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ESSENTIAL GRAPH AS VERY EFFICIENT TOOLS
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Abstract: Bayesian Nets (BNs, in abridged expression) represent joint probability
distributions (JPDs). We says that two BNs are equivalent (denoted by X), if both
represent the same JPD. Now, we can see some useful characterizations of the
equivalence among BNs, and the usefulness of Essential Graphs (EGs) as
representatives of equivalence classes of BNs, in Al; for instance, learning BNSs.
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1. INTRODUCTION
Let Sand S” two of such structures of BNs on V.

Then, we says that S is equivalent to S*: S X S, for each parameterization, 0, of S, there exist another

parameterization, 0", of S”, such that:
P(UE )P (V5 s) (1)

Therefore, S can represent every probability distribution which S” represent and vice versa.

It verifies the following properties:
* Reflexive:BX B,V B
e Symmetrical: ifBXB'= B'XB
e Transitive: ifBXB andB'XB"=BXB"”

Therefore, it is an Equality or Equivalence Relation, defined on the BNs set. On such mathematical object, it is
well established a partition in equivalence classes.

Th. S X S < both structures induce the same set of conditional independencies (according the Global Markov
Property).

In a DAG, if we eliminate its directions to each directed edge, it remains their skeleton graph.

On a DAG, we says an immorality to each configuration of this type: X — Y <«— Z . Where we can observe the
following directed edges: X — Z and Z <Y
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2. RESULTS
Th. Two models of BNs are X <> both have the same skeleton and the same immoralities.

But to have the same skeleton, it must to be equal its order (number of vertices-nodes) and the size (number of
edges) among the considered graphs.

Th. Two models of BNs are X < there exist a sequence of covered edge inversions, transforming one in another
model.

We can denote the equivalence class of S by [S] .
It induces a partition into the set of BNs, B, in equivalence classes: Q = B/X = UBI.

Let C be a class of DAGs Markov X among them. Then, their essential graph would be the lesser graph greater
than every DAG that belongs to the class.

If we denote the essential graph as G*, this will be equivalent to say: G* = U{G: GeC}. Where such graph
union is reached by the union of the nodes and edges of G:

V(G*) = U V(G), E(G*) = U E(G) @)

The directed edges connecting the same pair of nodes, but showing opposed directions, into two graphs
belonging the same class, C, are substituted by a line.

So, G* will be the lesser of the upper bounds for every graph of the class represented.

Equivalence-Invariant Scoring Function: they are the scoring functions that given the same score value, when
they are applied on equivalent models

Some functions permits to find the score of equivalence classes. But it is not so in every case.

Two models X of BNs ever have the same computational complexity. Because the inversion of essential edges
no change the complexity class.

Given two BN models de RBs: S and S”, we said that S include to S’, if every assumptions of c. i. which are true
for S” they are also true for S.

Relations between Equivalence and Inclusion of BNs:
SXS < (ScS)A(ScS) (3)
And we said that S” is strictly included into S, if S include to S”, but S” is not included in S.

Th. A structure of BN, S, include to another, S"< there exist a sequence of covered arc inversions and additions
of arcs which transforms Sin S”.

Cor.: A structure of BN, S, include to another, S” < S is able to represent any joint probability distribution that
S’ can represent.

For acyclic directed graphs, G, of order three: O (G) = 3. Their size, T, depends of the class to which belongs,
being T (G)e{0, 1, 2, 3}.

In general, the number of possible structures, for BNs with n nodes, r (n), is given by the recurrence equation:
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In the first case, to order n = 3:

j 216~ 1>r(I3 1)+(*1)3[2J22(3’2)f(3*2)+ ®)

3
1
+(-1)° (3] 2°¢"9r(3-3)=36-12+1= 25

r(3)= i 1[3j 2'¢ 0 r(3-i)=

(= estructures), because:r(0)=r(1)=1& r(2)= 3.

When the graphs are of order: O(G) = 4, the size can be: T (G)e{0,1, 2, 3, 4, 5, 6}. Applying the aforementioned
recurrent equation, we obtain 543 different possible configurations:

4

r(4)= z (_1)i‘1[ij 20D (4 )=

= (—1)2(1] 21("’”r(4—1)+(—l)3(;] 22 (4-2)+ ©)
+(—1)“(g] 23(4’3)r(4—3)+(—1)5(j] 2 r(4-4)=

=800-288+32-1=543 differentconfigurations

Let S and P be a DAG and a JPD, respectively. Suppose which join to a S an edge X—Y not produce cycles.
Then, we said that joining an edge to S is useless, if: X L Y / Pas (). In other case, we said that joining an edge
to S is useful. In both cases, it is convenient to add: with respect to the probability distribution, P (w. r. t. P).

A scoring function is locally consistent, if adding a useful edge increase the score and adding a useless edge
decrease the score.

As different DAGs can determine the same class of X of Markov, is of great interest know how much to improve
their efficiency when we select for each class only one representative, instead of consider through exhaustive
procedure each one of the DAGs.

For their computation, it was elaborated a program, due to Gillispie & Perlman"01, which permits the
enumeration of the equivalence (X) of DAGs, according the equivalence criteria among BNs.

With her was computed the proportion of DAGS to classes of X is (asymptotically) of 3.75. That is, from classes
to DAGs should be of 0.267. It is certainly a considerable reduction (to the fourth part), perhaps lesser tan the
supposed (so, De Campos 06).
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