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Abstract. This paper propose to show a number of variation lows of the temperature 
along the radius of an annular plate, keeping the constant values on its thickness, and 
having the purpose to evaluate the radial displacements and the radial and annular 
stresses. For the theoretical analyze, we will take into account that the plate is 
embedded on the external contour and the internal contour is free. In this sense, the 
expressions of the magnitudes necessary to determine the admissible maximal values of 
the developed temperature in diverse practical situations are offered, taking into 
account the complexity of the industrial processes on one side, and the conception of 
some adequate mechanical structures, on other side. 
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1. GENERALITIES 
 
In the structure of the equipments of the processes industries, plane and circular plates and/or annular, monolayer 
are met, having both separation function of the processed or circulated mediums and for the transition for a 
working space into other [5, 6, 12, 13, 18, 20]. 
 
It is evidently the fact that in these situations the temperature (the temperatures) on a face or other face can have 
constant or different values along the considered plate radius. The regimes of thermal transfers can be stationary 
[5, 6, 12, 13, 18, 20] or unstationary [9 – 11, 16, 19]. The plates can be static or in rotate movement [7, 8, 21, 
22], and others external loads (local or distributed about some lows) action over these plates, too.  
 
We cannot neglect the fact the construction materials of the plates can modify the mechanical characteristics 
and/or thermal [1, 2, 14, 15], and they disadvantage the portent capacity of those mechanical structures. 
 
In the case of a heat transfer in a circular or annular plate, function of diverse practical situations can be present 
situations as [3]:  

a) uniform heating or cooling on the thickness of the plate, but variable on radial direction about a 
certain low; 

b) stationary temperature field, axial symmetrically, but variable on the thickness of the plate and in 
radial direction; 

c) the heat transfer can be realized from a face of the plate toward the opposite face, or with 
simultaneous action from the lateral faces of the plates(the superposition of the effects). 

 
Within this paper we take into discussion a stationary regime (heating or cooling), along the radius of the annular 
plate having constant thickness, embedded peripheral contour and free internal contour. 
 
In this sense, starting from a general case, we realize corresponding particularizations for the accepted situation 
(about bibliographical sources, adaptations and suggestions), and we establish useful expressions for evaluate the 
radial displacement, the equivalent, circular and radial stresses.  
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2. GENERAL WORDING 
 
Generally, for an annular plate, the radial displacement in a certain point of the median surface of the plate has 
the expression [3]: 
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where 0r   is the internal radius of the plate, 1 TC •  and 2 TC •  - the integration constants, which are determined 
for the adequate conditions at limit. 
 
The radial and annular stresses have the relations [3]: 
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where the following notation is used: 
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The radial displacement becomes: 
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Plate embedded on the external circumference, having free the internal contour  

 
To establish the expressions of the integration constants the following limit conditions are carried into effects: 
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resulting from (1) and (2): 
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with notation: 
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Particularizations: 
 
Note: Further, we will determine only the expressions of the 1I • - (4) equality - and the 2I •  - (8) equality - 
integrals, for every low of variation of the temperature, the stresses will be evaluated with the (2) and (3) 
equalities and the corresponding radial displacement with the (5) relation. The integration constants have the (7) 
and (8) expressions. 
 
►THE I CASE. Stationary thermal field, irrespective of the current radius of the plate 

 
The low of variation of the temperature along the radius of the plate is: 

 
( ) 0eT r T T TΔ = − = Δ = constant,    (10) 

therefore: 
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►THE II CASE. Stationary thermal field, linear depending of the current radius of the plate 
 
The low of variation of the temperature is: 
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►THE III CASE. Central warmed or cooled plate. Stationary thermal field, with parabolic variation [17] 
 
This time the low of variation of the temperature along the radius of the plate is: 
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which permit to conclude the expressions: 
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►THE IV CASE. Peripheral warmed or cooled plate. Stationary thermal field, with exponential variation 
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The expression of the thermal gradient according with this case is: 
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►THE V CASE. Combined thermal field (one field irrespective of radius and one field with parabolic 
variation which decrease from the centre to the outline of the plate)  
The low of the unfolding of the thermal transfer is: 
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the magnitudes which serve to the calculation being: 
 

( ) ( )2 2 2 2
1 0 02

1 ;
2 2

e c
e c e p

T
I T T r r r r

R
• Δ⎡ ⎤
= ⋅ Δ + Δ − ⋅ + ⋅ −⎢ ⎥⋅⎣ ⎦

  (22) 

 

( )
2

2 20
2 02

1 1 1 .
2 2e c e p e c

rI T T T R r
R

• ⎡ ⎤⎛ ⎞
= ⋅ Δ + Δ − ⋅Δ ⋅ + ⋅ −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
   (23) 

 
►THE VI CASE. Combined thermal field (one field irrespective of radius and one field with exponential 
variation which increase from the centre to the outline of the plate) [4] 
 
The variation of the temperature along the radius of the plate is given of the expression: 
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which permit the deduction of the necessary magnitudes of this study:  
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►THE VII CASE. Combined thermal field (one field irrespective of radius and one field with exponential 
variation) 
Respect this situation we accept the following low:  
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used for the magnitudes: 
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►THE VIII CASE. Stationary thermal field, with exponential variation  
 
The expression that offer the way of variation of the temperature along the radius of the plate: 
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will carry to the obtaining of the equalities: 
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►THE IX CASE. Stationary thermal field, with logarithmic variation  
  
For this case, we consider a thermal gradient like that: 
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The (4) and (9) integrals have the expressions: 
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Notations: 
 
n −  exponent having a corresponding value to the concrete case of thermal transfer;  r −  current radius of 

the plate; 0r −  radius of the internal contour of the annular plate; ( )u r −  radial displacement of the current 

points of the median surface of the considered plate; 1 2,T TC C −  integration constants; pE − elasticity 

longitudinal modulus of the material of the plate; 1 2,I I − helping magnitudes of calculation; 

TK − exponent with thermal influence; R − radius of the external contour of the annular plate; 

eT − temperature of exploitation of the  plate, having the thermal gradient irrespective of radius; 

e cT − temperature at level of the internal contour of the plate; e pT −  temperature of exploitation at level 

of the external contour of the plate; 0T − temperature of the external medium; Tα − factor of the thermal 

deformation; pν − coefficient of the transversal contraction of the material of the annular plate; 

,r θσ σ − radial and annular stresses; ,e c e pT TΔ Δ − thermal gradient at the level at centre of the 

plate, respectively at the external level of the plate; ( ) ( )0,T r T rΔ Δ −  thermal gradient at the level at 

one current radius, respectively at the level of the internal contour of the annular plate. 
 
 
3. CONCLUSIONS 
 
Taking into account that in industrial practice there are many situations of warmth transfer, which are imposed 
by the processing of different substances, this paper present nine lows of change of the temperature along of an 
annular plate. We consider that its thickness is constant, irrespectively of its circumference.  
 
We did not take into account, in this analyze, the change of elastic characteristics of the material of the plate. 
This theory can tackle this state. 
 
Starting of o general presentation, using corresponding particularizations, the necessary expressions for the radial 
displacements of the points, which belong of the median surface of the annular plate and the expressions of the 
radial and annular stresses are determined. 
 
Taking into consideration these magnitudes, the evaluation of the maximal solicitation and therefore the 
relocation of the acceptable maximal values of the working temperature are possible. 
 
Because the previous study had been established for a plate having the external contour embedded and the 
internal circumference free, in a next paper a plate having the internal contour embedded and the external 
contour free, will be studied. 
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