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Abstract:The present paper presents a theoretical study about the deflection curve, the length and the 
maximum tension in the uniform cable for the telephones. Over time the forces the cable exerts on 
telephone pole have caused it to tilt. Proper bracing should be required. 
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1. THE PROBLEM 

 
When the weight of the cable becomes important in the force analysis, the loading functions along the cable 
becomes a function of the arc length s rather than the projected length x.  
 
It is kwon a telephone cable with the dimensions presented in figure 1. The cable weighs is 0ω = 5N/m. 
 

 
   
                                                     Fig. 1. 
 
It must to determine the deflection curve, the length and the maximum tension in the cable. 
 
2. SOLUTION 

 
For reasons of symmetry, the origin of coordinates is located at the center of cable. Generalized loading function 

( )sωω =  acting along the cable is shown in figure 2.  
 
The free body diagram for a segment of the cable is presented in figure 3.  
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Fig. 3. 
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The deflection curve is expressed as . We can determine it by first applying equation  ( )xfy =
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obtained by separating the variables and integrating yields, where ( ) 0wsw =  
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Integrating the term under the integral sign in the denominator, we have: 
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Substituting  
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The evaluate the constants note that, from equation  
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The constant  may be evaluated by using the condition 2C 0=s  at 0=x in (1), in which case . To 
obtain the deflection curve solve for s in (1), which yields 
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Now substitute into (2), in which case 
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If the boundary condition  at  is applied, the constant0=y 0=x
0

3 w
FC H−= , and therefore the deflection curve 

becomes 
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This equation defines the shape of a catenary’s curve. The constant  is obtained by using the boundary 

condition that  at

HF
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2
Lx = , in which case 
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Since , , and , equations ( 4) and (5) become mNw /50 = mh 6= mL 20=
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Equation (7) can be solved for  by using a trial-and-error procedure. The result is HF

NFH 9,45=  
 
And therefore the deflection curve, (6), become 
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Using equation (3), with mx 10= , the half-length of the cable is 
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