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CLASSIFYING BAYESIAN NETWORKS BY ESSENTIAL GRAPHS
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Abstract: We improve the efficiency of Bayesian Network learning procedures, by selecting
as search space the equivalence classes of Directed Acyclic Graphs (DAGSs), and from them

an essential graph as representative of each class. For this purpose, we describe some results,
and observe the asymptotical behaviour of its respective ratios.
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1. INTRODUCTION

Let Sand S’ be two of such structures of BNs on V. Then, we say that S is equivalent to S’: S X'S’, if for each
parameterization, 6, of S, there exists another, &, of S, such that:

PV )P (U5 s) W

Let C be a class of DAGs Markov X among them. Then, their essential graph would be the smallest graph
greater than every DAG that belongs to the class. If we denote the essential graph as G*, this is equivalent to
saying: G* = u {G: GeC}, where such graph union is reached by the union of the nodes and edges of G:

V(G*) =u V(G), E(G*) = U E(G) 2
2. CLASSIFICATION OF BAYESIAN NETS

In general, the number of possible structures, for BNs with n nodes, r (n), is given by the recurrence equation:

r(n):iZ::1 (fl)iﬂ[?]zi(nii)r(n’i) ®)

In the first case, with order n = 3:
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Clasification for O = 3
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When the graphs are of order: O(G) = 4. Therefore, the sizecanbe T (G) /0, 1, 2, ..., 6 = 4(4-1)/2 .

We can see it gets more complicated. Applying the aforementioned recurrent equation, we obtain 543 different
possible configurations:

Clasij for
0(G)=4 @ ) o—>0
r(4)=543
(<] () © o
>0

f(4)-= z (_1)”1[‘3 2160 (4 i) -
= (—1)2(3 2'¢ Dy (4 -1)+ (—1)3[;j 27 (4-2)+

A A ©)
+ (—1)4(?’) 224y (4-3)+ (1) [4] 2 r(4-4)=
=800-288+32-1=543 differentconfigurations
For the DAGS, G, such that O (G) =5, where:
T(G) €{0,1, 2, ...,5(5-1)/2 =10} (6)

the recurrence equation gives us the configurations:



5
+(-1)™ ( j 2" (5-5) = 43440 — 16000 + 1920 80 + 1 =
5

= 29281 = ¢ {DAGsof fivenodes} = r(5) = 29281config.’ =

= ratio :c { equivalence classes } / c { DAGs of five nodes} =

=c{classes} / r(5) =8782/ 29281 = 0.2999214 (viewing Table)
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(7)

For this computation, it was elaborated a program, due to Gillispie & Perlman’01 (see Table), which permits the
enumeration of the equivalence (X) of DAGs, according to the equivalence criteria among BNs. It has been
computed that the proportion of DAGs to classes of X is (asymptotically) 3.75. That is, from classes to DAGs
should be of 0.267, a considerable reduction.

Ratio among: c
O0(G)=n c { equivalence classes} |{classes} /c {DAGs} [ =
=c { essential graphs} [r (n) = nr  of
configurations # |
1 1 1/r(1)=1

2

2/r(2)=2/3= 0.6+

11

3/r(3)=11/25=
=0.44

185

185/ r(4) = 185 / 543
= 0341

8782

8782 /r(5) =8782/
29281 = 0.29+4

10

1118902054495975141

1118902054495975141
/¢(10) = 0.26799
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