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Abstract: The present paper presents the theoretical and experimental method for 
determination the deformations and the stability loss of disk stressed by an axial-symmetric 
field, variable according to disk radius and thickness, superposed with a field of membrane 
tensions given by the revolution movement. The experimental results confirm theoretical 
hypothesis. 
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1. INTRODUCTION 
 
The great diversity of practical applications in which disks may be found, justify the necessity to continue the 
study of disks. The great stability brought by stability phenomenon, justify the latest theoretical and experimental 
research. By creating some structures from materials with great resistance and small weight favor the creation of 
some constructions with reduced dimensions. 
 
The problem of work safety has a great importance and it demands for the real material behavior know-how. 
Also, the existence of some cuts-off of different shapes and sizes, in disks, is often met. Cuts-off may bring some 
advantages in disk behavior at different external stresses, but at the same time they may become real stress 
concentrators. 
 
The study of tension and deformation state, from around of such concentrators performed in disks become a very 
important problem, even though it is very difficult. Of the same importance is the elastic stability study of such 
“structures”. 
 
In such context the present paper may be placed, through which shown a way to determine the tension and 
deformation state from disk plane, from around some concentrators; the stress is given by membrane tensions, 
which are due to temperature difference along the disk radius and disk revolution movement, having a constant 
angular speed ω. 
 
In this paper are studied several disks with cuts-off of different shapes, disks having an axial-symmetric 
temperature distribution with a non-uniform variation along the radius, and at the same time an uniform 
revolution around the axis of rotation, perpendicular onto the plane disk. The study has been carried out through 
the finite element method (FEM) as well as the boundary element method (BEM). 
 
The theory on which MEF is based on is very well established. Should be specify that for axial-symmetric 
sections, MEF presents some simplifications, besides MEF general theory – in this way it gets to a smaller 
number of finite elements, and therefore at great calculus advantages. At axial-symmetric bodies with axial-
symmetric tension states, generally calculus is made with reference to the median plane. In this way a three-
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dimensional problem may be reduced, in a first phase, to a two-dimensional problem. The base MEF relations 
are deduced from energetic considerations and are based on the principle of stationary value of the elastic 
potential. 
 
Next, the theoretical principles of Boundary Element Method (BEM-for short) are given. This method is very 
often employed to solve some problems such as: a study of those areas around tension concentrators. This 
method is hard to utilized in those cases when equations with partially derivate are defined on an infinite domain. 
Generally at equations with linear partially derivate, boundary shape and conditions on boundary determine the 
unique solution. Based on this method, only the studied boundary is divided into finite elements; this leads to a 
reduce of the work load and to an obtaining of good results at small execution times. 
 
BEM is based on Betti theorem. Also, are used plane equations of Lame (some authors consider these equations 
being Navier-Cauchy equations). 
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For planar state of tension, relations (1) take the form: 
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It should be specified that at planar state of tension, R. Hook law take the form: 
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Fig. 1 
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In the above figure, plate element is in equilibrium (mass forces are not taken into account). Are obtained two 
relations of equilibrium in plane, being independent of other relations. 
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Relations (4) were replaced in (6). Geometric relations in plane are known as: 
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which are replaced in (7) and the following relations results: 
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At planar state of tension the following conditions are to be met: 
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The elastic plane loaded with an unitary 
concentrated force after x axis, which acts at the 
origin point is a solution of equations (10); clearly 
elastic plane loaded with an unitary concentrated 
force oriented after y axis, which acts at the origin 
point is a solution of equations (11). 
Based on figure 1 results the following solution 
(force after x axis and corresponding in (10)). 
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Fig. 1 
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Fig 2. 

 
For the case when the unitary force is found on the y axis, the solution for equation (11) is found by putting in 
relations (12) θ-π/2 instead of θ; this aspect being evidentiated in figure 2. 
 
Are used the notations for axes with 1 and 2. Is used the notation Uij which represents the displacement of one 
point of plane measured in direction of I, due to an unitary concentrated force, which acts in the direction of j. 
For the fundamental solution will be used capital letters and results: 
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U11, U12=U21, U22 represent the components of a symmetric tensor, in plane, called the tensor of Kelvin-
Somigliana. 

 
 

With relations (13) can be calculated the 
displacements of some unitary forces which act 
anywhere in plane. 
Assume that the unitary force acts in point P. The 
considered point is Q and rPQ measure the distance 
between the two points (fig.3.) 
 
The previous relations are particularized and due to 
a force that acts in the origin point after x axis, take 
birth tensions: 
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In figure 4 is shown how will be done the study of tensions that take birth onto a certain contour, noted with F, of 
a domain D, drawn on the elastic plane. The unitary force acts in point P, after the direction of x axis. Is 

Fig. 3 
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specified travel direction of contour Γ and in a certain point Q placed on the contour are established: the external 
surface normal n and tangent t (in the direction of travel direction). Projections on the shown directions are made 
and towards axes system n-t is obtained. 
 

 
Fig. 4 

 
If the unitary force is oriented after z axis, the elastic plane system is made with that shown in figure 4. Is used 
the same calculus sequence and is obtained: 
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It is specified the fact that through Tx and Ty have been noted the corresponding tensions in point Q on the 
contour of domain D which extends on a surface of normal n and is, in fact, measured parallel with axes x and y. 
If return to previous notation and interpretation Tij (measured tension after i direction, but due to an unitary force 
that acts in j direction) is obtained: 
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Betti’s theorem is applied and obtained: 
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Generalized, with i, j taking the values 1,2…: 
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Significations: δij is the Kronecker symbol, ;ji,1;ji,0ij ===δ  ui(P) is the actual displacement value in a 
certain point on the boundary G; T(P,Q) is the tension produced in point Q on the boundary G, due to unitary 
force applied in point P. 
 
First relation (18) corresponds to a unitary force that works after axis 1, and the second relation (18) corresponds 
to a unitary force that works in direction of axis 2 (fig.5). Points P and Q are on the boundary. Point O describes 
the boundary F, and thus relation (19) represents an integral equation which allows solving the problem. 
Numerical solving of relation (19) is done with BEM. 
 
In relations (18) the actual loading tensions noted with t1 and t2 are projected after the axes noted with 1 and 2 
(fig.6). 

 
Fig. 6. 

 
Is specify that each boundary node is characterized by four dimensions:u1, u2, t1, t2. From these, two are always 

known and in function of boundary bindings, the following situations detach: 
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- On boundary section are known f1 and f2; 
- On embedded section are known u1 and u2; 
- On the boundary seated section are known u1 and f2 or u2 and f1. 

 
Same as at MEF, dimensions u and f from the inner of an element are unique determined by the nodal values 
through the interpolation function: 
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In this final relation, the sum refers to all the elements in which boundary g has been divided; ue and te represent 
the nodal dimensions corresponding to an element. The integrals from relation (21) will be calculated by the 
mean of a matrix. 
 
Is specify that BEM is conceived having the idea that the domain is cut-off from elastic plane. Is, also, specify 
that displacements of the points being on the boundary F, related to axes 1 and 2, will be calculated with 
relations (13) in which a is an arbitrary constant and rPQ is the position vector between the two points. 
 
Tensions noted in theory with t, which develop on the boundary, is calculated with relation (18) in which θ is the 
angle from the horizontal to rPQ, and β the angle from rPQ to normal n, to boundary. 
 
This method has several advantages, which will be shortly pointed out: 
 - can be digitized only “the boundary” through which can be understand only the area from around the 
studied domain; it gets, on one hand, to a smaller number of MEF unknown, and on the other hand, to a lower 
digitizing and to a diminishing of the input data volume; 
 - establishing with a higher accuracy of tension state, even on the boundary domain from where the 
number of finite elements may be considerably increased. Is specify that nodes stuffing in the interest area can be 
done much easier that in the case of MEF; 
 
BEM, also, has a series of disadvantages, from which the most important one is that the method leads to a linear 
system with full matrix and non-symmetric (being necessary a larger volume of memory), which makes the 
utilization of this method to be employed especially in the case of tension concentrators. 
 
Has been increased the fillet radius of the concentrator from disk, than calculus with BEM resumed based on the 
same run with MEF, to make the conditions in displacements. In calculus has been utilized the equivalent tension 
corresponding to specific energy theory of deformation shape modifier. 
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