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Abstract. Using the fractal space-time theory (scale relativity theory), the dynamics of the 

fluid/nano-particle interface was analyzed. In the general case, the heat transfer through the 

interface reproduces a d.c. or an a.c.  Josephson effects of thermal type, while in the linear 

approximation, the standard form of heat transfer is given. Consequently, a negative 

differential thermal conductance appears and an increasing of the heat transfer in nanofluids 

results. 
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1. INTRODUCTION 

 
Experiments over the past decade have revealed that thermal conductivity of the suspension can be significantly 

higher than that of the base medium [1-4]. Keblinski et al [4] have examined four possible mechanisms for the 

anomalous enhancement observed in nanofluids. The first is the transport of thermal energy by Brownian motion 

of the nano-particles. An order-of-magnitude calculation shows that the Brownian effects are not strong enough 

to explain the observed anomaly. A similar conclusion was also reached by Wang and Xu [1] with a somewhat 

different set of assumptions, and also later confirmed by a molecular dynamics simulation [4]. On the other 

hand, recent reports continue to attribute the enhanced conductivity to Brownian motion of the nano-particles [5-

7]. Another mechanism, the formation of liquid layers around the particles, is considered by Keblinski et al [4]. 

The basic idea is that liquid molecules can form layers around the solid particles, thereby enhancing the local 

ordering. Since phonon transfer in crystalline solid is very effective, such local ordering in the liquid can lead to 

enhanced heat transport. A recent molecular dynamic simulation by Xue et al [8] confirmed the presence of 

short-ranged ordering of liquid molecules, but surprisingly observed little or no effect on the thermal 

conductivity. The third mechanism is related to the nature of heat transport in nano-particles. It is pointed out [4] 

that the generally accepted diffusive transport mechanism is not valid at the nano-scale. Instead of this, the 

ballistic transport is more realistic: if the ballistic ‘phonons’ initiated in a particle can persist in the liquid and get 

transmitted to another solid particle, the heat transport can significantly increase. The phonon mean free path in 

the liquid is typically small, because local ordering is limited to few atomic diameters. Since the particles have a 

constant Brownian motion, the coherent phonon transfer is possible even for low particle concentrations. Prasher 

et al [7] shows that the crystalline-like phonon modes account only for a fraction of the increased thermal 

conductivity observed in the experiments. Lastly, Keblinski et al [4] explore the possibility of nano-particles 

forming clusters and their effects on the thermal conductivity. This type of model may be appropriate if the 

particles are in the form of nanotubes or if they are not finely dispersed [9].  In contrast to the assessments of 

Keblinski et al [4] and Wang and Xu [1], other authors as Jang and Choi [5], Kumar et al [6] and Prasher et al [7] 
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hypothesized that Brownian motion of the nano-particles plays a leading role in energy transport of in 

nanofluids. While these models agree on the overall mechanism, they differ appreciably in how Brownian 

motion affects the thermal conductivity of the nanofluid. 

 

Recently, the increasing of the heat transfer in nanofluids was related to the fractalic effects [10]. Moreover, 

Wang et al. [11] reported that the modified fractal model agreed well with the experimental data obtained for the 

SiO2/ethanol nanofluid. This model has some disadvantages as difficult calculations and measurements on the 

nanoparticles cluster space-distribution. In such conjecture, the fractal space-time theory (scale relativity theory) 

is a new approach to understand quantum mechanics, and moreover physical domains involving scale laws, such 

as the nanosystems [12,13]. It is based on a generalization of Einstein’s principle of relativity to scale 

transformations. Namely, one redefines space-time resolutions as characterizing the state of scale of reference 

systems, in the same way as velocity characterizes their state of motion. Then one requires that the laws of 

physics apply whatever the state of the reference system, of motion (principle of motion-relativity) and of scale 

(principle of scale-relativity). The principle of scale-relativity is mathematically achieved by the principle of 

scale-covariance, requiring that the equations of physics keep their simplest form under transformations of 

resolution. For example, considering that the motion of micro-particles take place on continuous but non-

differentiable curves, i.e. on fractals [12-14], it was demonstrated that, in the topological dimension [14] DT=2, 

the geodesics of the fractal space-time are given by a Schrödinger’s type equation.  

 

In the present paper, using the scale relativity theory, we propose a new mechanism capable to explain the 

experimentally observed enhanced thermal conductivity of nanofluid. 

 

 

2. MATHEMATICAL MODEL 

 

Let us consider the interaction between two fractal structures, e.g. the fluid and the nano-particle [10,11], and the 

corresponding interface. According with the scale relativity model, the interface dynamics is described by the 

coupled equations set (for details see Appendix A and [12,13]), 

 

fnpnpnptnpffft ΨΨhΨiΨΨhΨi Γ+=∂Γ+=∂ DD 2;2 ,             (1a, b) 

 

with npf ΨΨ ,  the wave functions, npf hh ,  the specific “Hamiltonians” (per mass unit) on either side of the 

interface, Γ  a coupling constant characterizing the interface, D  the fractal/non-fractal transition coefficient 

[12,13], and the indices ( f, np) refers to the fluid and nanoparticle, respectively. Generally, the “Hamiltonians” 

21,i,H i =  correspond to the free energy of a particle with the rest mass 0m  localized in i region. In the 

Appendix A it is exemplified such a situation for 2mD h= , i.e. for the standard Josephson effect [14]. 

 Expliciting the wave functions by the following relations: 
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θ

ρψ = , 
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ρψ =                                                 (2a, b) 

 

and separating in (1a, b) the real parts from the imaginary ones, we obtain: 
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where npf ρρ ,  are the amplitudes and npf θθ ,  the phases. From here, with [4,8]  
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ρρρ == npn , ff Th α= , npnp Th α= , npf TTT −= , fnp θθθ −= , .const=α      (4a-f) 

 

it results the heat flux: 

 

θρρε sin)( ,MQnptftQ JJ =∂−∂=                   (5) 

 

of amplitude MQJ ,  

 

ρ
ε

D

Γ
=

2
,MQJ                         (6) 

 

and phase difference θ  

 

∫+= Tdt
D

α
θθ 0 , .0 const=θ                                   (7a, b) 

 

with fT  , npT the absolute temperatures, T  temperature difference on the interface, ε  the elementary amount of 

energy transferred through the interface [9]. 

 

For T=0, relation (7a, b) reproduces a d.c. Josephson effect of thermal type, while for 0≠T  an a.c. Josephson 

effect of thermal type, i.e. oscillations of the heat flux with the pulsation, 

 

D

Tα
ω =                                    (8) 

 

In this last case, let us consider the dependency )(tTT =  in the form 

 

)cos( 000 ϕ+Ω+= tTTT , .0 const=ϕ             (9a, b) 

 

We notice that any time-dependent signal, for exemple (9a,b) admits locally a Fourier discrete decomposition 

[16]. This means that the previous results are of maximum generality.  

 

Substituting the relation (9a, b) into (7a,b) and integrating it, we obtain the time dependence of the phase 

difference: 
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With relation (10), the expression (5) of the heat flux becomes 
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where nJ  is the n-order Bessel function
16)

 and 0φ  a constant of integration. 

 

When the pulsation D/0Tn α=Ω  satisfies the relation ,Ω=Ω nn ,...3,2,1=n  , the time-average of 

( )tJJ QQ ≈  differs from zero, i.e. there is a continuous component of the heat flux of the form: 
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From relation (12) it results peaks of the continuous heat flux for  
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Ω
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                  (13a-d) 

 

and consequently a negative differential thermical conductance ( 00, <TddJ CQ ) – see  Fig. 1. Moreover, 

from equation (12) the heat flux of the pick n can varies continuously in the range 

[ ( )Ωα D0TJJ nM,Q− , ( )Ωα D0TJJ nM,Q+ ] at constant temperature nT , and the phase varies in the range 

[ 2/π− , 2/π+ ]. This means that in the interface, the heat can be generated or absorbed.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 – The negative differential thermal conductance, by means of 

the negative slope of the Bessel J3 function. 

 

 

3. CONCLUSIONS 

 

A mathematical model of the heat transfer in nanofluids, is established. Then, the main conclusions are as 

follow: 

i) Using the scale relativity theory, the dynamics of the fluid/nano-particle interface was analyzed. Then, 

the heat transfer through the interface reproduces a d.c. or an a.c.  Josephson effects of thermal type; 

ii) In the linear approximation ( θθ ≈sin ), the standard form of heat transfer results, 

 

D

ατ
M,QQ JG,GTJ =≈  

 

CQJ ,  

0T  



 

 

MOCM 13 – Volume 2 – ROMANIAN TECHNICAL SCIENCES ACADEMY - 2007               13 
 

 
with G the thermal conductance and τ a characteristic time [1-4],

 
while in the general cases [4], the heat transfer 

is non-linear; 

iii) The interface is self-structuring and consequently, a negative differential thermal conductance appears. 

Since through self-structuring the interface generates heat to the environment, it explains the anomaly of the heat 

transfer in nanofluids.  

 

Our opinion are in according to Kebliski et al. [4] results given by means of molecular level simulations. 

 

 

APPENDIX A 

 

The theory of fractal space-time is the scale relativity (SR) theory [12,13]. A non-differentiable continuum is 

necessarily fractal and the trajectories in such a space (or space-time) own (at least) the following three 

properties: i) The test particle can follow an infinity of potential trajectories: this leads one to use a fluid-like 

description; ii) The geometry of each trajectory is fractal [15] (of dimension 2). Each elementary displacement is 

then described in terms of the sum, ξxX ddd += , of a mean classical displacement dtd vx =  and of a 

fractal fluctuation ξd , whose behavior satisfies the principle of SR (in its simplest Galilean version). It is such 

that 0=ξd  and dtd D22 =ξ . The existence of this fluctuation implies introducing new second order 

terms in the differential equation of motion; iii) Time reversibility is broken at the infinitesimal level: this can be 

described in terms of a two-valuedness of the velocity vector for which we use a complex representation, 

( ) ( ) 22 −+−+ +−+= vvvvV i  (we denoted by +v  the “forward” speed and by −v  the “backward” 

speed). These three effects can be combined to construct a complex time-derivative operator, 

 

∆Ditt −∇⋅+∂=∂ V             (A.1) 

 

with V  the complex speed, ψlni ∇−= D2V . Using the Newton’s equation in its covariant form 

φ∇−=∂ −1

0mt V , we obtain the Schrödinger type equation 
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In the general case [12-14], the Schrödinger type equation take the standard form ψψ Him t =∂D02 , with H 

the “Hamiltonians” of the particle. If, in such conjecture, we consider the “interaction” between two physical 

systems which have a fractal structure, then the dynamics of the interface is described by the coupled equations 

set (for details see [12,13]) 

 

12222111 22 ΨΨhΨi,ΨΨhΨi tt ΓΓ +=∂+=∂ DD            (A3) 

 

with 21,ψψ  the wave function, 21 h,h  the specific “Hamiltonians” (per mass unit) on either side of the interface 

and Γ  a coupling constant characterizing the interface. Generally, the “Hamiltonians” 210 ,i,Hhm ii ==  

correspond to the free energy of a particle with the rest mass m0 localized in i region. Particularly, for 

m2h=D , with h  the Planck reduced constant and m the effective mass of the Cooper pair (for details see 

[14]), i.e. at the quantum scale, the system (A3), with substitutions 21,np,f ψψ = , 2121 ,,np,f Hmh µ==  take 

the standard form of the Josephson effect: 
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In these relations, 21,H  represent the free energy 21,µ  of a Cooper pair in the mentioned region, and the 

difference qV=−= 12 µµµ∆ , with q the effective charge of the Cooper pair gives the potential V applied on 

the interface. 
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