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SENSORLESS CONTROL OF THE INDUCTION
MACHINE BY USING A KALMAN OBSERVER
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Abstract. This paper work presents a method to receive in a sensorless way the rotor speed
and the rotor flux of an induction machine by using a Kalman observer. There is presented
the Kalman filter general theory and its applying way for the implementation of an optimal
recursive observer, named Extended Kalman Filter (EKF). The observer with EKF for the
rotor speed and flux estimation is simulated by using MATLAB\SIMULINK files, and the
conclusions of the simulation study are presented.
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1. INTRODUCTION

The modern systems of adaptive-optimal control of the induction machine use the machine model for the
implementation of the control lows and for their readjustment at the operate conditions. As the machine model is
powerfully nonlinear, variable with the speed and the loading, the model parameters have to be precisely known
and continuously updated to obtain the best performances of the control system. In many cases it is impossible to
use sensors for velocity or flux measurement, either because it is technically impossible, or too expensive. The
Kalman observer has a good dynamic behaviour, disturbance resistance, and it can work even in standstill.

2. ALGORITHM OF THE EXTENDED KALMAN FILTER

It considers the nonlinear system’s model in the form:

o)

Xk+1 = Fk (Xk,Uk)+Wk
Yk =H-Xk +Vk

in which the state equation non-linearity is characterized by the nonlinear function Fy(x,ux). In the case of a
time-variable and non-linear dynamic system, like the induction machine is, in which the state-variables non-
linear vary at the speed variation, the state estimation on the Kalman filter base is applied after the system is
linearized and with on-line model updating at every sampling step. In this form, the state estimator based on
Kalman filter is known as the extended Kalman filter, shortly abbreviated EKF. The extended Kalman filter
algorithm is applied through the system previous linearizing around the last estimated value:

OFk (Xk,Uk)

Fk(Xk,Uk)sz()?k,Uk)+( X ij_;(k (Xk —Xk) . )

To simplify the writing the so-called gradient matrix is written down with fy:

fk(ik)=(wj ©))

OXk
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The linearized model of the system has the following form:

Xk+1=Fc(Xk, Uk) + F (Xk)- (Xk —Xk) +Wk

4
Yk=H-Xk+Vk @)
and the extended Kalman filter is described by the equations:
I. The prediction
Xk+1=Fk(Xk,Uk) 5)
Ykt =H-Xks1
1. The filtering (correction)
Xk+1=Xk41+ Kk+1(yk+1—Uk yk+1) (6)

Yi1=H-Xks1

The overall structure of the extended Kalman filter is presented in figure 1.

Xo

Xy =F+ fi (X1 =X )+ Wy
Vi =HX +V

PREDICTION FILTERING

Fig. 1. Block diagram of EKF state observer.

The correction matrix K., of the estimated state is on-line calculated, with a decreasing recursive algorithm of
the estimation error. The observer estimates the state through the real time simulation of the system behavior and
the estimated value is iteratively corrected (filtered) up to the nullity of the error between the estimated output
and the real system output. By annulling this error, the estimation model is optimized and the estimated state
represents the real state of the process. The covariance matrices of the prediction and estimation errors are
calculated by using the linearized model’s equations (4) and the extended Kalman filter equations (5) and (6). As
to these relations, the prediction error is

k1 =Xkl — Xkt = Fi — Fic = fic - (Xk =Xk ) + Wik = fic - (X =Xk ) + W, 7
and the estimation error is

ék+l=)’ik+l—Xk+l=ik+1+Kk+l‘H‘Xk+l+ Kk+l'Vk+1—Kk+l'H-§k+l—Xk+l=
=(|—Kk+l'H)(ik+l—Xk+1)+ Kk+1-Vk+1

®)

Using these expressions, after a simple algebraic calculus, the covariance matrices expressions of the prediction
errors P41 and of the estimation ones Sk, results as:
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Per = E{(8s1-€,, )= f,E, fc +W 9)
Sk+1: E{(ék+l ) étkﬁ )}: (I - Kk+1H)Pk+l(| - KkJrlH)I + Kk+1VKtk+1 (10)

The Kalman matrix expression K,.; determines through the variation decreasing of the estimation error Sk., on
the base of the following equation:

aSk+1

oKL =—H-(1- Ky qH) - P H' + K V=0 (11
k+1

It results the K matrix expression at the t,.; moment:
Kii1 = PaaH [HP o H + VI (12)

Replacing in egn (10) the matrix Ky.; given by the relation (12), results the minimum variation expression of the
estimation error:

(Pest)min = (1 = KyaH) - Piga (13)

The estimation observer based on the Kalman Filter needs to know the process quantities and a statistic
evaluation of the noise in the system, as well as the measurement errors and the initial state.

Synthesizing, the extended Kalman observer algorithm spreads as follows;

@ on the base of some stochastic considerations, the initial values of the state vector and of the covariance
matrices of the perturbations and estimation error are setting:

X(to) =Xo, W= WO! V= VO, S= So,

@ the state variables prediction for the next sampling time, tx.1, obtains on the base of the entering uy and state x;
sizes, determined at t, sampling time, in conformity with the input-state equation;

Xk+1=FiXk +GkUk ;
® the covariance matrix of the prediction error calculates with the relation :
Pi+1= fk -Sk- fkt +W;
@ the Kalman matrix is determined with the relation:
Kii1 = PioaH [HPaH + V1™
® the state vector X1 is estimated at the t,.; sampling time:
K1 =Xke1 + Kk (Yot — Ykat)
in which yy.1 =Hw1Xis1 are the measured output, and Yi.1=Hu1-Xka are the predicted output.
® the covariance matrix of the error is calculated with the relation:
Ska=(1—KksaH)P

@ there sets: k = k+1, X =Xy.1, Sk = Sk.1 and it takes again the algorithm from the stage ©.

3. ALGORITHM OF THE ROTOR SPEED AND FLUX ESTIMATION

The estimation of a machine state or parameters using an extended Kalman filter, performes by taking these sizes
as a state variable in the induction machine model. As follows, the Kalman filter appliance supposes the
establishment of the time-discrete model with the state-variables equations for the induction motor, one of the
states-variables being the estimated parameter. By choosing as the state variables the stator and rotor flux
components in a stationary d-q axis and the relative rotor speed v, the discrete model of the machine in matrix
form is [4]:



MOCM 14 — Volume 1 - ROMANIAN TECHNICAL SCIENCES ACADEMY - 2008

236

Te

Te Xm 0

a GTl 0 GTJ_ Xo 0
Wid Te Te Xm Vid opTe 0
0 1- 0 —= =m0
Vig ol ol X Yig 0 opTe u
Yad =| Te Xm 0 1— Te —orTv 0] Waq | +| O 0 '|:u1d:|
Waq ol Xz ol be Waq 0 0 1
v Te Xm _Te v 0 0
kit O GTZ X2 (DbTeV ! GTZ O “ (14)
|0 0 0 0 1],
Yid
. 1 _Xm_ 0 0| | vy
ha | _| oXa OX1Xp
Mk‘ o Lo _ Xmn o||lA
oX1 OX1X; V2q

Vo k

The equations (14) have been done in normed quantities and there have been used the notations:

e T o XL

1= "R the stator time constant, L; and R; being the phase self inductance and the phase
1'1 1

resistance of the stator winding;

o T,= X2 _Ls _ the rotor time constant, L, and R, being the phase self inductance and the phase

S o, Ry
resistance of the rotor winding;
e o=1- XX;‘ — the total dispersion coefficient, x;, X, and X, being respectively, the stator, rotor
172
and magnetizing normed reactance.
. Te — the sampling period.

If there take as the command quantities the components u;q and u,q of the stator voltages and as output
(measured) quantities the components i;g and i;q Of the stator current, the complete model input-state-output of
the asynchronous machine used for the flux estimation, takes the following form:

From the comparison of the model descbribed of eqn. (14) with the discrete model in its general form

x(k+1) = Fx(K) + G - u(k)
y(k) =H-x(k)

(15)

the matrices that interfere in the egn. (14) are obviously.

As the considered state sizes are invariant at the reference frame change, there uses here the machine model in
the stationary reference frame. For the model smoothing regarding the appliance of the extended Kalman filter
recursive algorithm, there establishes the added matrix Fy(xy,Ux) for the state equation in conformity with (2):

T, T, X
(1— G-Ie-l j\llm +G_-|e—1X_TW2d + o1 TeUyg

_ T Te Xm
(1 ol )\qu + oTh X Waq + oy Telyg
XmTe (16)

O. X1T2

T
Vg + (1 - ?-T-Z)Wd —TeLYoq

Xm T T,
c;nxle dayiq + (1 - ?-T-Z)Wq + o1 TeLY2q

Y

The gradient matrix fi calculates as in relation (3). Thus it results:



MOCM 14 — Volume 1 - ROMANIAN TECHNICAL SCIENCES ACADEMY - 2008 237
_Te Te Xm ]
GT]_ GT]_ X2 0 0
1 1 X2
s T T UL SRS T )
k X:Xk GTZ Xz GTZ ble GTZ Xl Vid GT Wad
Te Xm T TeXm _Te
T, X; @pTeV o, o X Vig =75 Vg
0 0 0 0 1 I

With the matrices Gy, Fx and fi thus established and imposing the initial values of the state variables vector X,
of the covariance matrices of the perturbations (W, and V) and of the estimation error S, can be reelled off the
recursive algorithm of the EKF previously presented that will estimate the machine states, the rotor and stator

fluxes and the rotor speed V.

4. SIMULATION RESULTS. CONCLUSIONS

For the numerical simulation of the extended Kalman filter algorithm regarding the rotor speed estimation and
magnetic fluxes of the induction machine there have been used a simulation diagram presented in figure 2.
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Fig. 2. The SIMULINK block diagram.

The dynamic system of the EKF estimator is performed using a SIMULINK S-function, implemented by using

Matlab routine.

The simulation program was developed after the following stages:
1) t=0  —the machine was started up nominal value speed reference ;
2) t=0,5s —the load torque mr of nominal value was applied,;
3) t=0,8s —itwas suddenly increased the rotor resistance T, with 50% in its nominal value;
4) t=1s —itwas suddenly decreased load torque at zero;
5) t=1,4s — it was suddenly reversed speed reference;

6) t=2,5s —the load torque was suddenly increased at the nominal value;

7) t=2,8s —the load torque was suddenly decreased at half (50%);
8) t=3s - the speed reference was suddenly decreased at 50%;
9) t=3,5s —the load torque and the speed reference were annulled.
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Fig. 3. The simulation results of the Kalman observer.

The simulation results, the variation curves for speed, torque (load and electromagnetic torque) and for the rotor
and stator fluxes components in normalized sizes are presented in figure 3. To show better the estimation quality,
the magnetic fluxes have been presented in an orthogonal axis system, synchronously with the rotation magnetic
field. So, in the conditions of the steady state, these are constant sizes. To perform the simulation program there
followed the estimation precision, the estimator dynamic performances at the speed and torque variations and the
rotor resistance emphasizing. For the simulation it was used a sampling period Te = 0,0005 seconds.

It was adopted the nule initial state. The covariance matrices values of the system noises (w) and of measure (v),
the diagonal matrices were established through repeated attempts, up to the getting the optimal performances in
the point of view of the precision estimation states, of the system stability and of the estimator convergence.

The obtained results by simulation prove a very good dynamic behavior of the estimator, the system stability and
the estimation precision of the states, maintaining at sudden variations of the speed and of the and of the applied
torque at machine ax. As well as the precision, as the estimated state convergence at real values are dependent on
the covariance matrices values of the noises. Generally, the choosing of these matrices optimal values in the
convergence point of view in the transient conditions, as well as the estimation precision, is dependent on the
state variable for which it wants a very correct estimation. If there is any interest to get a better estimation of the
entire state vector, regarding the covariance matrices values settlement, it must be accepted a compromise
regarding the estimation precision in the favour of a sure and stable, dynamic behaviour assurance of the system
and of an acceptable convergence for the all estimated state sizes.

Appendix. Parameters of the asynchronous machine used for EKF simulation:
Rated power = 2,2 KW, Rated speed = 2800r/min; Number of poles pair = 1; Stator resistance R; = 8,5Q; Rotor

resistance related to stator R, = 7,8 Q; Total stator inductance L; = 852 mH; Total rotor inductance related to
stator L, = = 852 mH; Magnetizing inductance L, = 815 mH.
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