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MECHANICAL SIMULATION OF THE HEAVY PLATES
COLD - ROLL - BENDING

DUMITRESCU ALEXANDRU TRAIAN

University “Valahia” Targoviste

Abstract In the elementary bending theory it is usual to admit the hypothesis of
small strains, small enough to neglect the transversal stresses induced by severe
curvature. It is also admitted that the neutral surface coincides, during deformation,
with the central plane of the plate. To carry out a mechanical modeling of heavy
plates bending, for the big diameter tube, it is necessary a general theory of plate
bending, without restrictions regarding the magnitude of strains and curvature; it is
also necessary to determine the neutral surface movement and the movement of each
fiber across the plate thickness. The paper presents a model of strains and stresses
calculus for both a rigid-plastic material and for a hardenable material. An important
issue of these calculi is the width determination of the zone where the material
suffer, during bending, both an elongation and a compression and so, the
Bauschinger effect has an important influence on the mechanical proprieties of
tubes. In this zone the material strength after bending is less than the plate strength,
the strength diminishing being proportional to the width of mentioned zone.
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Notations:

a — internal radius;

b — external radius;

h — plate thickness;

o,, -radial stress;

oy _tangential stress;

¢ -the neutral surface radius;

r — the bending current radius;
k —the yielding strength;

o, — yield stress by uniaxial tension;
M - the bending moment;

o -the bending angle;

u - the internal radial component of displacement vector;
v -the tangential component of the displacement vector;
Ly -initial length of the plate;

0 - the angle of the radius and the symmetry plan;
¢, — the radial strain;
€p — the tangential strain;
vro —the angular strain;

m —coefficient which described the initial position of the fiber with L, length;
1o —the bending radius correspondent to Ly;
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T -tensile force (on width unit) which acts at the plate extremities, being normal to the extreme transversal
sections;

q -uniform pressure applied on the internal surface of the plate;

s - the ratio T/(2kh);

G -the average stress;
€ - the average strain.

1. STRESSES AND STRAINS DETERMINATION IN A RIGID - PERFECT PLASTIC MATERIAL
SUBJECTED TO BENDING

I shall consider the bending produced by the moments applied at plate extremities, the state being a plane strain
one; the material behaves rigid-plastic, without hardening.

The main stresses in the bending are radial and tangential oriented, as a result of the deformation symmetry, and
I shall designate them by o,, 6y respectively.

The equilibrium equation can be written in the radial direction as:

do; _or-0o (1.1)
dr r
I shall call by “c” the neutral surface radius, i.e. the radius of the cylindrical surface — including those fibers that
do not modify their lengths when infinitesimal supplementary deformation takes place.

The fibers placed between the neutral surface and the external surface of the plate are subjected to elongation
and those placed between the neutral surface and internal surface are subjected to compression.

The yielding condition for the plane strain state is:

op— 0, =2k for c<r<b (1.2)
cg—o,=-2k for a<r<c

where:

k = 2c in the case of Tresca criterion, and
k = Zc , in the case of Mises criterion, [1]

NE

Having in view that 6, =0 for r=a, b, from (1.1) and (1.2) one can obtain:
o, =2kln£ for ¢c<r<b,

5, =2kIn2 forasr<c (1.3)
Tr
As the equilibrium condition required o, to be continuous across the neutral surface, one can obtain:

2%kInS =2kn2
b c
Thus, the neutral surface radius is given by

c=+/ab (L.4)

The other main stress component may be obtained from (1.2) and (1.3), as:

oo :2k[lnr+lj if ¢<r<b
b
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Ge=2k(|n$_1j if asr<c (1.5)

The variation of o, and oy across the thickness of the plate is given in Fig.1. It can be noticed that o, attains a
maximum value on the neutral surface and the resultant force acting upon a section is given by:

b
=0

a

b b 4
I Godr = I — (ro, Mr = 1o,
dr

a

where the equilibrium equation (1.1) is used.

The bending moment, corresponding to a width unit, is obtained as:

2

a
M:I Gerdr:kczlnﬂ+k( 24 b? —2c2)
b C

and, using (1.4), on can write:
1 > 1.2 1
M=-k(b—a)’ ==kh (1.6)
2 2

Let uda be the radial component, and vda the tangential component of the displacement vector due to an
infinitesimal strain; the bending angle o, calculated for the initial length L, increases by da.

Neglecting the elastic compressibility and taking into account that the associated deformation is an elongation
for r > ¢, and a compression for r < ¢, we can consider the following expressions [3]:

2
uzl(”C j . (1.7)

200 r o

where 0 is the angle between the radius and the symmetry plan. Than, the corresponding increments of strains
have the following components:

2

1 c?
deg = —de, = —| 1= |do, dye=0 (1.8)
r

200

Fig.1. o, and oy distribution in a plate subjected to bending without hardening

obtained from the relations [1]:
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10 du bl
deg =——1d —r ==
€9 rae(u9)+ . de, ar(dur)
0 0 du
dy g %(dur)Jra(due)—Te

Where using (1.7) relations, we get

1 c? 1

(@ur)emy = =55 | 2+ 4o = =5 (DM
1 2 1

(dur)rfb ——g b+— da:——a(b-i-a)d(x

And

dh = (du,),_, —(du,),_, =0

r=a

As a result, one can consider h being constant in every configuration, for a non-hardenable material; thus,
according to (1.6), the moment of plastically bending does not depend on plastically deformation, for such a

material.

From the equality of the final area and the initial area:
Loh= %(b2 - aZ)LOOL

the following relation is obtained (for the internal, external radii and the bending angle)

2
o=
a+b

The mechanical work, corresponding to the unit of width, is:

2
2L -
MLga =2k . 2o _y ba
4 a+b b+a

(1.9)

(1.10)

In spite of the constant thickness of the plate, the fibers are subjected to complex deformations. In (1.8), one can

notice that the fibers having r < ¢ are compressed, and those having r > ¢ are subjected to an elongation.

mh
If we consider a fiber in a non — bended plate, at a distance of —— to the central plane, the following relation

can be written, taking into account the equality of areas before and after bending:

1+m _r2—a2

1—m_b2—r2

or

r:\/;( 2 +b2)+%(b2 _az)m

where |m| <1 and m>0 for a fiber placed between the central plane and the convex part of the plate.

(1.11)
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As an example, the final radius of the central fiber, in a non-deformed state, which corresponds to m = 0 (see
Fig. 1.2), is given by:

1 2 2> a+ b
= =2 +p?)” =2
T2 b +7) 2
Considering the formula (1.11) and r = ¢, one can notice that the fiber which, in the final configuration, coincides
with the neutral surface, has “m” given by:

a—-b
a+b

m=

Thus, the neutral surface, which before the bending has coincided with the central plane, is moving towards the
plate inner plane during the plastically bending.

All the fibers having m > 0 are subjected to elongation and the fibers for which r < ¢ are subjected to
compression; the fibers for which:

O>m>a_b

a+b

c<r<1[%(a2+b2)a (1.12)

have been surpassed by the neutral surface, so the fibers being subjected firstly to compression and afterwards to
an elongation. In this zone, the Bauschinger effect can have a remarkable importance.

Fig.2.The relative movement of longitudinal fibers, during the bending:
1 —The central fiber (initial; 2 — The fiber having L, length; 3 —The neutral surface.

Every moment, there is a fiber subjected to a compression followed by an elongation; so, the present length
equals L, (the initial length). The radius of this fiber is obtained using (1.9) and is given by
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a+b h (1.13)

and its initial position-obtained using (1.11) —is:

1 (a - bj
m=—
2\a+b
Now, we shall consider that tensile forces T (on width unit) are acting at the plate extremities, being normal to

the extreme transversal sections.

The resultant forces must be balanced by an uniform pressure, q, applied on the internal surface of the plate;
from the equality of the internal components we can write:

T=aq (1.14)
The stress components are given, in this case, by:
G, = 2kIn—
b
for c<r<b,

G = 2k(ln%+ 1

c, :2klng—q
r
for

as<r<c (1.15)
op = 2k(In——1)—
0 5 q

Taking into account the continuity of o, across the neutral surface, it is obtained:

4
c=\abe 2k (1.16)

So, the neutral surface is moving more, in this case, towards the plate inner planes. Further, the displacements
are given by the relations (1.7); ,, but the plate thickness does not remain constant because:

q

2 _q
(du,)._, L a+ doc:—L a+be 2k |da>
- 2a a 2a

(0} (0}

[, ¢? 1 - i
(dur)r:bz—z— b= |do=———| b+ac ** lda

from where it can be written
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_4q4 _4
dh _ (d“r)r=b _(d“r)r=a _b+ae 2k —a—be 2k
da da _4
a+be 2k
a
ﬁ_ h(ezk -1 (1.17)

da a
h+a(e2k +1)

The equation (1.17) expresses the fact that ﬁ>0, so-during plastically bending-the plate thickness is

da
decreasing.

If D s less than l, for example, the thickness variation can be approximated by neglecting o, as well as the
a

modification of the state from compression to elongation, for the fibers placed between the initial position and
the present position of the neutral surface.

By putting “s” as the ratio T/(2kh), it is obtained

with 0<s<1.
Using (1.16) and Taylor serial developments for ¢*"* and for /1 +Q _S)E , the neutral surface results to be at a
a
distance of sh/2 to the central surface.
Identically, from (1.17) it is obtained:
dh_sh®
da 242
If “s” is kept constant during the bending, one can obtain:

_sh2 ,
2a

Ah =

relation which allows the calculation of Ah in the considered approximation.

2. THE DETERMINATION OF STRAINS AND STRESSES IN A RIGID PLASTIC HARDENABLE
MATERIAL SUBJECTED TO BENDING

I consider the plate made of a rigid plastic hardenable material. As I already mentioned previously, the fibers can
be subjected to complex deformations. According to the nature of these deformations, 3 zones can be marked on
the plate thickness (Fig. 1.2) i.e.: the I zone in which the fibers are elongated, the II zone where the fibers are
subjected to a compression and the III zone in which the fibers are subjected firstly to a compression, and
afterwards to an elongation.

To calculate the deformation intensity, the way of charging of each fiber must be studied; the stress
intensity is calculated using the hardening law, which we presume to be of the general form:
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G, =G=0(g)>

where
5 +03 -0,64 (von Mises) (1.19)
and
de = i‘dg'e s €= J.da
V3

For the elongation itself or for the compression itself, one can write:

, , r
€g = dge =ln—>
To

where 1y is the radius of the fiber having L, length. So, the strain intensity (for the fibers in I and II zones,
suffering an one-direction deformation) is calculated by:

2

il (von Mises) (1.20)
NG}

In—
Tp

e=¢(r)=

The yield condition can be written, for a hardenable material, as:

cop -0, =2k(5) for c<r<b

(1.21)
oo -0, =—2k(c) for as<r<c
where | _ S for Trescas criterion and k=0 for von Mises criterion.
2 3
The o, component is obtained from (1.1) and (1.21) by integration, as follows:
-in [ zone
ol() = b Crd J-bGr %0 4 = ka(G) Ibk(S) —2(k(e)de (1.22)
r T
where ¢y <r <b, and
-in IT zone
d k(G) , - k() ,
ol ()= [F 90 ar = 1m0 ' oK@ g o KE) )i (1.23)
dr r T r
where a<r<cand € is calculated according to (1.20) in both zones.
For a hardenable material, ¢ is not known, and for the integration of the following relations
do, o, -0 _2k(9), c<r<cy (1.24)

dr r r
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each fiber deformation must be determined. The integration is carried out starting from the continuity condition
of o, across the surface r = ¢y, o, being given in (1.22).

The procedure is identically applied starting from (1.23). The calculation finishes if the continuity of o, for r =c
is verified (see [3]).

It is necessary to notice that some geometrical relations, established in part (1) are not yet valid. Thus,
considering the constancy of the area and h as variable, one can write:

Lohg = %(b2 —a)Lya>
And

ah? +2ach-2h, =0 (1.25)

The relation (1.25) allows the calculus of plate thickness in the present configuration, if one knows a, a and h,,.
For a rigid-perfect plastic material, where h = h, the (1.25) relation implies (1.9) which can be written:

a=a((x):l—h—0 (1.26)
o

This is true for o as the only parameter of plastically bending.Using (1.25), one can obtain: h < hy, if:
ohy+20a—-2>0 (1.27)

The (1.27) condition must be observed in all the cases where a decrease of plate thickness takes place.

3. NUMERICAL RESULTS

Firstly, we shall calculate the tube radii, the stresses and strains produced after the bending of a plate having L, =
3780 mm and hy = 14.3 mm, the plate is made of steel with the following characteristics: E =205 GPa, v=0.29
and o, = 475 MPa (a perfect plastic rigid material). If we use Tresca s criterion, then we can write, 6, = 2k and

s = |InL|. At the end of the bending, , _ 2n _ 0.0017 the final internal radius is ag, = 594.45 mm, according to

ro 0
(1.26); from bg, = ag, + hy, one obtain bg, = 608.75 mm.

The final radius of central fiber in a non — deformed state, is ry = 601.64 mm. The neutral fiber is described by
(1.4) and one can obtain cg, = 601.56 mm, and the radius of the fiber having the initial length L, is ro = 601.6
mm.

The stress has the following components, at the end of the bending (the values are given in MPa):

4751 if 601.56<r<608.75

608.75
O, =
4751 22445 if 594.45<r<601.56
r
475(In——— +1) if 601.56 <r<608.75
608.75
Og =

475102244 1y if 59445 <r<601.56
T
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Taking into account the € expression and usind Tresca s criterion, for r = bg, one obtains:

b
=gy =In—1=0.011
Ty
and, for r = ag,

The I zone, in which the fibers are subjected to elongation, is described by 601.64 mm <r <608.75 mm. The II
zone, of compression, is described by 594.45 mm <r < 601.56 mm, and the zone III, of mixed stresses, delimited
by 601.56 mm <r < 601.64 mm, has a very little width, of 0.08 mm, i.e. 0.5% of h,.

If the material is hardenable, following the law:

o, =826.22(8)"

then, assuming that the radii ag,, bg, and cg, are those previously calculated, o, can be expressed by:
-in the I zone

/7015
ol (r)=—[Pmn d;"rdr' =[P Or 790 4" g6 20[Phn l nt| dr=
T T r T
dr T To

115 1.15 1.157.
= 82622 b, 4T 71845 [mrj —(mbfm] ’
1.15 dr Iy Iy )

- in the II zone

d 1.15 1.15
sy = Crdr =71845| i | [l | |
r Afin dr r() rO

Now, we shall consider how will vary the third zone dimension function of plate length (L) and thickness (hy),
for some examples done in Table 1. and Figure 3.

The variation of third zone thickness (III) divided by hy_function of Ly and h, - Table 1

Lo [mm] | ho [mm] (11/he)*100
3780 143 0.59
2780 143 0.81
1780 143 1.26
780 143 2.88
3780 25 1.04
2780 25 1.41
1780 25 221
780 25 5.03

From Table 1 and Figure 3 it is obvious that the third zone thickness increases with plate length decreasing and
plate thickness increasing. So, the contribution of this zone, where the Bauschinger effect takes place, to the
mechanical proprieties of rolled tubes becomes important for small tubes diameter and large plate thickness.
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Fig.3 Third zone variation for different plates, Ly= 780-3780mm and hy= 14.3 and 25mm

4. CONCLUSIONS

1. It is proposed a model for strains and stresses calculus during the bending a heavy plates. The strains and
stresses are calculated by considering two types of materials: a rigid-plastic one and a hardenable one.

2. The model allows the plate fibers movement description in every moment of the processing. So, is described
the evolution of three zones across the plate thickness : the I zone in which the fibers are elongated, the 11 zone
where the fibers are subjected to a compression and the III zone in which the fibers are subjected firstly to a
compression, and afterwards to an elongation, in this zone, the Bauschinger effect can have a remarkable
importance.

3. The third zone thickness increases with plate length decreasing and plate thickness increasing. So, the
contribution of this zone, where the Bauschinger effect takes place, to the mechanical proprieties of rolled tubes
becomes important for small tubes diameter and large plate thickness.
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