
 
MOCM 14 – Volume 2 – ROMANIAN TECHNICAL SCIENCES ACADEMY - 2008               83 
 
 
 

 
 
 
 
 

MECHANICAL SIMULATION OF THE HEAVY PLATES 
COLD – ROLL – BENDING 

 
 

DUMITRESCU ALEXANDRU TRAIAN  
 

University “Valahia” Targoviste 
 

 
Abstract In the elementary bending theory it is usual to admit the hypothesis of 
small strains, small enough to neglect the transversal stresses induced by severe 
curvature. It is also admitted that the neutral surface coincides, during deformation, 
with the central plane of the plate. To carry out a mechanical modeling of heavy 
plates bending, for the big diameter tube, it is necessary a general theory of plate 
bending, without restrictions regarding the magnitude of strains and curvature; it is 
also necessary to determine the neutral surface movement and the movement of each 
fiber across the plate thickness. The paper presents a model of strains and stresses 
calculus for both a rigid-plastic material and for a hardenable material. An important 
issue of these calculi is the width determination of the zone where the material 
suffer, during bending, both an elongation and a compression and so, the 
Bauschinger effect has an important influence on the mechanical proprieties of 
tubes. In this zone the material strength after bending is less than the plate strength, 
the strength diminishing being proportional to the width of mentioned zone. 
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Notations: 
a – internal radius; 
b – external radius; 
h – plate thickness; 
σr, -radial stress; 
σθ –tangential stress; 
c -the neutral surface radius; 
r – the bending current radius; 
k –the yielding strength; 
σc – yield stress by uniaxial tension; 
M - the bending moment; 
α  -the bending angle; 
 u - the internal radial component of displacement vector; 
v -the tangential component of the displacement vector;  
L0 -initial length of the plate; 
θ - the angle of the radius and the symmetry plan; 
εr – the radial strain; 
εθ – the tangential  strain; 
γrθ –the angular strain; 
m –coefficient which described the initial position of the fiber with L0 length; 
r0 –the bending radius correspondent to L0; 
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T -tensile force (on width unit) which acts at the plate extremities, being normal to the extreme transversal 
sections; 
q -uniform pressure applied on the internal surface of the plate;  
s - the ratio T/(2kh); 
σ  -the average stress; 
ε  - the average strain. 

 
 
1. STRESSES AND STRAINS DETERMINATION IN A RIGID – PERFECT PLASTIC MATERIAL 
SUBJECTED TO BENDING 
 
I shall consider the bending produced by the moments applied at plate extremities, the state being a plane strain 
one; the material behaves rigid-plastic, without hardening. 
The main stresses in the bending are radial and tangential oriented, as a result of the deformation symmetry, and 
I shall designate them by σr, σθ respectively. 
The equilibrium equation can be written in the radial direction as: 
 

          
rdr

d rr θσ−σ
=

σ            (1.1) 

I shall call by “c” the neutral surface radius, i.e. the radius of the cylindrical surface – including those fibers that 
do not modify their lengths when infinitesimal supplementary deformation takes place. 
 
The fibers placed between the neutral surface and the external surface of the plate are subjected to elongation 
and those placed between the neutral surface and internal surface are subjected to compression. 
 
The yielding condition for the plane strain state is: 
 

σθ – σr = 2k   for   c≤ r ≤ b        (1.2) 
σθ – σr = -2k   for   a≤ r ≤ c 

 
where: 

2
k cσ= in the case of  Tresca criterion, and 

3
k cσ= , in the case of  Mises criterion, [1] 

Having in view that σr = 0  for  r = a, b, from (1.1) and (1.2) one can obtain: 
 
      

b
rlnk2r =σ    for   c ≤ r ≤ b, 

r
alnk2r =σ    for  a ≤ r ≤ c      (1.3) 

As the equilibrium condition required  σr to be continuous across the neutral surface, one can obtain: 
 

c
alnk2

b
clnk2 =  

Thus, the neutral surface radius is given by 
 

abc =         (1.4) 
 

The other main stress component may be obtained from (1.2) and (1.3), as: 
 

⎟
⎠
⎞

⎜
⎝
⎛ +=σθ 1

b
rlnk2    if     c ≤ r ≤ b 
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   ⎟
⎠
⎞

⎜
⎝
⎛ −=σθ 1

r
alnk2    if     a ≤ r ≤ c       (1.5) 

 
The  variation of σr and σθ across the thickness of the plate is given in Fig.1. It can be noticed that σr attains a 
maximum value on the neutral surface and the resultant force acting upon a section is given by: 
 

( )∫ ∫ =σ=σ=σθ

b

a

b

a a
rr 0

b
rdrr

dr
ddr  

 
where the equilibrium equation (1.1) is used. 
 
The bending moment, corresponding to a width unit, is obtained as: 
 

( )∫ −++=σ= θ

a

b

222
2

2 c2ba
2
k

c
ablnkcrdrM  

 
and, using (1.4), on can write: 
 

( ) 22 kh
2
1abk

2
1M =−=       (1.6) 

 
Let udα be the radial component, and vdα the tangential component of the displacement vector due to an 
infinitesimal strain; the bending angle α, calculated for the initial length L0, increases by dα. 
 
Neglecting the elastic compressibility and taking into account that the associated deformation is an elongation 
for r > c, and a compression for r < c, we can consider the following expressions [3]: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

α
=

r
cr

2
1u

2
,   

α
θ

=
rv        (1.7) 

 
where θ is the angle between the radius and the symmetry plan. Than, the corresponding increments of strains 
have the following components: 

α⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

α
=ε−=εθ d

r
c1

2
1dd 2

2

r ,   dγrθ = 0     (1.8) 

 

 
Fig.1. σr and σθ distribution in a plate subjected to bending without hardening 

 
obtained from the relations [1]: 
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Where using (1.7) relations, we get 

( ) ( ) α+
α

−=α⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

α
−== dba

2
1d
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2
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( ) ( ) α+
α
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⎟
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⎜
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⎛
+

α
−== dab

2
1d

b
cb
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1du
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brr
 

 
And 
 

( ) ( ) 0dududh arrbrr =−= ==  
As a result, one can consider h being constant in every configuration, for a non-hardenable material; thus, 
according to (1.6), the moment of plastically bending does not depend on plastically deformation, for such a 
material. 
 
From the equality of the final area and the initial area: 
 

( ) α−= 0
22

0 Lab
2
1hL  

 
the following relation is obtained (for the internal, external radii and the bending angle) 
 

ba
2
+

=α          (1.9) 

 
The mechanical work, corresponding to the unit of width, is: 
 

ab
abk

ba
L2

4
hk2ML 0

2

0 +
−

=
+

⋅=α       (1.10) 

 
In spite of the constant thickness of the plate, the fibers are subjected to complex deformations. In (1.8), one can 
notice that the fibers having r < c are compressed, and those having r > c are subjected to an elongation. 
 

If we consider a fiber in a non – bended plate, at a distance of  
2

mh
 to the central plane, the following relation 

can be written, taking into account the equality of areas before and after bending: 
 

22

22

rb
ar

m1
m1

−

−
=

−
+               

 
or 

 

( ) ( )mab
2
1ba

2
1r 2222 −++=        (1.11) 

 
where 1m ≤  and m>0 for a fiber placed between the central plane and the convex part of the plate. 
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As an example, the final radius of the central fiber, in a non-deformed state, which corresponds to m = 0 (see 
Fig. 1.2), is given by: 
 

( )22
f ba

2
1r += > 

2
ba +  

 
Considering the formula (1.11) and r = c, one can notice that the fiber which, in the final configuration, coincides 
with the neutral surface, has “m” given by: 
 

ba
bam

+
−

=  

 
Thus, the neutral surface, which before the bending has coincided with the central plane, is moving towards the 
plate inner plane during the plastically bending. 
 
All the fibers having m ≥ 0 are subjected to elongation and the fibers for which r < c are subjected to 
compression; the fibers for which: 
 

ba
bam0

+
−

>>  

 

( )22 ba
2
1rc +<< ,        (1.12) 

 
have been surpassed by the neutral surface, so the fibers being subjected firstly to compression and afterwards to 
an elongation. In this zone, the Bauschinger effect can have a remarkable importance. 
 

 
Fig.2.The relative movement of longitudinal fibers, during the bending: 

1 –The central fiber (initial; 2 – The fiber having L0 length; 3 –The neutral surface. 
 
Every moment, there is a fiber subjected to a compression followed by an elongation; so, the present length 
equals L0 (the initial length). The radius of this fiber is obtained using (1.9) and is given by 
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2
h

a
2

ba1r0 +=
+

=
α

=      (1.13) 

 
and its initial position-obtained using (1.11) – is: 
 

⎟
⎠
⎞

⎜
⎝
⎛

+
−

=
ba
ba

2
1m  

 
Now, we shall consider that tensile forces T (on width unit) are acting at the plate extremities, being normal to 
the extreme transversal sections. 
 
The resultant forces must be balanced by an uniform pressure, q, applied on the internal surface of the plate; 
from the equality of the internal components we can write: 
 

T = aq       (1.14) 
 

The stress components are given, in this case, by: 

b
rlnk2r =σ   

 
for         c ≤ r ≤ b, 

 
)1

b
r(lnk2 +=σθ

 

 

q
r
alnk2r −=σ  

for    
 

a ≤ r ≤ c       (1.15) 
 

    q)1
b
r(lnk2 −−=σθ

 

 
Taking into account the continuity of  σr across the neutral surface, it is obtained: 

 

k2
q

abec
−

=        (1.16) 
 

So, the neutral surface is moving more, in this case, towards the plate inner planes. Further, the displacements 
are given by the relations (1.7)1,2, but the plate thickness does not remain constant because: 
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⎟

⎠
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from where it can be written 
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bea

beaaeb
da

dudu
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==

+

−−+
=

−
=

, 

 

)1e(ah

)1e(h
da
dh

k2
q

k2
q

++

−
=

      (1.17) 

 
The equation (1.17) expresses the fact that 0

da
dh

> , so-during plastically bending-the plate thickness is 

decreasing. 
 
If  

a
h  is less than 

5
1 , for example, the thickness variation can be approximated by neglecting σr as well as the 

modification of the state from compression to elongation, for the fibers placed between the initial position and 
the present position of the neutral surface. 
 
By putting “s” as the ratio T/(2kh), it is obtained 
 

a
sh

ka2
T

k2
q

== ,    

 
with   0 ≤ s ≤ 1. 
 
Using (1.16) and Taylor serial developments for e-sh/a and for

a
h)s1(1 −+ , the neutral surface results to be at a 

distance of sh/2 to the central surface. 
 
Identically, from (1.17) it is obtained: 
 

2

2

a2
sh

da
dh

≅  

 
 

If “s” is kept constant during the bending, one can obtain: 
 

a2
shh

2
−=Δ , 

 
relation which allows the calculation of  ∆h in the considered approximation. 
 
 
2. THE DETERMINATION OF STRAINS AND STRESSES IN A RIGID PLASTIC HARDENABLE 
MATERIAL SUBJECTED TO BENDING 
 
I consider the plate made of a rigid plastic hardenable material. As I already mentioned previously, the fibers can 
be subjected to complex deformations. According to the nature of these deformations, 3 zones can be marked on 
the plate thickness (Fig. 1.2) i.e.: the I zone in which the fibers are elongated, the II zone where the fibers are 
subjected to a compression and the III zone in which the fibers are subjected firstly to a compression, and 
afterwards to an elongation.  
 
 To calculate the deformation intensity, the way of charging of each fiber must be studied; the stress 
intensity is calculated using the hardening law, which we presume to be of the general form: 
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)(c εσ=σ=σ , 
 
where  

 

θθ σσ−σ+σ=σ r
22

r   (von Mises)      (1.19) 
 
 

and    
'd

3
2d θε=ε ,   ∫ ε=ε d  

 
For the elongation itself or for the compression itself, one can write: 
 

∫ =ε=ε θθ
0

''
r
rlnd , 

 
where r0 is the radius of the fiber having L0 length. So, the strain intensity (for the fibers in I and II zones, 
suffering an one-direction deformation) is calculated by: 
 

0r
rln

3
2)r( =ε=ε    (von Mises)     (1.20) 

 
The yield condition can be written, for a hardenable material, as: 
 

)(k2r σ=σ−σθ      for    c ≤ r ≤ b 
(1.21) 

 
)(k2r σ−=σ−σθ  for    a ≤ r ≤ c 

 
where 

2
k σ
=  for Tresca’s criterion and 

3
σ

=k  for von Mises’ criterion.  

 
The σr component is obtained from (1.1) and (1.21) by integration, as follows: 
-in I zone 
 

∫ ∫ ∫ ∫ ∫ εε=
ε

=
σ

=
σ−σ

=
σ

=σ θb
r

b
r

b
r

b
r

b
r

'
'

'
'

'
'

r'
'
rI

r d)(k2dr
r

)(k̂2dr
r

)(k2dr
r

dr
dr
d)r(     (1.22) 

 
where c0 ≤ r ≤ b, and 
-in II zone 
 

∫ ∫ ∫ ∫ ∫ εε−=
ε

−=
σ

−=
σ−σ

=
σ

=σ θr
a

r
a

r
a

r
a

r
a

'
'

'
'

'
'

r'
'
rII

r d)(k2dr
r

)(k̂2dr
r

)(k2dr
r

dr
dr
d)r(    (1.23) 

 
where a ≤ r ≤ c and ε  is calculated according to (1.20) in both zones. 
 
For a hardenable material, c is not known, and for the integration of the following relations 
 

r
)(k2

rdr
d rr σ

=
σ−σ

=
σ θ ,   c ≤ r ≤ c0    (1.24) 
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each fiber deformation must be determined. The integration is carried out starting from the continuity condition 
of σr across the surface r = c0,  σr being given in (1.22). 
 
The procedure is identically applied starting from (1.23). The calculation finishes if the continuity of σr for r = c 
is verified (see [3]). 
 
It is necessary to notice that some geometrical relations, established in part (1) are not yet valid. Thus, 
considering the constancy of the area and h as variable, one can write: 
 

α−= 0
22

00 L)ab(
2
1hL , 

And 
 

0h2ha2h 0
2 =−α+α         (1.25) 

 
The relation (1.25) allows the calculus of plate thickness in the present configuration, if one knows α, a and h0. 
For a rigid-perfect plastic material, where h  = h0, the (1.25) relation implies (1.9) which can be written: 
 

2
h1)(aa 0−

α
=α=         (1.26) 

 
This is true for α as the only parameter of plastically bending.Using (1.25), one can obtain: h < h0, if: 
 

02a2h0 >−α+α         (1.27) 
 

The (1.27) condition must be observed in all the cases where a decrease of plate thickness takes place. 
 
 
3. NUMERICAL RESULTS 
 
Firstly, we shall calculate the tube radii, the stresses and strains produced after the bending of a plate having L0 = 
3780 mm and h0 = 14.3 mm, the plate is made of steel with the following characteristics: E = 205 GPa, ν = 0.29 
and σc = 475 MPa (a perfect plastic rigid material). If we use Tresca’s criterion, then we can write, σc = 2k and 

0r
rln=ε . At the end of the bending, 0017.0

L
2

0
=

π
=α  the final internal radius is afin = 594.45 mm, according to 

(1.26); from bfin = afin + h0, one obtain bfin = 608.75 mm. 
 
The final radius of central fiber in a non – deformed state, is rf = 601.64 mm. The neutral fiber is described by 
(1.4) and one can obtain cfin = 601.56 mm, and the radius of the fiber having the initial length L0 is r0 = 601.6 
mm.  
 
The stress has the following components, at the end of the bending (the values are given in MPa): 
 

75.608
rln475    if   601.56 ≤ r ≤ 608.75 

                                  σr =  

r
45.594ln475    if   594.45 ≤ r ≤ 601.56 

 
)1

75.608
r(ln475 +  if   601.56 ≤ r ≤ 608.75 

                                   σθ = 

)1
r

45.594(ln475 −  if   594.45 ≤ r ≤ 601.56 
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Taking into account the ε  expression and usind Tresca’s criterion, for r = bfin one obtains: 
 

011.0
r

b
ln

0

fin ==ε=ε θ
 

and, for r = afin 

012.0
r

aln
0

fin =−=ε−=ε θ
 

 
The I zone, in which the fibers are subjected to elongation, is described by 601.64 mm ≤ r   ≤608.75 mm. The II 
zone, of compression, is described by 594.45 mm ≤ r ≤ 601.56 mm, and the zone III, of mixed stresses, delimited 
by 601.56 mm ≤ r ≤ 601.64 mm, has a very little width, of 0.08 mm, i.e. 0.5% of h0.  
 
If the material is hardenable, following the law: 
 

15.0
c )(22.826 ε=σ  

 
then, assuming that the radii afin, bfin and cfin are those previously calculated, σr can be expressed by: 
-in the I zone 
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- in the II zone 
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. 

 
Now, we shall consider how will vary the third zone dimension function of plate length (L0) and thickness (h0), 
for some examples done in Table 1. and Figure 3. 
 

The variation of third zone thickness (III) divided by h0, function of L0 and h0 - Table 1 
L0 [mm] h0 [mm] (III/h0)*100 

3780 14.3 0.59 
2780 14.3 0.81 
1780 14.3 1.26 
780 14.3 2.88 
3780 25 1.04 
2780 25 1.41 
1780 25 2.21 
780 25 5.03 

 
 
From Table 1 and Figure 3 it is obvious that the third zone thickness increases with plate length decreasing and 
plate thickness increasing. So, the contribution of this zone, where the Bauschinger effect takes place, to the 
mechanical proprieties of rolled tubes becomes important for small tubes diameter and large plate thickness. 
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Fig.3 Third zone variation for different plates, L0= 780-3780mm and h0= 14.3 and 25mm 
 
 
4. CONCLUSIONS 
 
1. It is proposed a model for strains and stresses calculus during the bending a heavy plates. The strains and 
stresses are calculated by considering two types of materials: a rigid-plastic one and a hardenable one. 
 
2. The model allows the plate fibers movement description in every moment of the processing. So, is described 
the evolution of three zones across the plate thickness : the I zone in which the fibers are elongated, the II zone 
where the fibers are subjected to a compression and the III zone in which the fibers are subjected firstly to a 
compression, and afterwards to an elongation, in this zone, the Bauschinger effect can have a remarkable 
importance. 
 
3. The third zone thickness increases with plate length decreasing and plate thickness increasing. So, the 
contribution of this zone, where the Bauschinger effect takes place, to the mechanical proprieties of rolled tubes 
becomes important for small tubes diameter and large plate thickness. 
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