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Abstract: In this work are analyze a large number of random interleavers in order to draw 
conclusions about the characteristics of low – weight codewords. These insights are applied 
in our research to devise a novel interleaver design algorithm that proves particularly 
powerful for the case of component encoders with low memory. In this paper we identify 
the advantages and deficiencies of four design algorithms by analyzing their truncated 
distance spectra and comparing them each other. 
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1. INTRODUCTION 
 
The s- random and the backtracking design can easily combined, because the step – wise interleaver construction 
in both algorithms is very similar. A construction incorporating both algorithms must thus be given three 
parameters: the spreading parameter s, the target minimum distance δmin,targ and the maximum weight htrunc,des of 
the error patterns (ЕР’s) considered in the design. From [1] we see that the s – random and the backtracking 
design algorithms differ only in line 2. In this line, both algorithms try to identify “unfavourable” choices for the 
current element πl. We define that a value is unfavourable, if it is unfavourable for either the spreading or the 
backtracking design algorithm. Hence, our new combined algorithm contains lines 0, 1 and 3 from the 
backtracking design algorithm, and the following new line 2:[1] 
 0. Initialize the set Al of unfavourable values for the image πl to Al =0; 

1. Randomly choose πl from {0,…,K-1}/(π({0,1,…,l-1})∪Al). If this set is empty and no choice is 
possible then terminate the program without having designed an interleaver; 
2. If │πl – πi │<s for any iє{l – s + 1,…,l – 1}, or if there exists a design – relevant woven error pattern 
(WEP) є Wi, then put the unfavourable value πl into Al and return to line 1; 
3. If l=K-1, then the interleaver construction is complete. Otherwise continue with the next design step l 
→ l+1; 

 
2. ANALYSIS OF THE DESIGNED INTERVEAVER 
 
The complexity of the combined algorithm presented in this work grows only linearly with K thanks to the 
utilization of the backtracking algorithm. [1,2] 
 
We can expect that the combined algorithm does actually combine the advantages of the both algorithms, and 
that their deficiencies are eliminated. We suppose that the interleavers designed by the combined algorithm – the 
combined interleavers – have a larger δmin than comparable s- random interleavers and lower multiplicities of 
low and medium – weight codewords than backtracking interleavers. A pleasant side effect is that the spreading 
introduced by the s – random part of the combined algorithm achieves a strong reduction of relevant WoC’s with 
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large hmax. In contrast to the pure backtracking design algorithm, choosing htrunc,des =4 should hence suffice to 
ensure δmin= δmin, targ  for combined interleavers. We have checked this assumption for a combined interleaver of 
length К=200, s=8, δmin, targ =13 and htrunc,des =4. The distance spectrum measured with htrunc,ana =5 for weights 
δ≤14 and htrunc,ana =4 for δ>14 is displayed in table 1. We find that all of our three assumptions are true: δmin is 
significantly increased compared with the s – random interleaver, the multiplicities are lower than for the 
backtracking interleaver, and we have δmin= δmin, targ . Following the spectral thinning argumentation, for К>200 
we have even more reason to believe that there are no combination of woven error patterns (WoC’s) with hmax > 
4 generating codewords of weight < δmin, targ . Thus, we will always use htrunc,des =4 in the combined algorithm. 
 

Table 1. Measured coefficients Aδ of the truncated distance spectrum for combined interleaver  
hmax=2  δ 

I II III IV 
hmax=3 

 
hmax=4 hmax=5 Aδ

13 0 0 0 0 47 0 3 50 
14 50 111 0 0 7 37 0 205 
15 0 0 0 0 260 11 - 271 
16 37 286 0 0 120 205 - 648 
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Fig.1  

Simulated BER for turbo codes with code rate R=1/2 for random and dithered interleaver with six iteration 
 
Of the large number of algorithms presented in vast literature on the interleaver design, we found the following 
four design algorithm to be of major interest: Dolinar’s s – random design, Crozier’s dithered golden 
interleavers, Khandani’s algorithm and the proposed combined interleaver design algorithm [3]. In this work, we 
want to identify the advantages and deficiencies of these four algorithms by analyzing their truncated distance 
spectra and comparing them with each other.  
 
Each of these algorithms has certain design goals, combating type I WEP’s and/or increasing δmin to a given 
value δmin, targ. Each algorithm is therefore best suited for specific interleaver lengths and component encoders, 
whereas it works less efficient for other lengths and encoders. In order to make a fair comparison, where each of 
the designs can show its strengths, we will therefore consider a large variety of Turbo code’s parameters, i.e., 
interleaver length K, memory v of the component encoders and overall code rate R resulting from the puncturing. 
Since this works focuses primarily on low – complexity Turbo codes of v=2 and the interleaver design is of main 
importance for K є [200;1000]. We have chosen the following six configuration of parameters (K, v, R) for our 
testbed: 
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1. К≈200, v=2, R=1/2; 
2. К≈500, v=2, R=1/2; 
3. К≈1000, v=2, R=1/2; 
4. К≈500, v=2, R=1/3; 
5. К≈500, v=3, R=1/2; 
6. К≈500, v=4, R=1/2; 

 
Observe that Khandani’s algorithm imposes restrictions on the applicable values of K. For all other algorithms, 
K can be chosen arbitrarily, such that 200, 500 и 1000 are valid values. 
 
3. DESIGN PARAMETERS 
 
The design parameters, which are required by the design algorithms, for the following four algorithms are: 
 s- random – the spreading parameter s; 
 dithered golden – the constant r, as specified in [4], this value should be identical to the component 
scrambler’s period length p. The remaining design parameters are identical for all designed interleavers: dither 
strength Ddith = 0.01 and constants m=1 and j=0. [4] 
 Khandani – the number L of classes (this value should be a multiple of p, note that [5] used the 
variable name К for this quantity, which collides with our variable for the interleaver size). All Khandani’s 
interleavers were designed with a threshold T=14 for K≈200 and T=28 for K≈500 and K≈1000. The maximum 
number of iterations carried out in the optimization procedure was limited to 20. [5] 
 combined – the spreading parameter s and the target minimum distance δmin, targ. All combined 
interleavers were designed up to weight htrunc,des =4. 
 
Most of the analyses were carried out with htrunc,ana =4 in order to limit the complexity. It is unlikely that WoC’s 
with hmax=5 generate low – weight codewords for K>200. For К=200 (configuration А), we extended htrunc,ana to 
5 for codewords of weight δ≤14, whereas for configuration E and F, we had to restrict htrunc,ana to 3 for higher 
weights δ. 
 
Both, the dithered golden as well as the Khandani interleavers are based on spreading. However, as they emerge 
from a random construction and from an optimization process, respectively, their spreading parameter s is not 
determined before the interleaver’s construction is complete. For these interleavers, we have measured the values 
displayed in table 2, where we also include the spreading parameters used in the construction of the s – random 
and the combined interleavers for comparison.  
  

Table 2 Spreading parameters s measured in the dithered golden and the Khandani interleavers 
Configuration А B, D C E F 
Dithered golden 
Khandani 

5 
6 

10 
6 

18 
6 

11 
7 

15 
8 

s – random 
Combined 

10 
8 

15 
9, 11 

17 
10 

15 
11 

15 
11 

 
Since all of the four considered design algorithms are at least partially based on spreading, and since the s – 
random interleaver is the first and the most simple proposition for a spreading interleaver, we will for each 
configuration use the s – random interleaver as a benchmark for the comparison. 
 
А. The dithered golden interleaver is good at avoiding type I WEP’s (up to δ=14), whereas it does not combat 
type II WEP’s, whose multiplicity even grows for δ=12 compared with the s – random interleaver. The 
multiplicities grow also for WoC’s with hmax=3 and 4, and we find that δmin is caused by WoC with hmax=3. The 
details of the Khandani interleaver’s distance spectrum resemble very much that of the s – random interleaver. 
The main difference is that the spreading of the former is optimized, such that all WoC’s of type I generating 
codewords of weight 8 are avoided. As regards the combined interleaver, our expectations are met: the combined 
interleaver does indeed combine the advantages of the s – random and the backtracking design, i.e. δmin is 
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significantly increased – it is the highest of all four interleavers and the multiplicities of the low – weight 
codewords remain as for the s – random interleavers. 
 
В. Comparing this s – random interleaver to that for configuration A, where the s – random interleaver for 
configuration C (К=1000) was compared with that for configuration А (К=200), because of the increased s, a 
higher δmin is achieved, and thanks to the larger K and the spectral thinning effect, the importance of WoC’s with 
, hmax>2 decreases. The results for the other three interleavers resemble those for configuration A. The dithered 
golden interleaver succeeds in combating WoC’s of type I, but the number of WoC’s of type II or with hmax =3 is 
much larger than for the s – random interleaver. For the Khandani interleaver, there is almost no improvement 
compared with the Khandani interleaver for configuration A. The multiplicities of all WoC’s with hmax =2 are 
close to those of the s – random interleaver, but there is a major increase in the multiplicities of WoC’s with hmax 
=3 and 4 compared with s – random interleaver. As for К=200, the combined interleaver obtains the highest δmin, 
while the coefficients Aδ remain low. The Aδ are slightly increased in comparison with the s – random 
interleaver due to the lower value s used in the combined interleaver’s design. 
 
С. The comparison between the four interleavers yields similar results as for configuration B. Observe that there 
exists a very large number of type II WEP’s with δ=12 for the dithered golden interleaver, and that it is these 
WEP’s which determine δmin. 
 
D. Thanks to the lower code rate, the codeword weight associated with all kinds of WoC’s is significantly 
increased compared with configuration B. Hence, all four interleavers obtain much higher minimum distances 
δmin. Spreading becomes more efficient for low code rates, since most WoC’s in spreading interleavers contain 
long EP’s and generate hence large parity weights. Particularly when WoC’s contains EP’s of higher weights 
h=3,4,…, spreading causes a large associated codeword weight. This can be observed for all four interleavers, 
where the multiplicities of WoC’s with hmax =3 and 4 are clearly lowered, such that these WoC’s are only of 
minor importance. Observe that for the dithered golden, the Khandani and the combined interleaver, the 
minimum distance is determined by type II WEP’s. 
 
Е. The dithered golden and the Khandani design demonstrate impressively their capability to combat type I 
WEP’s. Yet, for both we see that the multiplicity of WoC’s of type II and with hmax =3 and 4 is increased with 
respect to s – random interleaver. Indeed, it is a WoC with hmax =4, that determines δmin for the Khandani 
interleaver, whereas it is WEP’s of type II, that limit δmin for the dithered golden interleaver. The combined 
interleaver obtains by far the highest δmin. 
 
F. By increasing the component encoder’s memory to v=4, we observe a similar effect as in configuration D, 
where the rate was lowered to R=1/3. The multiplicities of all low – weight codewords decrease strongly. The 
distance spectrum of the component encoder with v=4 improves upon that for v=2 as the free distance is higher 
and there are fewer EP’s generating a low parity weight. Particularly, the minimum parity weight generated by 
weight – 2 EP’s is clearly higher for v=4 than for v=2. One consequence is that all type IIWEP’s generate 
codewords of weight δ≥20, such that these WEP’s play only a minor role in the truncated distance spectra for 
configuration F. For this configuration, the dithered golden interleaver exhibits a substantially improved distance 
spectrum with respect to the s – random interleaver: δmin is clearly increased, even though the coefficients Aδ 
remain low. The distance spectrum of the Khandani interleaver agrees well with that of the s – random 
interleaver in most aspects, except that type I WoC’s are effectively avoided. The Khandani interleaver 
represents a kind of “better” s – random interleaver.  
 
 
4. ANALYSIS OF THE FOUR CONSIDERED INTERLEAVER DESIGN ALGORITHMS 
 
Having analyzed the four considered interleaver design algorithms for six relevant configurations of the Turbo 
encoder, we can summarize the results: 
 
4.1 S – random interleaver 
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These interleavers are very efficient in the thinning out the code’s distance spectrum compared to random 
interleavers. Thus, the minimum distance is increased and the multiplicities of low and medium weight 
codewords are decreased. For growing K, s can be increased, such that more and more type I WEP’s are avoided. 
The spreading also boots the spectral thinning effect. The number of relevant WoC’s with hmax >2 decreases 
strongly for growing K. However s – random interleavers do not combat type II WEP’s, such that the minimum 
distance is for almost all s – random interleavers not more than the minimum weight of the codewords associated 
with these WEP’s (δ=12 for configurations А, В и С). 
 
4.2 Dithered golden interleaver 
WEP’s of type I are even more efficiently avoided than in s – random interleavers, such that δmin is slightly 
increased. On the other hand, the number of WoC’s of type II or with hmax =3 is significantly increased for some 
configurations in comparison with s – random interleavers. The reason is the linear interleaver underlying the 
construction of dithered golden interleavers. Without dithering, the multiplicity of the type II WEP’s would be in 
the order of K. Even the introduction of dithering does not represent a sufficient measure to completely avoid all 
type II WEP’s. Therefore in most configurations type II WEP’s generate the codewords at δmin and these WEP’s 
also limit the minimum distance, which is achievable with dithered golden interleavers (δmin ≤12 for 
configuration А, В и С). 
 
However, for powerful component encoders with larger memories v>2, all type II WEP’s generate relatively 
large codeword weights, weights δ≥20 in configuration F. For these Turbo codes, dithered golden interleavers 
represent a very powerful choice, since the codewords at δmin are generated by WoC’s other than WEP’s of type 
II. 
 
In our analysis we made a noteworthy observation: Owing to the underlying linear interleaver with its regular 
structure, for dithered golden interleavers, many low – weight codewords are generated by input words, which 
have a relatively large weight and which contain a large number of EP’s. 
 
4.3 Khandani’s interleaver 
Although the design algorithm differs strongly from the s – random design, the interleavers produced with 
Khandani’s algorithm seem to have much in common with s – random interleavers. The achieved δmin values 
differ only slightly. For component encoders with v=2 (configurations А, В, С и D), the multiplicities of the four 
types of WoC’s with hmax=2 are approximately the same as for the s – random interleaver. From this observation 
we recognize that Khandani’s algorithm is mainly aimed at avoiding WoC’s of type I and ignores those of Type 
II. For component encoders with v=3 and 4, type I WEP’s are reduced considerably compared with the s – 
random interleaver, whereas type II WEP’s are not reduced. In all examples except configuration F, we find that 
the number of WoC’s with hmax >2 is increased compared to s – random interleavers. 
 
4.4 Combined interleaver 
Of the four considered interleaver design algorithms, we found that the combined interleavers exhibit the best 
truncated distance spectrum. In all six configurations, δmin is considerably increased with respect to the s – 
random interleaver. This is achieved by taking into account all kinds of WoC’s in particular type II WEP’s in the 
design algorithm. At the same time, this yields low multiplicities of the low and medium weight codewords due 
to the inherent spreading.  
 
 
5. CONCLUSION 
 
For comparison, in table 3 we have listed the free distances δfree, which are achieved by by a Turbo code with the 
best of the designed interleavers and the free distance δfree achieved by the best convolutional code, where the 
decoding complexity per information bit is similar for the convolutional and the Turbo code for each 
configuration. Here R and vconv are the rate and the memory of the convolutional code, respectively. The 
displayed free distances of the convolutional codes are taken from [6]. The complexity per informational bit for 
Viterbi decoding a convolutional code with binary input is defined as Cbit, conv=2Zconv, where Zconv = 2 vconv is the 
number of trellis states of a convolutional code of memory vconv. [7] 
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Table 3. For each configuration, the table shows the minimum distance δmin. 
Configuration A, B, C D E F 

R 
vconv

1/2 
7 

1/3 
7 

1/2 
8 

1/2 
9 

δfree convolutional code 10 16 12 12 
δmin Turbo code 13, 14, 16 24 18 20 

 
For a fair comparison, we assume that the complexity of the Turbo decoder per decoded information bit is 
approximately Cbit = 2·Z·2·2·I, where Z = 2v is the number of trellis states in the component descrambler and I is 
the number of iterations, which we assume to be 8 for comparison. The first factor 2 in the formula for Cbit is due 
to the existence of two trellis branches, that emerge from and merge into any trellis state. The second factor 2 
stems from the fact that BCRJ algorithm, which is frequently used as the component descrambler, calculates the 
probabilities of the trellis states in a forward and backward recursion. The table shows that for all six considered 
configurations, the best Turbo code outperforms the best convolutional code with respect to the achieved 
minimum distance. This means that the asymptotic coding gain is higher for the Turbo code. [8] This is true 
already for short interleavers with К≈200, however the differences become even more explicit for larger K, even 
though the Turbo decoder’s complexity per decoded information bit remains constant. 
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