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Abstract: The problem of rotating condensation is formulated as an exact solution of the 
complete Navier-Stokes and energy equations. Numerical solutions are obtained for Prandtl 
numbers between 0.003 and 100 and for cp∆T/hfg in the range 0.0001 to 1.0.  
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1. HEAT-TRANSFER COEFFICIENTS 
 
To overcome the limitations inherent in natural condensation, a conventional alternative such as pumping or 
blowing might be used. But, a more intriguing idea is to create an artificial “gravity” by use of a centrifugal field, 
and this is the problem on which attention will be focused here. The prime results of this investigation are the 
heat-transfer characteristics of the system, heat-transfer coefficients are presented for fluids having Prandtl 
numbers in the range 0.003 to 100 [3]. Other results which are to be given include the film thickness, 
temperature profiles, and torque moment requirements. The most important results of practical interest are the 
heat-transfer characteristics of the system. The local heat flux to the disk may be computed by Fourier's Law: 
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In terms of the transformed variables of the analysis, the expression for q becomes 
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The derivative (dθ/dη)η=0, obtained from solutions of equations depends on the Prandtl number and on cp∆T/ hfg. 
For a particular liquid and a fixed temperature difference, equation (2) shows that 
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It is also worth remarking that q is uniform over the surface of the disk. 
Introducing the definition of the local heat-transfer coefficient as follows 
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the heat-transfer results may be rephrased in the form 
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The quotient (v/ω)1/2 has the dimensions of a length, and so the left side of equation may be regarded as a 
Nusselt number [1]. Inasmuch as (dθ/dη)η=0 depends on Pr and cp∆T/hfg, so then do the Nusselt number results. 
.In presenting these results, it is convenient to look first at the higher Prandtl numbers (1, 10, 100) and then at the 
lower Prandtl numbers (0.003, 0.008, 0.03). 
 
By evaluating equations (4) from the numerical solutions, heat-transfer results for the higher Prandtl numbers 
have been plotted on Fig. 1 for values of cp∆T/hfg between 0.001 and 1.0. The choice of the ordinate variable is 
noteworthy. Rather than plot the Nusselt number alone, the group 
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has been used. By inspection of the figure, it is seen that for small values of cp∆T/hfg, all the results are 
represented by 
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Equation (5) corresponds precisely to the heat-transfer result for the situation where energy convection and 
acceleration terms are negligible. So, departures from this relationship represent the effects of convection and 
inertia, the former tending to increase the heat transfer and the latter tending to diminish it. With increasing 
Prandtl number, the effect of energy convection becomes relatively more important than the inertia effects. As a 
consequence, the Pr = 10 and Pr = 100 curves tend to exceed (or, in the limit, equal) the limiting value of 0.904. 
On the other hand, the inertia effects become relatively more important as the Prandtl number decreases, and so 
the Pr = 1 curve tends to drop slightly below the limiting value of 0.904. It is worth while noting that for a sig-
nificant part of the technically important range of cp∆T/hfg, equation (5) is a good representation of the heat-
transfer results of Fig. 1. 
 

 
 

Fig. 1. Heat-transfer results for high Prandtl number fluids 
 
Now, we turn to the low Prandtl number heat-transfer results which are plotted on Fig. 2. The ordinate and 
abscissa variables are the same as on the previous figure, but here we are concerned with smaller values of 
cp∆T/hfg to correspond to the relatively small values of cp/hfg for liquid metals. For the smallest values of 
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cp∆T/hfg which are plotted on the figure, the curves tend to approach (but never quite reach) the limiting value of 
0.904. The inertia terms play an important role for these low Prandtl number liquids, tending to substantially 
decrease the heat transfer "as the condensate layer thickens (increasing values of cp∆T/hfg). 
2. CONDENSATE LAYER THICKNESS  
 
The analysis predicts that the dimensionless condensate layer thickness δ(ω/ν)1/2 will be uniform over the disk 
and will vary with Prandtl number and cp∆T/hfg. This dependence may be determined by utilizing the numerical 
solutions of equations. For the limiting situation of negligible inertia and heat convection effects, the following 
limiting relationship has been derived. 
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Fig. 2 Heat-transfer results for low Prandtl number fluids 

 
 

Fig. 3 shows the condensate layer thickness results for the high Prandtl numbers. The limiting result of equation 
(6) is achieved for small values of cp∆T/hfg, while the deviations from this limit never appear too great (in 
common with the high Prandtl number heat transfer). The low Prandtl number results are plotted on Fig. 4. 
There, substantial upward deviations from the limit of equation (6) may be observed as a consequence of the 
inertia effects. 
 
 

 
 
 

Fig. 3 Condensate layer thickness for high Prandtl number fluids 
 

 
By comparing Figs. 3 and 4, it can be seen that for a given value of cp∆T/hfg, the magnitude of δ(ω/ν)1/2 increases 
with decreasing Prandtl number. Finally, we note that for a given fluid and a fixed temperature difference 
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Fig. 4 Condensate layer thickness for low Prandtl number fluids 
 
 

3. TEMPERATURE PROFILES 
 
The temperature distribution across the condensate layer may also be of some interest. We will content ourselves 
with displaying representative results, focusing attention on Pr = 10 for the high Prandtl number group and Pr = 
0.008 for the low Prandtl number group. 
 
Dimensionless temperature profiles for Pr = 10 are plotted on Fig. 5. The profiles for cp∆T/hfg < 0.1 cannot be 
distinguished from a straight line on the scale of this figure. The deviations from the straight line profile increase 
with increasing cp∆T/hfg (i.e., increasing layer thickness), but do not become decisive even for the highest value 
of cp∆T/hfg plotted here. The effect upon the heat transfer of these deviations has already shown on Fig. 1 to be. 
small. Numerous other cases were available for plotting in the range 0.1 ≤ cp∆T/hfg ≤ 1, but they have been 
omitted for the sake of clear reproduction [4]. 

 
Fig. 5 Representative temperature distributions across condensate layer for Pr = 10 

 
Fig. 6 shows temperature profiles for Pr = 0.008. For values of cp∆T/hfg < 0.02, the curves could not be 
distinguished from a straight line. Even the extreme case on Fig. 6, cp∆T/hfg = 0.083, so closely parallels the 
straight line profile that it was physically impossible to draw other intermediate curves [4]. 
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Fig. 6 Representative temperature distributions across condensate layer for Pr = 0.008 

It would appear from both Figs. 5 and 6 that, for most technically interesting situations, the temperature profile 
across the condensate layer closely approximates a straight line. 
 
 
4. VELOCITY PROFILE 
 
A view of some of the hydrodynamic aspects of the problem may be gained by inspection of the velocity dis-
tributions. We confine ourselves to representative situations, selecting results for a layer thickness of δ(ω/ν)1/2 = 
5 to typify relatively thick films and those for δ(ω/ν)1/2 = 0.5 to represent relatively thin films. 
 
Turning first to the relatively thicker films, we present on Fig. 7 the distribution of each of the velocity 
components across the condensate film. It is seen that the tangential velocity decreases significantly across the 
layer, and that there is a substantial axial velocity carrying mass inward toward the disk surface. The general 
shape of the curves is not significantly different from those for von Karman's problem of a rotating disk in an 
infinite domain of single phase fluid [2]. 

 
Fig. 7 Velocity distributions for δ(ω/ν)1/2 = 5.0 

 
Velocity profiles corresponding to δ(ω/ν)1/2 = 0.5 (relatively thin films) are shown in Fig. 8. Here it may be 
noted that the tangential velocity changes very little across the layer, while the axial velocity is appreciably 
smaller than that for the thicker layers. This reduction in axial velocity in turn leads to a decrease in the effect of 
energy convection. 
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Fig. 8 Velocity distributions for δ(ω/ν)1/2 = 0.50 

 
 
5. LAMINAR-TURBULENT TRANSITION 
 
If the results of the present analysis were to be applied, the question would immediately arise as to the conditions 
under which the laminar flow assumption would be valid. In the absence of experimental data on rotating 
condensation, we must rely on the findings for the somewhat similar system of a rotating disk in an infinite 
domain of single phase fluid. For that situation, it is observed [2] that the laminar results are usable up to a value 
of 
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