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Abstract: This paper presents some considerations regarding dynamic stress intensity factor 
determination using a three point’s bends analytical method. This method is based on a double 
mass-spring system. In this system the specimen and the striker are both represented as mass-
spring system. The specimen stiffness is computed using the midspan deflection of the beam 
and the contact stiffness is computed using a linear force-deformation relation. 
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1. INTRODUCTION 

 
Three point bend test under impact loading carried out on drop weight or swing pendulum machines has became 
an important tool in determination of dynamic fracture toughness. For a rate sensitive material, it permits thinner 
specimens to obtain plane strain fracture toughness due to elevation of yield stress with strain rate. However, due 
to specimen inertia, the load experienced by the specimen is different from that measured by the instrumented 
tup, and dynamic stress intensity factor has to be measured directly on the specimen. This is a difficult 
prescription to follow, especially in routine material testing, and for this reason we need to use analytical 
methods for the prediction of dynamic stress intensity factor from remote impact load measurements. Nash [1] 
carried out an analysis to obtain the mode shape and natural frequency of notched beams. Kishimoto et al. [2] 
simplified that to suit instrumented Charpy testing, and also formulated similar models for both elastic and 
viscoelastic materials by applying the boundary loads via contact spring.  In this paper the dynamic stress 
intensity factor is analytical determinate using a double spring mass model. 
  
 
2. THE ANALYTICAL MODEL 
 
The model used here for determination of dynamic stress intensity factor is a double spring mass model [3]. This 
model, presented in Fig.1, considers only the fundamental mode of vibration, and neglect the shear and rotary 
inertia. Application of impulse-momentum consideration permits the computation of the rigid body motion of the 
tup, and the same is applied as boundary condition to the spring-mass system. 
Consider the rigid body motion of the striker; the following equation can be obtained easily: 
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where v0 is the initial impact velocity, M is the mass of the tup and F(τ) is the force measured by the 
instrumented tup. 

 
 

Fig.1. The double spring-mass system. a) Three points bend specimen geometry. b) Mathematical model 
 
The equation (1) is solved numerically to obtain y, and then we can obtain the midspan deflection u(t) from 
equation (2), which is the equation of motion for the system without the damping: 
 
      ( )uykukum cps −=+DD        (2) 

 
where kps is the precracked specimen stiffness and kc is the contact stiffness, u(t) is the mass displacement and m 
is the equivalent mass which is: 
 

            ASm ρ
35
17=          (3) 

 
where ρ is the density, S is the span and A is the area of gross section of the beam. 
 
 
3. DYNAMIC STRESS INTENSITY FACTOR DETERMINATION 
 
The stress intensity factor solution for three point bend specimen given in ASTM E399-83 standard is: 
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where S is the span length, B is the width, W is the thickness and 
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 (the above equation is valid only if plane strain condition prevails in the specimen). 
F(t) is the force experienced by the beam and is obtained from the midspan beam deflection: 
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( )tuktF ps=)(       (6)  
 
 
4. EVALUATION OF STIFFNESS 
 
4.1 Notched beam stiffness evaluation 
 
Presence of a crack in a beam reduces its flexural rigidity. Hence the notched beam can be represented by an 
equivalent spring of reduced stiffness depending on the precrack length. For an unnotched simply supported 
beam loaded at its midpoint, Timoshenko and Goodier [4] give the displacement as: 
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and the displacement due to a crack is given by Tada et.al. [5] as: 
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where 
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So the stiffness of the precracked specimen is: 
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where F is the impact load applied to the specimen. 
 
4.2 The contact stiffness evaluation 
 
Using the Hertz theory, the contact stiffness is compute using the specimen geometry, profile of the striker tip, 
and elastic constants of the tup and beam materials [6]: 
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where r is the radius of curvature of the striker, Fmax is the maximum contact force, and υ is the Poisson 
coefficient. 
 
 
5. COMPARISON WITH THE EXPERIMENT 
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For comparison we used the experimental data obtained in paper [3] in a low-blow impact test. The test were 
carried on a Al 6061 T6 alloy specimen with: L= 172 mm, W=25,4 mm, B=6,35 mm and a= 15,5 mm. The 
specimen was impacted with an initial velocity of 5 m/s.  
Figure 2 shows the computed and measured dynamic stress intensity factor versus time. It can be observed that 
the measured data agrees with the computed dynamic factor intensity. 
 

 
Fig.2 Computed and measured dynamic stress intensity factor versus time  

 
 
6. CONCLUSION 
 
In this paper is presented a three point’s bend analytical model to compute dynamic stress intensity factor. This 
model used a double spring – mass system because the force applied to the specimen by the striker is also 
represented as a spring-mass system using a contact spring and the tup mass. The contact stiffness is compute 
using a linear force-deformation law and the specimen stiffness is computed using the midspan deflection 
relation of a simply supported beam. The model agrees well with the experimental data used. 
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