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Abstract. This paper work presents a method to receive in a sensorless way the rotor speed 
and the rotor flux of an induction machine by using a Kalman observer. There is presented 
the Kalman filter general theory and its applying way for the implementation of an optimal 
recursive observer, named Extended Kalman Filter (EKF). The observer with EKF for the 
rotor speed and flux estimation is simulated by using MATLAB\SIMULINK files,  and the 
conclusions of the simulation study are  presented. 
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1. INTRODUCTION 
 
The modern systems of adaptive-optimal control of the induction machine use the machine model for the 
implementation of the control lows and for their readjustment at the operate conditions. As the machine model is 
powerfully nonlinear, variable with the speed and the loading, the model parameters have to be precisely known 
and continuously updated to obtain the best performances of the control system. In many cases it is impossible to 
use sensors for velocity or flux measurement, either because it is technically impossible, or too expensive.  The 
Kalman observer has a good dynamic behaviour, disturbance resistance, and it can work even in standstill.        
 
 
2.  ALGORITHM OF THE EXTENDED KALMAN FILTER 
 
It considers the nonlinear system’s model in the form: 
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in which the state equation non-linearity is characterized by the nonlinear function Fk(xk,uk). In the case of a 
time-variable and non-linear dynamic system, like the induction machine is, in which the state-variables non-
linear vary at the speed variation, the state estimation on the Kalman filter base is applied after the system is 
linearized and with on-line model updating at every sampling step. In this form, the state estimator based on 
Kalman filter is known as the extended Kalman filter, shortly abbreviated EKF. The extended Kalman filter 
algorithm is applied through the system previous linearizing around the last estimated value: 
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To simplify the writing the so-called gradient matrix is written down with  fk: 
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The linearized model of the system has the following form: 
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and the extended Kalman filter is described by the equations: 
 

I. The prediction   
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II. The filtering (correction)  
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The overall structure of the extended Kalman filter is presented in figure 1. 
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Fig. 1. Block diagram of  EKF state observer. 
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The correction matrix Kk+1 of the estimated state is  on-line calculated, with a decreasing recursive algorithm of 
the estimation error. The observer estimates the state through the real time simulation of the system behavior and 
the estimated value is iteratively corrected (filtered) up to the nullity of the error between the estimated output 
and the real system output. By annulling this error,  the estimation model is optimized and the estimated state 
represents the real state of the process. The covariance matrices of the prediction and estimation errors are 
calculated by using the linearized model’s equations (4) and the extended Kalman filter equations (5) and (6). As 
to these relations, the prediction error is 
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and the estimation error is  
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Using these expressions, after a simple algebraic calculus, the covariance matrices expressions of the prediction 
errors Pk+1 and of the estimation ones SK+1, results as: 
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The Kalman  matrix expression  Kk+1 determines through the variation decreasing of the estimation error SK+1, on 
the base of the following equation: 
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It results the K matrix expression at the tk+1  moment: 
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Replacing in eqn (10) the matrix Kk+1 given by the relation (12), results the minimum variation expression of the 
estimation error: 

          1k1kmin1k P)HKI()P( +++ ⋅−=                (13) 

The estimation observer based on the Kalman Filter needs to know the process quantities and a statistic 
evaluation of the noise in the system, as well as  the measurement errors and the initial state. 

Synthesizing, the extended Kalman observer algorithm spreads as follows;  

1 on the base of some stochastic considerations,  the initial values of the state vector and of the covariance 
matrices of the perturbations and estimation error are setting: 

x(t0) = x0 ,    W = W0,   V = V0,    S = S0; 

2 the state variables prediction for the next sampling time, tk+1, obtains on the base of the entering uk and state xk 
 sizes, determined at tk sampling time, in conformity with the input-state equation:  

kkkk1k uGxx~ +=+ F ; 

3 the covariance matrix of the prediction error calculates with the relation : 

WSP kkk1k +⋅⋅=+
tff ; 

4 the Kalman matrix is determined with the relation: 
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5 the state vector xk+1 is estimated at the tk+1  sampling time:  

)y~y(Kx~x̂ 1k1k1k1k1k +++++ −+=  

in which yk+1 =Hk+1xk+1  are the measured output, and 1k1k1k x~Hy~ +++ ⋅=  are the predicted output. 

6 the covariance  matrix of the error is calculated with the relation: 

1k1k1k P)HKI(S +++ −=  

7 there sets: k = k+1, xk =xk-1, Sk = Sk-1 and it takes again the algorithm from the stage  2. 
 
  
3. ALGORITHM OF THE ROTOR SPEED AND FLUX ESTIMATION 
 
The estimation of a machine state or parameters using an extended Kalman filter, performes by taking these sizes 
as a state variable in the induction machine model. As follows, the Kalman filter appliance supposes the 
establishment of the time-discrete model with the state-variables equations for the induction motor, one of the 
states-variables being the estimated parameter. By choosing as the state variables the stator and rotor flux 
components in a stationary d-q axis and the relative rotor speed v, the discrete model of the machine in matrix 
form is [4]:          
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The equations (14) have been done in normed quantities and there have been used the notations: 

• 
1

1

11

1
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L
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=   –  the stator time constant, L1 and R1 being the phase self inductance and the phase 

resistance of the stator winding; 

• 
2
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21

2
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L
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=  – the rotor time constant, L2 and R2 being the phase self inductance and the phase 

resistance of the rotor winding; 

• 
21

m
xx

x1−=σ   – the total dispersion coefficient, x1, x2 and xm  being respectively, the stator, rotor 

and magnetizing normed reactance. 
•           Te  – the sampling period. 

If there take as the command quantities the components  u1d and u1q  of the stator voltages and as output 
(measured) quantities the components i1d   and i1q  of the stator current, the complete model input-state-output of 
the asynchronous machine used for the flux estimation,  takes the following form: 
From the comparison of the model descbribed of eqn. (14) with the discrete model in its general form 
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the matrices that interfere in the eqn. (14) are obviously. 
As the considered state sizes are invariant at the reference frame change, there uses here the machine model in 
the stationary reference frame. For the model smoothing  regarding the appliance of the extended Kalman filter 
recursive algorithm, there establishes the added matrix  Fk(xk,uk) for the state equation in conformity with (2): 
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The gradient matrix  fk calculates as in relation (3). Thus it results: 
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With the matrices Gk, Fk and  fk thus established and imposing the initial values of the state variables vector X0 
of the covariance matrices of the perturbations (W0 and V0) and of the estimation error S0, can be reelled off the 
recursive algorithm of the EKF previously presented that will estimate the machine states, the rotor and stator 
fluxes and the rotor speed v. 
 
4. SIMULATION RESULTS. CONCLUSIONS  
 
For the numerical simulation of the extended Kalman filter algorithm regarding the rotor speed estimation and 
magnetic fluxes of the induction machine there have been used a simulation diagram presented in figure 2. 

 
 

Fig. 2. The SIMULINK block diagram. 
 

The dynamic system of the EKF estimator is performed using a SIMULINK  S-function, implemented by using 
Matlab routine. 

The simulation program was developed after the following stages: 
1) t = 0  – the machine was started up nominal value speed reference ; 
2) t = 0,5s   – the load torque mr of nominal value was applied; 
3) t = 0,8s   – it was suddenly increased the rotor resistance T2 with 50% in its nominal value; 
4) t = 1s   – it was suddenly decreased load torque at zero; 
5) t = 1,4s   – it was suddenly reversed speed reference; 
6) t = 2,5s   – the load torque was suddenly increased at the nominal value; 
7) t = 2,8s   – the load torque was suddenly decreased at half (50%); 
8) t = 3s   – the speed reference was suddenly decreased at 50%; 
9) t = 3,5s   – the load torque and the speed reference were annulled. 
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Fig. 3. The simulation results of the Kalman observer. 
 
The simulation results, the variation curves for speed, torque (load and electromagnetic torque) and for the rotor 
and stator fluxes components in normalized sizes are presented in figure 3. To show better the estimation quality, 
the magnetic fluxes have been presented in an orthogonal axis system, synchronously with the rotation magnetic 
field. So, in the conditions of the steady state, these are constant sizes. To perform the simulation program there 
followed the estimation precision, the estimator dynamic performances at the speed and torque variations and the 
rotor resistance  emphasizing. For the simulation it was used a sampling period  Te = 0,0005 seconds.  
It was adopted the nule initial state. The covariance matrices values of the system noises (w) and of measure (v), 
the diagonal matrices were established through repeated attempts, up to the getting the optimal performances in 
the point of view of the precision estimation states, of the system stability and of the estimator convergence.  
The obtained results by simulation prove a very good dynamic behavior of the estimator, the system stability and 
the estimation precision of the states, maintaining at sudden variations of the speed and of the and of the applied 
torque at machine ax. As well as the precision, as the estimated state convergence at real values are dependent on 
the covariance matrices values of the noises. Generally, the choosing of these matrices optimal values in the 
convergence point of view in the transient conditions, as well as the estimation precision, is dependent on the 
state variable for which it wants a very correct estimation. If there is any interest to get a better estimation of the 
entire state vector, regarding the covariance matrices values settlement, it must be accepted a compromise 
regarding the estimation precision in the favour of a sure and stable, dynamic behaviour assurance of the system  
and of an acceptable convergence for the all estimated state sizes. 
 
Appendix. Parameters of the asynchronous machine used for EKF simulation: 
Rated power = 2,2 KW; Rated speed = 2800r/min; Number of poles pair = 1; Stator resistance R1 = 8,5Ω; Rotor 
resistance related to stator R2 = 7,8 Ω; Total stator inductance L1 = 852 mH; Total rotor inductance related to 
stator L2 = = 852 mH; Magnetizing inductance Lm = 815 mH. 
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