of the velocity function H(η). But H is intimately connected with the other velocity 
functions F and G through equations (1a), (2a), and (3a). There is no complete escape from the formidable com-
putational undertaking, but the task may be somewhat lightened by combining equations (1a), (2a), and (3a) to 
give 

H'" = HH" - (H')2/2 + 2G2     (7) 

       G″ = HG′ - H′G      (8) 
 

Simultaneous solution furnishes G and H, but only the latter is needed for integration of equation (5a) for the 
temperature distribution. 
 
Boundary Conditions. To complete the statement of the problem, it is necessary to specify the boundary 
conditions. At the surface of the disk (z = 0), the standard viscous flow conditions are imposed, namely, that 
there is no motion relative to the solid surface. Moreover, the liquid immediately adjacent to the disk is required 
to take on the surface temperature Tw. 
 
It has already been observed that the condensate forms a layer of uniform thickness, denoted by δ, over the 
surface of the rotating disk. At the interface between the condensate and the vapor, the usual condition of 
negligible shear will be imposed. Further, the condensate and vapor will share the common temperature Tsat at 
the interface. The formal statement of these boundary conditions is 
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The thickness δ of the condensate layer remains to be determined from the analysis. In terms of the new 
independent and dependent variables pertinent to equations (5a), (7), and (8), these conditions become 
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where ηδ is the value of η corresponding to z = δ. 
With these boundary conditions, we then may proceed to solve equations (5a), (7), and (8), provided that 
numerical values are first chosen for two parameters: Prandtl number and ηδ. From the mathematical standpoint, 
this is a completely satisfactory situation. But, from the practical view, the problem is incomplete, since the 
dimensionless condensate thickness ηδ would not be known a priori. So, there still remains the task of relating ηδ 
to another parameter which contains quantities which are all known. Such a relationship is found later. 
 
The Parameter cp∆T/hfg. To relate ηδ (and hence δ) to known physical quantities, we invoke an over-all energy 
balance as follows 
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The first term on the left is the energy released as latent heat, while the second term is the energy liberated by 
subcooling of the condensate. The right hand represents the heat transferred from the condensate to the disk over 
a span from r = 0 to r = r. In writing equation (10), the assumption of negligible heat conduction across the 
vapor-liquid interface, which is standard in condensation theory, has been used. In terms of the variables of the 
analysis as defined by equations (6), the over-all heat balance becomes 
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where H(ηδ) and θ'(ηδ) represent the values of H and dθ/dη at η = ηδ. 
From a solution of equations (5a), (7), and (8) corresponding to specified values of Pr and ηδ, the values of H(ηδ) 
and θ'(ηδ) are available, and the right side of equation (10a) may be computed. So, cp∆T/hfg is determined. Now, 
if the Prandtl number is fixed and equations (5a), (7), and (8) are solved for several different values of ηδ, we are 
able to compute a corresponding set of values for cp∆T/hfg. In other words, for a fixed Prandtl number, there is a 
unique relationship between ηδ and cp∆T/hfg. So, if we wish, we can think of our solutions as depending upon Pr 
and cp∆T/hfg, rather than on Pr and ηδ. 
Solutions. Numerical solutions of equations (5a), (7), and (8) subject to the boundary conditions (9b) have been 
carried out on a computer using the numerical integration procedures outlined in reference [3]. The solutions 
were obtained for Prandtl numbers of 0.003, 0.008, 0.03, 1.0,10, and 100; the first three span the range of liquid 
metals, while the last three correspond to ordinary liquids. Values of the parameter cp∆T/hfg ranged from 0.0001 
to 0.1 for the liquid metals and from 0.001 to 1.0 for the ordinary liquids. Based on these solutions, results for 
the heat transfer, condensate layer thickness, torque moment, and temperature and velocity profiles will be given. 
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