MONITORING OF THRIPS ATTACK IN THE SEEDLING STAGE OF PLANTS WITH MULTIPLE USES

Maria Călin, Marcela Fălticeanu, Tina Oana Cristea, Camelia Mihaela Popa, Magdalena Dumbravă

Key words: monitoring, thrips, attack, seedling, vegetable

INTRODUCTION

Thrips are one of the most difficult pests to control in seedling stage (Maria Calin, 2004, 2005). This pest is very dangerous insects that reproduce rapidly, congregate in tight places that make pesticide coverage difficult. After the insect feed, the results are the deformation of flowers and leaves (Maria Călin, 2004, 2005, Dreistadt and all., 2001, 2004, 2007). The tolerance of thrips on plants with multiple uses crops is low.

In addition, when *Thrips tabaci* feed on plants they usually infect the plant with the viruses as: *Lycopersicon virus* 3, *Solanum virus* 8, *Nicotiana virus* 1, *Tomato Spotted wilt virus*. Once plants are infected, it is too late to do anything except dispose of diseased plants. Thus, the best way to prevent virus infection is to control the thrips (Flint and all., 1998, Maria Călin, 2005). A regular monitoring program is the basis of all pest management programs. The best way is to conduct a regular, weekly monitoring program to detect problems in an early stage.

This early detection and treatment will result in better pest control since plant canopies are smaller and better spray coverage can be achieved. Plant inspection is needed to assess general plant health and to detect the pests (O'Donnell et all, 2005; Maria Călin, 2005).

MATERIALS AND METHODS

During 2007 - 2008, greenhouse experiments were performed in Vegetable Research-Development Station Bacau - Romania, in order to evaluate the plant with multiple uses tolerance to attack of thrips in the seedling stage (Table 1). The species were seeded in the greenhouse on February and March. After emergence, in about 3-10 days the young plants were transplanted in 104 - cell plastic trays.

No preventive chemicals treatments were applied in order to encourage the development of the pest attack.

For monitoring the attack we randomly selected plants at four locations, each with 100 seedlings and we examined plants. Examine the underside of leaves for insect pests and inspect root systems to determine whether they are healthy (Calin Maria, 2004, 2005). The observations were accomplished at each 10 days during a period of 40 - 50 days after transplanting the young vegetable plants in plastic trays.

The attack was estimated using the following indicators:

- Frequency of attack (F%),
- Intensity of attack (I%),
- Degree of attack (DA%).

The obtained results will be used in plant breeding in order to decrease the number of pest's chemicals treatment in the seedling technologies of plants with multiple uses.

The plants of multiple uses lines and varieties susceptibility to attack of the thrips was as it follows (table 2).

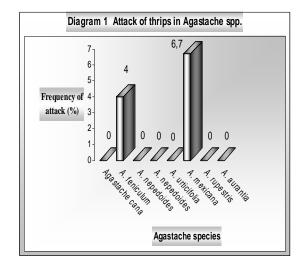
RESULTS AND DISCUSSIONS

The data obtained, shows the different response of plants with multiple uses species to thrips attack.

It was identified the symptom of attack in:

- Agastache foeniculum (F% 4.0%) and A. mexicana in stage of 6 leaves (table 1 and diagram 1):
- Salvia splendens F% 4,7, S. coccinea F% 2.0, S. coccinea F% 2,0 (Diagram 2);
- Nasturtium officinale F% 5,9,
- Tagetes tenuifolia F% 25,9, T. patula nana F% 8 3
- Ocimum basilicum, Vert F% 13,1, O. basilicum var.lemon F% 9.5:
- Callistephus chinensis Douchesse alb F% 4,8, Anthirinium majus F% - 4,0, Lobelia erinum F% -8.7

Intensity of attack (I%) was below 5.4%.


The degree of attack was below 0.4 % under Economical Treshold Level, but we applied the chemical treatments two times, with Confidor 0,075% and Mospilan 0,03 %.The treatments were applied

because the thrips transmit *Lycopersicon virus* 3, *Solanum virus* 8, *Nicotiana virus* 1, *Tomato Spotted wilt virus*. In addition, if the treatments for controlling the thrips, are not applied the populations increase very quickly and the pests are

very difficult to control. The characteristic for this specie is parthenogenesis multiplication. One female insert 80 - 100 eggs in soft plant tissue. If the treatments for the control of pests are not applied, the populations of pests grow very quickly.

Table 1. Study of flower and the plant with multiple uses in seedling stage

No.	Varieties/lines	Time				
		Sowing	Raising of	Transplant of plants in	Comments	
		Sowing	plants	plastic trays		
1	Agastache foeniculum	13.03	23.03	26.03	Normally come up of plants	
2	Agastache nepedoides	13.03	19.03	03.04	Normally come up of plants	
3	Agastache hybrida	13.03	18.03	31.03	Normally come up of plants	
4	Agastache urticifolia	13.03	17.03	29.03	Come up of plants in 4 days	
5	Agastache mexicana	13.03	17.03	26.03	Come up of plants in 4 days	
6	Agastache rupestris	13.03	18.03	27.03	Come up of plants in 5 days	
7	Agastache aurantia	13.03	18.03	27.03	Come up of plants in 5 days	
8	Agastache cana	14.03	19.03	24.03	Come up of plants in 5 days	
9	Petunia hybrida var. pendula	29.02	07.03	12.03	Normally come up of plants	
10	Salvia splendens	29.02	07.03	12.03	Normally come up of plants	
11	Salvia coccinea	2/19.03	23.03	02.04	Come up of plants in 4 days	
12	Salvia coccinea	18.03	23.03	02.04	Come up of plants in 5 days	
13	Salvia officinalis	13.03	23.03	26.03	Normally come up of plants	
14	Salvia sclarea	13.03	17.03	27.03	Come up of plants in 4 days	
15	Salvia ringens	11.03	20.03	24.03	Normally come up of plants	
16	Nasturtium officinale	11.03	16.03	28.03	Come up of plants in 5 days	
17	Tagetes tenuifolia	06.03	10.03	13.03	Come up of plants in 4 days	
18	Tagetes patula var. nana	05.03	08.03	19.03	Normally come up of plants	
19	Ocimum basilicum Vert	05.03	08.03	19.03	Come up of plants in 3 days	
20	Ocimum basilicum var. lemon	05.03	09.03	19.03	Come up of plants in 4days	
21	Ocimum basilicum var. bulatum	20.03	27.03	07.04	Normally come up of plants	
22	Ocimum basilicum red	21.03	01.04	07.04	Normally come up of plants	
23	Ocimum basilicum curly	27.03	30.03	07.04	Come up of plants in 3 days	
24	Pelargonium peltatum young plants	X	X	10.03	Normally grow	
25	Pelargonium zonale seedlings	09.03	20.03	25.03	Normally come up of plants	
26	Calamintha gland secret	13.03	19.03	27.03	Normally come up of plants	
27	Zinia elegans	24.03	27.03	02.04	Come up of plants in 3 days	
28	Zinia angustifolia	24.03	01.04	08.04	Normally come up of plants	
29	Callistephus chinensis Douchesse alb	20.03	23.03	02.04	Come up of plants in 3 days	
30	Calistephus chinensis Lady coral	20.03	25.03	07.04	Come up of plants in 5 ays	
31	Calistephus chinensis Sea Starlet	20.03	01.04	08.04	Normally come up of plants	
32	Callistephus chinensis Little red	24.03	31.03	02.04	Normally come up of plants	
33	Antirhinium majus	06.03	12.03	20.03	Come up of plants in 6days	
34	Lobelia erinus	06.03	14.03	02.04	Normally come up of plants	
35	Gazania splendens	06.03	12.03	20.03	Come up of plants in 6 days	
36	Dahlia variabilis	27.03	01.04	07.04	Come up of plants in 4 days	

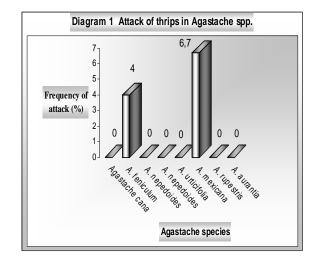


Table 2. The degree attack of thrips in vegetable seedling

No.	Varieties/Lines		Comments		
var.		Frequency (%)	Intensity (%)	Degree of attack (%)	1
1	Agastache foeniculum	4,0	4,2	0,2	6 leaves
2	Agastache nepedoides	0	0	0	
3	Agastache hybrida	0	0	0	
4	Agastache urticifolia	0	0	0	
5	Agastache mexicana	6,7	5,4	0,4	6 leaves
6	Agastache rupestris	0	0	0	
7	Agastache aurantia	0	0	0	
8	Agastache cana	0	0	0	
9	Petunia hybrida var. pendula	7,1	5,4	0,4	10 leaves
10	Salvia splendens	4,7	6,3	0,3	11 leaves
11	Salvia coccinea	2.0	2.1	0.1	
12	Salvia coccinea	2,0	1,0	0.1	3 leaves
13	Salvia officinalis	0	0	0	
14	Salvia sclarea	0	0	0	
15	Salvia ringens	0	0	0	
16	Nasturtium officinale	5,9	4,5	0,3	9 leaves
17	Tagetes tenuifolia	25,9	4,9	1,3	11 leaves
18	Tagetes patula var. nana	8,3	2,7	0,3	9 leaves
19	Ocimum basilicum Vert	13,1	3,4	0,4	10 leaves
20	Ocimum basilicum var. lemon	9,5	4,1	0,4	9 leaves
21	Ocimum basilicum var. bulatum	0	0	0	
22	Ocimum basilicum red	0	0	0	
23	Ocimum basilicum curly	0	0	0	
24	Pelargonium peltatum young plants	0	0	0	10 leaves
25	Pelargonium zonale seedlings	8,6	3,1	0,3	5 leaves
26	Calamintha gland secret	1,2	1,1	0,1	6 leaves
27	Zinia elegans	0	0	0	2 leaves
28	Zinia angustifolia	0	0	0	
29	Callistephus chinensis Douchesse alb	4,8	2,2	0,1	5 leaves
30	Calistephus chinensis Lady coral	0	0	0	
31	Calistephus chinensis Sea Starlet	0	0	0	
32	Callistephus chinensis Little red	0	0	0	
33	Antirhinium majus	4,0	2,5	0,1	5 leaves
34	Lobelia erinus	8,7	4,2	0,4	3 leaves
35	Gazania splendens	0	0	0	7 leaves
36	Dahlia variabilis	0	0	0	7 leaves

CONCLUSIONS

During 2007 - 2008, greenhouse experiments performed in Vegetable Research-Development Station Bacau - Romania, in order to evaluate the plants with multiple uses to attack of the thrips in seedling stage of the following: Agastache foeniculum, Agastache nepedoides, Agastache hybrida, Agastache urticifolia, Agastache mexicana, Agastache rupestris, Agastache aurantia, Agastache cana, Petunia hybrida var. Pendula, Salvia splendens , Salvia coccinea, Salvia coccinea, Salvia officinalis, Salvia sclarea.

Salvia ringens, Nasturtium officinale, Tagetes tenuifolia, Tagetes patula var. Nana, Ocimum basilicum Vert, Ocimum basilicum var. Lemon, Ocimum basilicum var. Bulatum. Ocimum basilicum red. Ocimum basilicum Pelargonium peltatum young plants, Pelargonium zonale seedlings, Calamintha gland secret, Zinia elegans, Zinia angustifolia, Callistephus chinensis Douchesse alb, Calistephus chinensis Lady coral, Calistephus chinensis Sea Starlet, Callistephus

chinensis Little red, Antirhinium majus, Lobelia erinus, Gazania splendens, Dahlia variabilis.

It was identified the attack symptoms in: -Agastache foeniculum (F% - 4.0%) and A. mexicana in stage of 6 leaves; Salvia splendens F% - 4,7, S. coccinea F% - 2.0, S. coccinea - F% - 2,0; Nasturtium officinale F% - 5,9; Tagetes tenuifolia F% - 25,9, T. patula nana F% - 8,3, Ocimum basilicum, Vert F% - 13,1, O. basilicum var.lemon F% - 9,5; Callistephus chinensis Douchesse alb F% - 4,8, Anthirinium majus F% - 4,0, Lobelia erinum F% - 8,7.

Intensity of attack (I%) was below 5.4%.

The degree of attack was below 0.4 under Economical Treshold Level, but we applied the chemical treatments two times, with Confidor 0,075% and Mospilan 0,03 %.

ABSTRACT

During 2007 - 2008, greenhouse experiments were performed in Vegetable Research-Development Station Bacau - Romania, in order to evaluate the plants with multiple uses to attack of the thrips in seedling stage of the following: Agastache foeniculum, Agastache nepedoides, Agastache hybrida, Agastache

urticifolia, Agastache mexicana, Agastache rupestris, Agastache aurantia, Agastache cana, Petunia hybrida var. Pendula, Salvia splendens, Salvia coccinea, Salvia coccinea, Salvia officinalis, Salvia sclarea.

For monitoring the attack we randomly selected plants at four locations, each with 100 seedlings and we examined plants. Examine the underside of leaves for insect pests and inspect root systems to determine whether they are healthy (Calin Maria, 2004, 2005). The observations were accomplished at each 10 days during a period of 40 - 50 days after transplanting the young vegetable plants in plastic trays.

The attack was estimated using the following indicators:

- Frequency of attack (F%),
- Intensity of attack (I%),
- Degree of attack (DA%).

REFERENCES

- DREISTADT, S. H., J. K. CLARK, and M. L. FLINT. 2001 - Integrated Pest Management for Floriculture and Nurseries. Oakland: Univ. Calif. Agric. Nat. Res. Publ. 3402.
- DREISTADT, S. H., J. K. CLARK, and M. L. FLINT. 2004 - Pests of Landscape Trees and Shrubs: An Integrated Pest Management Guide. Oakland: Univ. Calif. Agric. Nat. Res. Publ. 3359.
- 3. S. H. DREISTADT, UC STATEWIDE IPM PROGRAM; P. A. PHILLIPS, UC STATEWIDE, 2007 IPM Program, Ventura

- Co.; and C. A. O'Donnell, Entomology, UC Davis, How to Manage Pests Pests in Gardens and Landscapes Produced by IPM Education and Publications, University of California Statewide IPM Program.
- 4. FLINT, M. L. 1998 Pests of the Garden and Small Farm: A Grower's Guide to Using Less Pesticide. Oakland: Univ. Calif. Agric. Nat. Res. Publ. 3332.
- 5. MARIA CĂLIN, 2004 Dăunătorii polifagi ai plantelor legumicole și combaterea lor în agricultură biologică. Editura DIAGONAL, p 20 26, ISBN 973-99859-5-5.
- MARIA CALIN, 2005 Ghidul recunoașterii și controlului dăunătorilor plantelor legumicole cultivate în agricultură biologică., Ed. TIPOACTIV, p. 188 – 196, ISBN 973-87136-3-3.
- O'DONNELL, C. A., L. A. MOUND, and M. P. PARRELLA. 2005 - Multilevel Identification System for Thrips Associated with Flower Crops in North America. Research in the Parrella Laboratory. Department of Entomology, UC Davis, One Shields Avenue, Davis

AUTHORS' ADDRESS

CĂLIN MARIA, FĂLTICEANU MARCELA, CRISTEA TINA OANA, POPA CAMELIA MIHAELA, DUMBRAVĂ MAGDALENA - Vegetable Research and Development Station Bacau, Calea Barladului Street, no. 220, Bacau, Romania, phone: 0234/544963, fax: 0234/517370, e-mail: sclbac@artelecom.net www.legumebac.ro