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ON THE HEAT TRANSFER IN NANOFLUIDS
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Abstract. Using the fractal space-time theory (scale relativity theory), the dynamics of the
fluid/nano-particle interface was analyzed. In the general case, the heat transfer through the
interface reproduces a d.c. or an a.c. Josephson effects of thermal type, while in the linear
approximation, the standard form of heat transfer is given. Consequently, a negative
differential thermal conductance appears and an increasing of the heat transfer in nanofluids
results.
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1. INTRODUCTION

Experiments over the past decade have revealed that thermal conductivity of the suspension can be significantly
higher than that of the base medium [1-4]. Keblinski et al [4] have examined four possible mechanisms for the
anomalous enhancement observed in nanofluids. The first is the transport of thermal energy by Brownian motion
of the nano-particles. An order-of-magnitude calculation shows that the Brownian effects are not strong enough
to explain the observed anomaly. A similar conclusion was also reached by Wang and Xu [1] with a somewhat
different set of assumptions, and also later confirmed by a molecular dynamics simulation [4]. On the other
hand, recent reports continue to attribute the enhanced conductivity to Brownian motion of the nano-particles [5-
7]. Another mechanism, the formation of liquid layers around the particles, is considered by Keblinski et al [4].
The basic idea is that liquid molecules can form layers around the solid particles, thereby enhancing the local
ordering. Since phonon transfer in crystalline solid is very effective, such local ordering in the liquid can lead to
enhanced heat transport. A recent molecular dynamic simulation by Xue et al [8] confirmed the presence of
short-ranged ordering of liquid molecules, but surprisingly observed little or no effect on the thermal
conductivity. The third mechanism is related to the nature of heat transport in nano-particles. It is pointed out [4]
that the generally accepted diffusive transport mechanism is not valid at the nano-scale. Instead of this, the
ballistic transport is more realistic: if the ballistic ‘phonons’ initiated in a particle can persist in the liquid and get
transmitted to another solid particle, the heat transport can significantly increase. The phonon mean free path in
the liquid is typically small, because local ordering is limited to few atomic diameters. Since the particles have a
constant Brownian motion, the coherent phonon transfer is possible even for low particle concentrations. Prasher
et al [7] shows that the crystalline-like phonon modes account only for a fraction of the increased thermal
conductivity observed in the experiments. Lastly, Keblinski et al [4] explore the possibility of nano-particles
forming clusters and their effects on the thermal conductivity. This type of model may be appropriate if the
particles are in the form of nanotubes or if they are not finely dispersed [9]. In contrast to the assessments of
Keblinski et al [4] and Wang and Xu [1], other authors as Jang and Choi [5], Kumar et al [6] and Prasher et al [7]
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hypothesized that Brownian motion of the nano-particles plays a leading role in energy transport of in
nanofluids. While these models agree on the overall mechanism, they differ appreciably in how Brownian
motion affects the thermal conductivity of the nanofluid.

Recently, the increasing of the heat transfer in nanofluids was related to the fractalic effects [10]. Moreover,
Wang et al. [11] reported that the modified fractal model agreed well with the experimental data obtained for the
SiO,/ethanol nanofluid. This model has some disadvantages as difficult calculations and measurements on the
nanoparticles cluster space-distribution. In such conjecture, the fractal space-time theory (scale relativity theory)
is a new approach to understand quantum mechanics, and moreover physical domains involving scale laws, such
as the nanosystems [12,13]. It is based on a generalization of Einstein’s principle of relativity to scale
transformations. Namely, one redefines space-time resolutions as characterizing the state of scale of reference
systems, in the same way as velocity characterizes their state of motion. Then one requires that the laws of
physics apply whatever the state of the reference system, of motion (principle of motion-relativity) and of scale
(principle of scale-relativity). The principle of scale-relativity is mathematically achieved by the principle of
scale-covariance, requiring that the equations of physics keep their simplest form under transformations of
resolution. For example, considering that the motion of micro-particles take place on continuous but non-
differentiable curves, i.e. on fractals [12-14], it was demonstrated that, in the topological dimension [14] D;=2,
the geodesics of the fractal space-time are given by a Schrodinger’s type equation.

In the present paper, using the scale relativity theory, we propose a new mechanism capable to explain the
experimentally observed enhanced thermal conductivity of nanofluid.

2. MATHEMATICAL MODEL

Let us consider the interaction between two fractal structures, e.g. the fluid and the nano-particle [10,11], and the
corresponding interface. According with the scale relativity model, the interface dynamics is described by the
coupled equations set (for details see Appendix A and [12,13]),

20 ¥, =h¥, +T'¥, ; 2ipd ¥, =h, ¥, +T¥,, (1a, b)

with ¥ P ,Tnp the wave functions, hf ,hnp the specific “Hamiltonians” (per mass unit) on either side of the

interface, I" a coupling constant characterizing the interface, @ the fractal/non-fractal transition coefficient
[12,13], and the indices ( f, np) refers to the fluid and nanoparticle, respectively. Generally, the “Hamiltonians”

H.,i=172 correspond to the free energy of a particle with the rest mass 71, localized in i region. In the

Appendix A it is exemplified such a situation for O = h/ 2m , i.e. for the standard Josephson effect [14].
Expliciting the wave functions by the following relations:

l//f = V pf emf ’ l//np = \ pnP eig”” (22, b)

and separating in (1a, b) the real parts from the imaginary ones, we obtain:

r | T [p,
arpf =—8,pnp :defpnp Sll’l(@np _gf)’ 8,6’f :—%—% p—:COS(gnp —Qf)
‘ (3a-c)
h
aten :_i_L &COS(QH _0)
" 20 20\p, rer

where ./ pf sa/ pnp are the amplitudes and Qf s an the phases. From here, with [4,8]
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pP.=P,=p.h,=al, h, =aol T=T, -T, ,6=6, -6 . a=const (4a-f)

np 7

it results the heat flux:

Jo,=€0,p;,=9,p,)=J,,sinb 5)
of amplitude J , ,
2el’
JQ,M = Fp (6)
and phase difference @
o
6=06, +—ITdt , 8, =const. (7a, b)
D

with Tf , Tnp the absolute temperatures, T temperature difference on the interface, £ the elementary amount of

energy transferred through the interface [9].

For T=0, relation (7a, b) reproduces a d.c. Josephson effect of thermal type, while for 7" # 0 an a.c. Josephson
effect of thermal type, i.e. oscillations of the heat flux with the pulsation,

ol
w=— ®)
D
In this last case, let us consider the dependency 7 = T'(¢) in the form
T =T, +T,cos(Qt+@,). ¢, = const. (9a, b)

We notice that any time-dependent signal, for exemple (9a,b) admits locally a Fourier discrete decomposition
[16]. This means that the previous results are of maximum generality.

Substituting the relation (9a, b) into (7a,b) and integrating it, we obtain the time dependence of the phase
difference:

o, o,
=06, +—21+—2sin(Qr + 10
ot 0 ( ) (10)

With relation (10), the expression (5) of the heat flux becomes

, of, o, .
JoO=Jyu su{é’o +F°t+aosm(9t+%)}:

iy (Do ginl (o _
=J Zi(_l) Jn[mjsmK . ant+¢0}

1)
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where J, is the n-order Bessel function'® and ¢, a constant of integration.

When the pulsation Q =01, /D satisfies the relation Q =nQ, n=1,273,... , the time-average of

J 0 = <J 0 (t )> differs from zero, i.e. there is a continuous component of the heat flux of the form:

. ol \ .
J, o= JQMJ"(@_S;JSIH¢O (12)

From relation (12) it results peaks of the continuous heat flux for

T =nT,, T,= =, Ty=—, n=123,... (13a-d)

and consequently a negative differential thermical conductance ( dJ 0.C / dTo <0) - see Fig. 1. Moreover,
from equation (12) the heat flux of the pick n can varies continuously in the range

[(—=Jomd ., (0{770 /@.Q), +Jomd (0{7_"0 /@.Q)] at constant temperature 7', and the phase varies in the range
[—7z /2, + 7 /2]. This means that in the interface, the heat can be generated or absorbed.

Y.
ATV

Fig. 1 — The negative differential thermal conductance, by means of
the negative slope of the Bessel J; function.

3. CONCLUSIONS

A mathematical model of the heat transfer in nanofluids, is established. Then, the main conclusions are as
follow:

1) Using the scale relativity theory, the dynamics of the fluid/nano-particle interface was analyzed. Then,
the heat transfer through the interface reproduces a d.c. or an a.c. Josephson effects of thermal type;

ii) In the linear approximation ( sin @ = @), the standard form of heat transfer results,

at
J,=GT, G=J,, —
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with G the thermal conductance and 7 a characteristic time [1-4], while in the general cases [4], the heat transfer
is non-linear;

iii) The interface is self-structuring and consequently, a negative differential thermal conductance appears.
Since through self-structuring the interface generates heat to the environment, it explains the anomaly of the heat
transfer in nanofluids.

Our opinion are in according to Kebliski et al. [4] results given by means of molecular level simulations.

APPENDIX A

The theory of fractal space-time is the scale relativity (SR) theory [12,13]. A non-differentiable continuum is
necessarily fractal and the trajectories in such a space (or space-time) own (at least) the following three
properties: i) The test particle can follow an infinity of potential trajectories: this leads one to use a fluid-like
description; ii) The geometry of each trajectory is fractal [15] (of dimension 2). Each elementary displacement is

then described in terms of the sum, dX = dX+dg, of a mean classical displacement dX = vdt and of a
fractal fluctuation d§ , whose behavior satisfies the principle of SR (in its simplest Galilean version). It is such
that <d?;> =0 and <d§2> = 2{dt . The existence of this fluctuation implies introducing new second order

terms in the differential equation of motion; iii) Time reversibility is broken at the infinitesimal level: this can be
described in terms of a two-valuedness of the velocity vector for which we use a complex representation,

V= (VJr + V_)/2— i(VJr + V_)/2 (we denoted by Vv, the “forward” speed and by V_ the “backward”
speed). These three effects can be combined to construct a complex time-derivative operator,

d,=9,+V-V—inA (A.1)

with 'V the complex speed, V =-2iDVIny . Using the Newton’s equation in its covariant form

ETV =-m, 'V @ , we obtain the Schrodinger type equation
2m,D* Ay + 2im D0,y —(m, )" ¢y =0 (A2)

In the general case [12-14], the Schrodinger type equation take the standard form 2im0®atl// =Hy , with H

the “Hamiltonians” of the particle. If, in such conjecture, we consider the “interaction” between two physical
systems which have a fractal structure, then the dynamics of the interface is described by the coupled equations
set (for details see [12,13])

2i00,¥, = hW,+ IV, 2i00,¥, = h,¥, + TV, (A3)

with ¥/, ¥/, the wave function, /,,h, the specific “Hamiltonians” (per mass unit) on either side of the interface

and I a coupling constant characterizing the interface. Generally, the “Hamiltonians” myh, = H,,i =12
correspond to the free energy of a particle with the rest mass my localized in i region. Particularly, for
D= h/ 2m, with 7 the Planck reduced constant and m the effective mass of the Cooper pair (for details see
[14]), i.e. at the quantum scale, the system (A3), with substitutions ¥, =V ,, mhf’np =H,, =/, take

the standard form of the Josephson effect:
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., 0
=uy, +Ty,, in =y, +l'y, (Ad)

In these relations, H 1o represent the free energy (4, of a Cooper pair in the mentioned region, and the

difference Al = 1, — i, = qV , with q the effective charge of the Cooper pair gives the potential V applied on
the interface.
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