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Abstract. Dynamic models used in shocks, vibration and seism calculus are based on 
rheologic configuration which are specifically used in isolation system. The BURGERS 
parametrical model presented in this paper is used for the behavior characterization of some of 
these special isolation materials. This is a parametrical model regarding the stiffness of two 
HOOKE elements (parameter N) and the damping level of two NEWTON elements 
(parameter M). The present paper gives some numerical results of the simulation of different 
values of damping and parameters N and M.  
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1. MATHEMATIC MODEL 
In respects of active isolation of vibration for mechanical structures with weight m under the action of harmonic 
perturbation force using the BURGERS parametrical element, the mathematical model consists in two serial 
models: one is the VOIGT KELVIN model with stiffness k and damping coefficient c and the other is the 
MAXWELL element with stiffness Nk and damping coefficient Mc [1],[2],[3]. The simulation of transfer factor 
T and amplifiers factor A with relative pulsation will be presented for different values of damping factor ζ and 
parameters N, M.  
 
 
 
 
 
 
 
 
 
 
 
 
The force transmitted to foundation in the case of isolation with BURGERS element according to figure 1 is the 
same for all three serial bound elements:    
 

   )vx(Mc)uv(NkucukQ &&& −=−⋅=⋅+⋅=       (1) 
 

where u is the displacement of the end element VOIGT KELVIN and v is the displacement of the end element 
HOOKE as we see in figure 1. 
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Fig.1. BURGERS viscous elastic parametrical model 
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The following differential equations of moves for the body m and differential equations for transmitted forces are 
written as follows:  
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The complex expressions of variables are introduced in order to solve the equations (2) in a complex mode:  
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The particular complex solutions of the equations (2) are written as follows: 
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Substituting the derivative functions of the particular complex solutions in the equations (2) we obtain: 
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By solving the system (5) the amplitudes of the particular complex solutions result: 
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The particular complex solutions (4) become: 
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The expression of force transmitted to the foundation in the complex mode is: 
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The transfer factor T represents the ratio between the amplitude of real force transmitted to foundation and the 
amplitude of perturbation force: 
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The complex amplitude of vibrations’ displacement obtained in (6) may also be written as: 
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The amplifier factor A of vibrations is defined as the ratio between the amplitude of real displacement vibrations 
and the deformation of spring k under a force F0: 
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2. PARTICULAR CASES 
 
The transfer factor T (11) relation and the amplifier factor A relation can be particularized in order to obtain the 
following particular cases [3],[4]: 
 

 For N→∞  VOIGT KELVIN - NEWTON particular case is obtained:  
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 For M→∞ VOIGT KELVIN- HOOKE particular case is obtained:  
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 For N→∞ and M→∞ VOIGT KELVIN particular case is obtained:  
  

( ) ( ) 22222222

22

41

1

41

41

ηζ+η−
=

ηζ+η−

ηζ+
= A;T                    (16) 

 
3. THE SIMULATION OF TRANSFER FACTOR T 
 

 The simulation of transfer factor T with pulsation for different values of the damping factor. Figure 2 
shows the transfer factor ( )ηT  for the following damping factors: ζ1=0,1; ζ2=0,3; ζ3=0,7; ζ4=0,9 and for 
the following parameters values: N=10 , M=5. 

 The simulation of transfer factor T with pulsation for different values of N parameter. Figures 3 shows the 
transfer factor ( )ηT  for the following parameters: N1=1;  N2=2;  N3=10;  N4=100;  (M=10)   in case of  
low damping ζ1=0,1.  

 The simulation of transfer factor T with pulsation for different values of M parameter. Figures 4 shows 
the transfer factor ( )ηT  for the following parameters: M1=1;  M2=2;  M3=5;  M4=10;  (N=5)   in case of 
low damping ζ1=0,1 .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. The simulation of transfer factor with pulsation for different values of the damping factor. 
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4. THE SIMULATION OF AMPLIFIER FACTOR A 
 

 The simulation of amplifier factor A with pulsation for different values of the damping factor. Figure 5 
shows the amplifier factor ( )ηA  for the following damping factors: ζ1=0,1; ζ2=0,3; ζ3=0,7; ζ4=0,9 and 
for the following parameters values: N=10 , M=5. 

 The simulation of amplifier factor A with pulsation for different values of N parameter. Figures 6 shows 
the amplifier factor ( )ηA  for the following parameters: N1=1;  N2=2;  N3=10;  N4=100;  (M=10)   in 
case of  low damping ζ1=0,1 . 

 The simulation of amplifier factor A with pulsation for different values of M parameter. Figures 7 shows 
the amplifier factor ( )ηA  for the following parameters: M1=1;  M2=2;  M3=5;  M4=10;  (N=5)   in case 
of low damping ζ1=0,1. 

Fig.3. The simulation of transfer factor with pulsation for different values of the N factor - low damping 

Fig.4. The simulation of transfer factor T with pulsation for different values of the M factor - low damping 
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Fig.5. The simulation of amplifier factor with pulsation for different values of the damping factor. 

Fig.6.  The simulation of amplifier factor with pulsation for different values of the N factor - low damping 

Fig.7.  The simulation of amplifier factor with pulsation for different values of the M factor - low damping 
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5. CONCLUSIONS 
 
The simulation of the BURGERS parametrical model shows a specific behavior to the value modification of the 
elastic and damping parameters of the basic elements as well as the relative values modification of elasticity and 
damping of the VOIGT KELVIN and MAXWELL elements [3]. Therefore: 
 The transfer factor of vibration in the resonant area is higher for average level of damping, for lower values 

of N parameter for weak as well as for strong damping and for higher values of M parameters (fig. 2, 3, 4).  
 The amplifying factor of vibrations in the low frequencies area is huge for each situation, and higher in the 

resonant area for small values of damping, for even smaller values of N parameter for low as well as for 
high damping and for low values of the M parameter (fig. 5, 6, 7).   
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