
 
 
MOCM 13 – Volume 4 – ROMANIAN TECHNICAL SCIENCES ACADEMY - 2007             241 
 

 
 
 

THE LINEAR AND ANGULAR LOGARITHMIC STRAIN AND THEIR 
UTILIZATION IN THE CONTINUUM MEDIA PROBLEMS 

 
 

VIOREL UNGUREANU 
 

University of Bacău 
 
 

Abstract: The focus of this paper is the presentation of linear and angular components of 
logarithmic strain tensor determination that are useful in the description of large plastic 
deformation. The definition of logarithmic strain is obtained from law of energy transformation 
and conservation. The linear and angular components of logarithmic strain tensor are compared 
with the conventional strain. The differences between the conventional and logarithmic (true or 
natural strain) are presented in some obtained diagrams. The components of logarithmic strain 
are useful in the experimental analysis of strain field in the cold forming processes, in the 
mechanical characteristics of the materials determination, and other application in the 
mechanics of continuum media. 
   
Key words: linear logarithmic strain, angular logarithmic strain, displacements.  
Nomenclature: α – change of a rectangular angle;  εx, εy, εz – linear logarithmic strain; εxy,= εyx , εyz = 
εzy, εzx = εxz  – angular logarithmic strain.  
 
 

1. INTRODUCTION 
 

 The utilization of logarithmic strain for the description of large plastic deformation, was first introduced by 
Ludwig [1…8].  Usually, the logarithmic strain is determined for principal direction of the strain. If the principal 
directions of the strain are unknown, first are determined the specific strain (Lagrangean strain), then principal 
direction and finally are determined the correspondingly linear logarithmic strain. The logarithmic strains may be 
represented as components of logarithmic strain tensor in respect with principal directions. But, as any tensor, 
the tensor of logarithmic strain should submit to the law of tensor transformations in respect with the change of 
coordinate system. In other words, the tensor of logarithmic strain should have a correspondingly shearing 
components. 
 
To analyse the difference between the conventional (engineering) strain and logarithmic strain, let see the figure 
1 and try to find some characteristics of stress and strain measurement. Consider a bar of length l0 submitted to 
some axial forces. If at a moment we apply an incremental force dF which produces an differential change in 
length dl of momentary length l, the work done by the force dF well be transformed in to elastic potential energy 
of a stressed bar. The work dW done by the incremental force dF may be written as: 

1/ 2. . .
.

dW dF dl dw   
A l A l

= =  

If the volume of the bar is V= A.l, we can calculate  the unit potential energy w from: 

1/ 2. . .dW dF dl   =  

If the applied force varies from zero to F, the length changes from l0 to l and the cross sectional area A is 
considered constant, the unit potential energy w may be written: 
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                                                     Fig.1.  A bar submitted to  axial force. 
 
In the above relationship, obtained from law of energy transformation and conservation, F/A=σ is the true stress 
and ln(l/l0)=ε is the true or linear logarithmic strain. Accordingly to the Marina [9], the definition of logarithmic 
strain may be obtained from first principle of thermodynamics.  

                                  
                                             Fig.2.  A bar submitted to some axial forces. 
 
If place of logarithmic strain is used conventional (or engineering) strain, are obtained some incorrect results. 
For example, if we apply two forces F1 and F2 (figure 2a) thou that initial length changes from l0 to l1 and then to 
l2, we obtain overall stress σt=σ1+σ2, but the overall conventional strain εt is not equal with sum ε1+ ε2. If 
logarithmic strain is used, we can write εt=ε1+ε2 i.e. overall strain is equal with the sum of partial strains. In 
another example, if we apply two forces F1 and F2 thou that F2= -F1 (figure 2b), that is a neutral force system, 
the overall stress is equal with zero but the overall conventional strain is not equal with zero. If logarithmic strain 
is used, the overall strain will be equal with zero too. The above situation is presented succinct in table 1.  
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                                    Table 1. The correspondence between the stress and strain state.  
     Case      Stress state Conventional strain Logarithmic  strain 
F1+F2 ≠ 0 (figure2a).      σt= σ1+σ2     εt  ≠ ε1+ε2   εt= ε1+ε2 
F1+F2=0  (figure 2b).         σt= 0         εt  ≠ 0      εt = 0 
 
Thous consideration shows that the linear logarithmic strains are more suited for strain description in the 
mechanics of deformable media. In order to make possible a complete application of logarithmic strain, results 
the necessity of angular logarithmic strain determination. In this way, the tensor of logarithmic strain may be 
written for any situation, not only for principal direction.    

 
 

2. THE ANGULAR  LOGARITHMIC STRAIN DETERMINATION  
 

It is well known, that if a square plate element (figure 3.a) is submitted to a tensile stress σ  in a Ox direction 
and to a compression stress –σ  in a Oy direction, it is in the planar pure share stress state, and τ = [σ – (-σ)]  / 2 
= σ . 

     
                                          Fig. 3. The pure share stress and pure share strain. 
 
In similar way, if the direction Ox and Oy are principal directions and the correspondingly logarithmic strain are 
εx = ε,  εy =  - ε and εz = 0, we have pure planar share strain  (figure 3b), and the angular logarithmic strain is 
numerically equal with the linear logarithmic strain. From definition of logarithmic strain, we have: 

 

1 2
1 2ln . ln . ,o o

o o

l l =   or  l l e ,  and  =   or  l l e  
l l

ε εε ε −= − =                            (1) 

 
e being the natural logarithms basis. 
 
If the rectangle AOB changes with  α, from geometrical considerations (figure 3b), we have: 
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The above expression may be written as: 
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In the relationship (2), ε xy= εyx  are the angular logarithmic strain numerically equal with linear logarithmic strain 
ε. The relationship (2) may be used for the determination of angular logarithmic strain knowing the change of 
right angle of some concurrent elements. The linear and angular logarithmic strain may be expressed as a 
function of displacements [10…14], resulting relationships that may be used in experimental determination of 
strain field. 
 
Observation: If in place of logarithmic strain, in figure 3b, is used conventional strain ε =Δl/lo than for angular 
strain will be obtained  expression  ε xy= εyx = tg(α/2) 
 
 
3. A COMPARISON BETWEEN THE LOGARITHMIC AND CONVENTIONAL STRAIN   
 
The logarithmic strain are preferable in the large plastic deformations like sheet metal forming because it seems 
that it described better the change of shape. If, instead of logarithmic strain are used conventional strain, are 
expected some differences in the values of determined strain. In table 2 are presented some numerical values of 
angular logarithmic strain and tg(α/2) corresponding to the conventional α/2  strain.   
   
                                     Table 2. Numerical  value for angular logarithmic strains. 
 
α/2 0,0 0,01 0,02 0,05 0,1 0,2 0,3 0,4 0,5 
tg(α/2) 0,0 0,0100006 0,020003 0,05004 0,1003 0,2027 0,3093 0,4228 0.5463 

rel. (2) 0,0 0,010001 0,020006 0,05008 0,1006 0,2055 0,3197 0,4511 0,6131 

 
The difference between the linear logarithmic strain and conventional linear strain is presented in figure 4, and 
difference between the angular logarithmic strain and half of change of rectangle α/2 is presented in figure 5. In 
figure 5 is presented also the difference between tg(α/2), which corresponds to the conventional linear strain, and 
angle α/2 expressed in radians.  
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Fig. 4. The difference Δε between the linear logarithmic strain   and conventional strain. 
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Fig. 5.  The difference between the angular logarithmic strain  and and tg(α/2) in respect with α/2. 

 
 
4. CONCLUSIONS    
 
 The relationship for calculation of angular (1) logarithmic strain is proposed. The determined relationships are 
more suited for the large strain description compared with the conventional strain tensor.  Like for any tensor, 
may be calculated the eigenvalues and its invariants. Also the tensor of logarithmic strain may be represented as 
a sum of a spherical tensor and the strain deviator. The expressed in term of displacements, the established 
relationship for logarithmic strain may be used in the experimental determination of the strain fields [15-18]. 
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