RESEARCHES IN MODULAR ROBOTS KINEMATICS

POZNA CLAUDIU, ALEXANDRU CĂTĂLIN

University Transilvania of Braşov, Product Design and Robotics Department, Bd. Eroilor 29, 500036 Braşov, Romania, E-mail: cp@unitbv.ro, calex@unitbv.ro

Abstract: Present paper describes one part of the kinematical researches made in modular robotic field. The aim of these researches is to generalize the homogenous formalism. This generalization is need in the modular robotic field because of the multiple possible configurations. The modularity is view like a customer, and not producer, possibility to build robots for particular needs. This is the reason that in order to implement the mentioned modularity concept we need tool which allow to a task specialist (the customer) to design robots.

Keywords: modularity, robots, kinematics.

1. INTRODUCTION

The present paper intention is to develop a kinematical foundation for our next works in industrial robots (IR) modular design. The goal of this works is to develop cheap and improved robots which are adapted to the costumer needs. In order to achieve the mentioned goal we have started a bibliographical research [1] of the main modular design aspects. The mentioned analyze of the actual results in modular robots design gives us the possibility to establish our research program. The idea of this paper is to develop a kinematical formalism which will be use in the next works dedicated to this subject.

The structure of the paper contains a presentation of our ideas about modular robots design, which will be followed by the presentation of our researches direction. From these directions we will focus on the implication of the modularity on robots kinematics and we will propose a new formalism.

2. RESEARCH DIRECTIONS IN MODULAR ROBOTICS

We underlined that by robots modularity we understand a modularity which is taken upon oneself by the user. This idea belongs to the following scenario: the user buys a particular platform composed by several modules; chooses the appropriate configuration of the robot; constructs the robot from the modules. The user is a task specialist and not a robotic specialist, for these reasons the whole idea is based on the possibility to transfer knowledge from the robots manufacturer to the robots user. This means that, in order to create an ataractic concept of industrial modular robots, we must provide friendly interfaces. These interfaces are dedicated to obtain the robot configuration to assemble this configuration into a robot and to use this robot. For these reasons we have imposed the following design functions:

- The user interface must allow the robot construction: Obtain an optimal configuration related to this task;
 Configuration self recognition; Model building (kinematics and dynamics);
 Translate the user task into a robotic task;
 Control law building;
 Structure and sensors calibration;
- The user interface must allow the robot employment: Program the robot; Allow the robot maintenance.

In conclusion, the idea to use the user modular concept is possible only if appropriate interfaces are designed. We have considered that the first step on this direction is to imagine a kinematical tool which is able to describe the mentioned modularity. More precisely we intend to construct a formalism which will describe the kinematics of all particular construction which can be obtained from the main platform.

3. MODULAR ROBOTS KINEMATICS

The kinematics researches are important because they offer the possibility to solve problems like: direct kinematics; inverse kinematics; the working volume etc. We will mention here that the kinematics is a staring point for the dynamic analyze and the control system design. Our results are based on homogenous transformations described in [2]. Because we focus on the direct kinematical problem, our goal is to obtain a formalism which allows the kinematical description of the robot effectors (gripper, tools etc.) for each possible combination between the links and the joints.

In order to do this we will construct the mathematical representation of the links and joints connections. The second step will be the construction of a graph which describes the links and joints connection possibilities. The third step will be to describe, from mathematical point of view the previous graphical construction. In the end we will systematize our results in to an algorithm.

3.1 The connection between joints and links

From the beginning we will mention that our study focuses only in robots with rotation joints which are reciprocally perpendicularly or parallel. The generality of our results is based on the robotic links (brackets) forms and on the various possibilities to attach joints to these brackets.

In figure 1 we present the imagined general form of the mentioned links. Each link allows the connection with the previous joint at the referential $Ox_{1B}y_{1B}z_{1B}$ and with the follower joint on faces $F_{1...6B}$ at the referential $Ox_{2B}y_{2B}z_{2B}$. Using this form we can describe all the possible reciprocally orientation between the two joint which are connected to the bracket. More precisely, if the first connection (between the joint j and the bracket) is limited to one face, the second connection can be one of the combination between the bracket faces $(F_{1...6B})$ and the joint j+1 faces $(F_{1...5A})$.

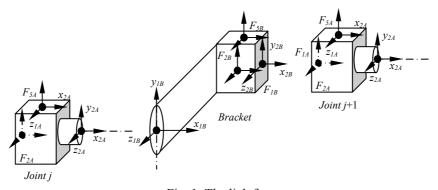


Fig. 1. The link form

The link geometry, the positions and orientations of the connections faces, is defined relative to the first referential $Ox_{1B}y_{1B}z_{1B}$. Because of the initial assumptions (the joint are reciprocally perpendicular or parallel) the faces conserve the first referential orientation. That is the reason that from kinematical point of view the relation between the first referential and the faces referential are translations. If we use homogenous operators [2] we obtain the following equations:

$$P_{FiB}^{Bk} = P^{Bk} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ l_{FiB,x}^{Bk} & 1 & 0 & 0 \\ l_{FiB,y}^{Bk} & 0 & 1 & 0 \\ l_{FiB,z}^{Bk} & 0 & 0 & 1 \end{bmatrix},$$
(1)

where: P_{FiB}^{Bk} is the position, orientation of the face *i*, which belong to the link *k*(relative to the main referential system);

 P^{Bk} is the position, orientation of k link referential (relative to the main referential system);

 $l_{FiB.x.y.z}^{Bk}$ are the coordinate of the face F_{iB} center in the $Ox_{1B}y_{1B}z_{1B}$ referential system;

k = 1...n is the links type (there are several types of links);

i = 1...6 is the face number

According to figure 1 each bracket has two connections: the first with joint j, and the second with joint j+1. For the first connection we have identified six possibilities which are presented in figure 2.

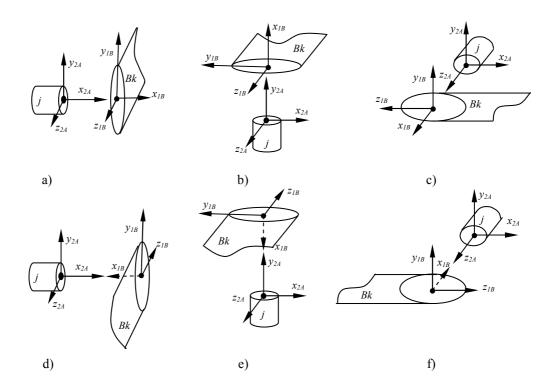


Fig. 2. The six possibilities of the connections between joint j and link B_k

We intend to *measure* the bracket dimensions (the position and orientation of the $F_{1...6B}$ faces) in the $Ox_{2A}y_{2A}z_{2A}$ referential system, which belongs to the joint j. Because the geometry of the link is defined in the

 $Ox_{1B}y_{1B}z_{1B}$ referential system we must transform these geometrical data in conformity with the orientation of the joint connection. For this reason we can use the following transformations:

$$\left[X_{FiB}^{Bk} \quad Y_{FiB}^{Bk} \quad Z_{FiB}^{Bk} \right]^T = {}^{j} S_{\beta_X, \beta_Y, \beta_Z} \left[l_{FiB, x}^{Bk} \quad l_{FiB, y}^{Bk} \quad l_{FiB, z}^{Bk} \right]^T,$$
 (2)

where: $l_{FiB,x,y,z}^{Bk}$ are the coordinate of the face F_{iB} center in the $Ox_{1B}y_{1B}z_{1B}$ referential system;

 X, Y, Z_{FiB}^{Bk} are the coordinate of the face F_{iB} center in the $Ox_{2A}y_{2A}z_{2A}$ referential system;

 ${}^{j}S_{\beta_{X},\beta_{Y},\beta_{Z}}$ is the rotation matrix (applied at joint j); $\beta_{X,Y,Z} \in \{-1,0,1\}$:

• for the case presented in figure 2.a,

$${}^{j}S_{100} = I_{3},$$
 (3)

• for the case presented in figure 2.b,

$${}^{j}S_{0,1,0} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \tag{4}$$

For the second extremity of the link we have 30 connection types with joint j+1. In figure 3 we have presented two of these connections. More precisely in figure 3.a the named connection is between the link face F_{5B} and the joint (j+1) face F_{1A} ; in figure 3.b the named connection is between the link face F_{6B} and the joint (j+1) face F_{1A} .

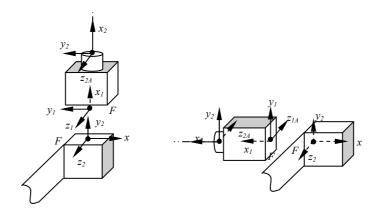
From kinematical point of view to describe these contacts means to use rotations operators. For example in figure 3.a we must apply a rotation right round z axes in order to superpose $Ox_{2B}y_{2B}z_{2B}$ on $Ox_{1A}y_{1A}z_{1A}$:

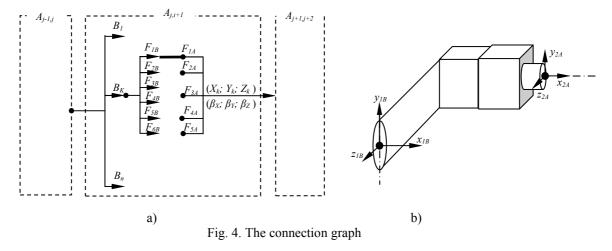
$${}^{j+1}R_{F5B,F1A}^{Bk} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$
 (5)

The conclusion is that for each connection type we must know the rotation operator which describes the contact. We will define this operator by $R_{FpB,FqA}^{Bk}$:

$${}^{j+1}R^{Bk}_{FpB,FqA} = \begin{bmatrix} r_{11} & \dots & r_{13} \\ & & \ddots & \\ r_{31} & \dots & r_{33} \end{bmatrix}, \tag{6}$$

where: ${}^{j+1}R^{Bk}_{FiB,FiA}$ is the rotation matrix which describe the contact between the face F_{pB} and the face F_{qA} ; $r_{1...3,1...3}$ are the element of this matrix; j+1 is the joint number; p,q=1...6.




Fig. 3. Two of the thirty possible connections between the link B_k and joint j+1

It is important to underline that these kinds of matrixes are known for each bracket and for each connection type.

3.2 The connection graph

The next step of our analyze focuses on a graphical description of the modularity. More precisely we intend to offer a picture of the modular robot construction from the previous discussed connection point of view. This graphical representation must contain all the possible connection and must bring out the chosen connection. Never the less the graphical construction is a graph which allow a future mathematical representation.

We have presented this graph in figure 4.a. and for a better understanding in figure 4.b we have presented the picture of the chosen connection.

The graph (see figure 4.a) shows that we can choose one of the n available brackets and one of the thirty connections between this bracket and the follower joint. The goal is to find a mathematical form which contain implicitly all these possibilities.

3.3 The homogenous transformation between joint j and joint j+1

Using the graph from figure 4.a we propose the following homogenous transformation between joint j and joint j+1:

$$A_{j,j+1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ X_k & |\beta_X| + (|\beta_Y| + |\beta_Z|)\cos(q_{i+1}) & -\beta_Z\sin(q_{i+1}) & \beta_y\sin(q_{i+1}) \\ Y_k & \beta_Z\sin(q_{i+1}) & |\beta_Y| + (|\beta_X| + |\beta_Z|)\cos(q_{i+1}) & -\beta_X\sin(q_{i+1}) \\ Z_k & -\beta_y\sin(q_{i+1}) & \beta_X\sin(q_{i+1}) & (|\beta_X| + |\beta_Y|)\cos(q_{i+1}) + |\beta_Z| \end{bmatrix}.$$
(7)

Some comments are necessary:

- \bullet The homogenous transformation $A_{j,j+1}$ give us the position and the orientation of referential $Ox_{2A}y_{2A}z_{2A}$ relative to the referential $Ox_{1B}y_{1B}z_{1B}$ (see also figure 4.b);
- The k index means that we have choused the link B_k in order to lie joint j to the joint j+1;
- $\beta_{X,Y,Z}$ are coefficients which define the direction of joint j+1 relative to the main referential system of the robot. More precisely $\beta_{X,Y,Z} \in \{-1,0,1\}$, $\beta_I = -1$ if joint j+1 has the direction -I, $\beta_I = 0$ if joint j+1 has the not the direction – I or I, $\beta_1 = 1$ if joint j+1 has the direction I. The mathematical expression of these coefficients can be obtained from the following equation:

$$[\beta_X \quad \beta_Y \quad \beta_Z]^T = \prod_{p=0}^{j} {}^{p+1}R^{Bk}_{FiB,FiA} \cdot [1 \quad 0 \quad 0]^T;$$
The position is defined by the coordinate X_k, Y_k, Z_k which are computed with equations (2), were we

- use ${}^jS_{\beta_X,\beta_Y,\beta_Z}$ matrix from equation (3) according to the value of $\beta_{X,Y,Z}$ coefficients;
- q_{j+1} is the rotation angle in joint j+1.

Using these transformations (9) we can compute the position, orientation of the robot end point:

$$P^{E} = \prod_{j=0}^{m-1} A_{j,j+1} . (9)$$

3.4 The algorithm

If we summaries the previous results we can propose the following algorithm for the kinematical description of the modular robot:

- choosing a configuration means to choose a succession of brackets which are connected in a desired way to the joint;
- choosing a particular bracket means to know his dimensions $l_{FiB,x,y,z}^{Bk}$;
- a desired connection between the bracket and the joint allows us to know the rotation matrix $_{f+1}^{Bk}R_{FpB,FqA}^{Bk}$, which describes this connection (6);
- knowing this matrix we can compute β_{XYZ} coefficients (8);
- with these coefficients we can choose ${}^{j}S_{\beta_{X},\beta_{Y},\beta_{Z}}$ matrix (3) and compute X_{k},Y_{k},Z_{k} dimensions (2);
- in the meantime these coefficients give us the possibility to compute the homogenous transformation between two successive joints (7);
- after we have defined our robot configuration we will obtain an equation which lies the joint rotation with position, orientation of the robot end (9);
- this equation can be used to solve kinematics problems (direct, indirect etc).

4. CONCLUSIONS

Present paper develops the research on modular robots. If in [1] we have made a bibliographical research, and we have presented our work strategy, in this paper we have started the kinematical analysis of the modular robots. This research focuses only on robots with rotation joints which are reciprocally perpendicularly or parallel. The generality of our study have been ensured by the general form of the link which lies two successive joint and the generality of the connection type between the link and the joint.

The main result that we have achieved is the algorithm which allows the mathematical construction of the homogenous transformation between the modular robots joint. This formalism gives us the possibility to solve the direct kinematics problem: to obtain the position and orientation of the modular robot end point when we impose desired trajectories in the robot joints. We will continue this study by focusing in the inverse kinematics problem, in the working volume etc.

Acknowledgments: This research work is supported by the Romanian Ministry of Education and Research through CNCSIS project 895/2007.

REFERENCES

- [1] Pozna, C., *Modular robots design concepts and research directions*, Proceedings of 5-th International Symphosium on Inteligent Systems and Informatics, IEEE Catalog Number 07EX1865C, ISBN 1-4244-1443-1.
- [2] Gogu, G., Representation du mouvement des corps solides, Hermes, Paris, 1996.