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THEORETICAL RESEARCH CONCERNING OF DEFLECTIONS
FOR HORIZONTAL SHAFT OF MIXING DEVICES

BIBIRE LUMINITA, COBREA CODRIN

University of Bacau

Abstract: The classic calculation (for dynamic conditions) on deflections of mixing
devices shafts (in horizontal position), is, generally, done with assumption that important
factors (gyroscopic moment, axial force and torque) are neglected. For this reason, a certain
discrepancy between theoretical and practical results exists.

The paper presents a methodology calculation of shaft deflection, considering the all these
factors (gyroscopic moment, axial force, torque), which are usually neglected.
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1. INTRODUCTION

The present paper concerns the deformations under various supports conditions of a flexible shaft, or beam with
non-zero mass and constant cross section in free vibratory- motion supported at is ends. The reactions and
moments produced it the support its may conform to ideal, linear or non-linear laws as regards the radial
deformations and the slope angles formed at the supports owing to bending moments.

The general deformation equations, which are valid both respect of flexural vibration and various composite
whirling motions, are derived by applying the Toshenko' expressions for the bending moment shearing force [51
In this connection the influences of centric axial force, which is assumed to be constant, of the own mass of the
shaft of beam, o shear deformation and the case of the rotating shaft of the gyroscopic moments, and of rotatory
inertia in flexural vibration, are taken into account.

The constant torque, however, is only taken into consideration in the stress condition equation, in the case which
come into question in practice, than the equation, in the case which come into question in practice, than the
effects of the afore-mentioned factors. Internal and external damping is neglected.

In the case of non-linear support conditions the general solution does not revert to a linear eigenvalue problem as
in the ideal and linear cases. To each speed then correspond one single given amplitude of vibration of the shaft
or beam, which theoretically may also be infinite.

In another paper, the author will consider as an application example a steel shaft symmetrically carried in single-
row deep groove ball bearings. The lowest critical speed is determined in the non-linear case by means of the
stress condition as well as the amplitude condition, employing theoretically derived radial and bending slope
elasticity functions. The said functions account for the elastic deformations of bearings themselves. For
comparison, also the critical speed consistent with ideal boundary conditions arc presented
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2. COMPUTING ASSUMPTIONS

In order to restrict the subject under consideration, the following assumptions are made;

1.

2.

oW

Bernoulli - Navier's law is valid, i.e., the cross section planes of the unloaded shaft of beam remained
planes even after deformation.

The shaft orbeam material obeys Hook's law also in the range above the proportional limit 6, up to the
maximum stresses which are produced.

The homogeneous shaft or beam of uniform thickness supports at its ends is assumed to be ideally
straight in unloaded conditions, i.e., the initial curvature is assumed to be zero.

The cross section of the rotating shaft is a circle or a symmetrical circular ring, whereas in respect of the
transfer sally vibrating beam only the restriction is imposed that one of its two axes of symmetry lies in
the plane of vibration x-y, Fig. 1

There are no flywheels or point masses on the shaft

No internal or external damping occurs in the vibratory system

The elasticity of bearing arrangement arc permanent and, in the case of rotating shaft, they arc
permanent and, in the case of rotating shaft, they arc circular symmetric, i.e., independent of angle
8, and in association of transverse bending vibrations, they are symmetrical with reference to the x-z
plane - Fig. 3

The masses of bearings, bearing bushings other associated supporting structures do not participate in the
elastic properties of all this factors may be taken into account in the elasticity functions.

3. EQUILIBRUM CONDITIONS

In accordance with Fig 1 and Fig 2, the equilibrium conditions (for forces and moments), of the mass element
mdl = mdx, in the x-y plane are made.
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Fi.g.1 The forces and moments acting on a mass Fig-2Deformations of the mass
element of the shaft element of the shaft

Neglecting the small terms, and calculating, the equations are transformed into:

v, = %(MZ M, ~-M,+M,) (1)

where : v - shear force

Mg - gyroscopic moment

Mp - bending moment due to axial force
Mt - torque.

Relied on Fig. 2 and gyroscopic moment and bending moment expressions, it is obtained:
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M, =-F, (F>0) @)

F - axial tension force

In accordance with Fig 3 and with calculation assumption the torque from y-z plane is determined:

M,~M, =M. 3)
and torque from x-z and x-y, also:
dy
My, = —Mt a (4)
M, =+M, & Q)
' dx

4. EXPRESSION OF SHAFT DEFLECTION

When the Expression of shear force, bending moment and torque components derived in the foregoing are
respected, the dimensionless coordinates are introduced:

2z

X="Y=2,Z=2,
L

X y
L L
Calculating, it is obtained :

DY -M"D’Z+¢,D’Y —c,Y =0 (6)

where:

e, =d* (> - k>)-F
¢, =d*(1+—-dn*Ak?)

mL’ o -
d "\ g1 @, - dimensionless critical speed of order n

« ML
M =—L""_ dimensionless torque
« FL
F = Tl (F > 0) - dimensionless axial force
= 5 - effect of gyroscopic moment and of rotator inertia
L

Q
A= 2(— - 1) - gyroscopic parameter
[0

Q - angular velocity of main spindle
o — angular velocity of whirl about x axis

In X-Z plane we find analogously, considering that the sing of M* changes in equation

D*Z+M DY +¢,D*Z —c,Z =0 )
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We denote:
w=Y+iZ ®)
and multiplied (7) with “i” and add it together with (6), whereby we obtained:
D*w+ M iD’w+c¢,D*w—c,w=0 )
The linear, homogeneous differential equation of the fourth order has the general solution:
4 .
w= A" (10)
n=1
where the values q, are the roots of the auxiliary equation :
¢ +M ¢ —cqg’—c,=0 Y
If M*=0, there is from Equations (11) and (10)
. lc, G .
q,, =i, |+,|—+c, —— =it (12)
1,2 \/ 4 27 1
C C
Gyq =4[+ e, + = =21 (13)

4 2 7

w=Y=Cycosh.t;X+ C, sinht; X+ C; cosht,X + Cysinht, X
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Fig.3 Shaft loaded by axial force and torsion moment

5. CONCLUSIONS

Analyzing the significance of the expression the deflection, the following conclusions could be said. The
deflection depends on the length L, and the rigidity El of the main spindle. It also is very crested to notice that

the deflection w depends on the dimensionless critical speed d, therefore on @ and Q.
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