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Abstract: Bayesian Nets (BNs, in abridged expression) represent joint probability 
distributions (JPDs). We says that two BNs are equivalent (denoted by Χ), if both 
represent the same JPD. Now, we can see some useful characterizations of the 
equivalence among BNs, and the usefulness of Essential Graphs (EGs) as 
representatives of equivalence classes of BNs, in AI; for instance, learning BNs. 
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1. INTRODUCTION 
 
Let S and S´ two of such structures of BNs on V. 
 
Then, we says that S is equivalent to S´: S Χ S´, for each parameterization, θ, of S, there exist another 
parameterization, θ´, of S´, such that: 
 
 
          (1) 

 

Therefore, S can represent every probability distribution which S´ represent and vice versa. 

It verifies the following properties: 
• Reflexive: B Χ B, ∀ B 
• Symmetrical: if B Χ B´⇒ B´Χ B 
• Transitive: if B Χ B´ and B´Χ B´´⇒ B Χ B´´ 

 

Therefore, it is an Equality or Equivalence Relation, defined on the BNs set. On such mathematical object, it is 
well established a partition in equivalence classes. 
 
Th. S Χ S ⇔ both structures induce the same set of conditional independencies (according the Global Markov 
Property). 
 
In a DAG, if we eliminate its directions to each directed edge, it remains their skeleton graph. 
 
On a DAG, we says an immorality to each configuration of this type: X Y Z→ ← . Where we can observe the 
following directed edges: X Z and Z Y→ ←  
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2. RESULTS 
 
Th. Two models of BNs are Χ ⇔ both have the same skeleton and the same immoralities. 

But to have the same skeleton, it must to be equal its order (number of vertices-nodes) and the size (number of 
edges) among the considered graphs.  

Th. Two models of BNs are Χ ⇔ there exist a sequence of covered edge inversions, transforming one in another 
model. 
We can denote the equivalence class of S by [ ]S . 

It induces a partition into the set of BNs, Β, in equivalence classes: Ω = Β/Χ = ∪Βi. 
 
Let C be a class of DAGs Markov Χ among them. Then, their essential graph would be the lesser graph greater 
than every DAG that belongs to the class. 
 
If we denote the essential graph as G*, this will be equivalent to say: G* = ∪{G: G∈C}. Where such graph 
union is reached by the union of the nodes and edges of G:   
 

V(G*) = ∪ V(G),  E(G*) = ∪ E(G)                                                               (2) 
 
The directed edges connecting the same pair of nodes, but showing opposed directions, into two graphs 
belonging the same class, C, are substituted by a line.  
 
So, G* will be the lesser of the upper bounds for every graph of the class represented.  
 
Equivalence-Invariant Scoring Function: they are the scoring functions that given the same score value, when 
they are applied on equivalent models  
 
Some functions permits to find the score of equivalence classes. But it is not so in every case.  
 
Two models Χ of BNs ever have the same computational complexity. Because the inversion of essential edges 
no change the complexity class. 
 
Given two BN models de RBs: S and S´, we said that S include to S´, if every assumptions of c. i. which are true 
for S´ they are also true for S. 
 
Relations between Equivalence and Inclusion of BNs: 
 

S Χ S´ ⇔ (S ⊂ S´) ∧ (S´⊂ S)                                                           (3) 
 
And we said that S´ is strictly included into S, if S include to S´, but S´ is not included in S.  
 
Th. A structure of BN, S, include to another, S´⇔ there exist a sequence of covered arc inversions and additions 
of arcs which transforms S in S´.  
 
Cor.: A structure of BN, S, include to another, S´ ⇔ S is able to represent any joint probability distribution that 
S´ can represent. 
 
For acyclic directed graphs, G, of order three: O (G) = 3. Their size, T, depends of the class to which belongs, 
being T (G)∈{0, 1, 2, 3}.  
 
In general, the number of possible structures, for BNs with n nodes, r (n), is given by the recurrence equation: 
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                                 (4) 
 
 
In the first case, to order n = 3: 
 
 
 
 
                     (5) 
 
 
 
 
 
When the graphs are of order: O(G) = 4, the size can be: T (G)∈{0,1, 2, 3, 4, 5, 6}. Applying the aforementioned 
recurrent equation, we obtain 543 different possible configurations: 
 
 
 
 
                  (6) 
 
 
 
 
 
Let S and P be a DAG and a JPD, respectively. Suppose which join to a S an edge X→Y not produce cycles. 
Then, we said that joining an edge to S is useless, if: X ⊥ Y / Pas (Y). In other case, we said that joining an edge 
to S is useful. In both cases, it is convenient to add: with respect to the probability distribution, P (w. r. t. P).  
 
A scoring function is locally consistent, if adding a useful edge increase the score and adding a useless edge 
decrease the score.  
 
As different DAGs can determine the same class of Χ of Markov, is of great interest know how much to improve 
their efficiency when we select for each class only one representative, instead of consider through  exhaustive 
procedure each one of the DAGs. 
 
For their computation, it was elaborated a program, due to Gillispie & Perlman´01, which permits the 
enumeration of the equivalence (Χ) of DAGs, according the equivalence criteria among BNs. 
 
With her was computed the proportion of DAGs to classes of Χ is (asymptotically) of 3.75. That is, from classes 
to DAGs should be of 0.267. It is certainly a considerable reduction (to the fourth part), perhaps lesser tan the 
supposed (so, De Campos´06).  
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