”Vasile Alecsandri” University of Bacau
Faculty of Sciences

Scientific Studies and Research

Series Mathematics and Informatics
Vol. 19 (2009), No. 1, 59 - 72

ON CESARO MEANS OF HYPERGEOMETRIC
FUNCTIONS

MASLINA DARUS AND RABHA W. IBRAHIM

Abstract: The polynomial approximants which retain the zero
free property of a given analytic functions in the unit disk U := {z :
|z| < 1} of the form

[e.e]

(1) (q)y 2

QO(Z) = ZlFm<0517"'JOél;ﬁ 7"'7ﬁm;z) = )
' ; (B1)n-- (B 7!
(<m+1,meNy z €U)

where «;,3; > 0 for all « = 1,...,l and j = 1,...,m is found. The
convolution methods of a geometric functions that the Cesaro means
of order u retains the zero free property of the derivatives of bounded

convex functions in the unit disk are used. Other properties are es-
tablished.

n+1

1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES.

In the theory of approximation the important problem is to find a
suitable finite (polynomial) approximation for the outer infinite series
f so that the approximant reduces the zero-free property of f. Recall
that an outer function (zero-free) is a function f € HP of the form
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; T 1+eitz
f(Z) = 61761/27Tf,ﬂ. 1_enzlogw(t)dt

where ¥(t) > 0, log(t) is in L' and +(t) is in LP for details see [1].
Outer functions play an important role in H? theory, arise in char-
acteristic equation which determines the stability of certain nonlinear
systems of differential equations (see [2]). We observe for outer func-
tions that the standard Taylor approximants do not, in general, retain
the zero-free property of f. It was shown in [3] that the Taylor approxi-
mating polynomials to outer functions can vanish in the unit disk. By
using convolution methods that the classical Cesaro means, retains
the zero-free property of the derivatives of bounded convex functions
in the unit disk. The classical Cesaro means play an important role
in geometric function theory (see [4-7]).

Let A be the class of generalized hypergeometric functions in the unit
disk U := {z : |2| < 1} take the form

o ‘ e (@) (ag), 2
(1) @(2) :=zFn(a, ., ai; By, ooy Bn; 2) = nz_% BB il
(I<m+1,meNy z €U)
where (x),, is the Pochhammer symbol defined by
(x)nzl“(van):{l, n=0
I'(x) rz+1)..(x+n-1), n={1,2,...}.

This class of functions generalization to one was studied by
Ruscheweyh [5]. He observed the following results

Lemma 1.1. Let 0 < a < 3. If 3> 2 or a+ 3 > 3 then the function
of the form f(z) = """, %z”“, z € U is conver.

Lemma 1.2. Assume that a; = 1 and a, > 0 for n > 0 such that
{an} is a convex decreasing sequence i.e.

(p — 20p41 + Apyo > 0 and apy1 — apyo > 0.

Then
- 1
éRE 22N> Z 0 2 e U
{n:1az } 5

We apply Lemma 1.2, to find the next result which is a generalization
to [Lemma 5; §].
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Lemma 1.3. If 0 < o;...0q < 31...03,, then

%{M} > % forall z € U.

z

Proof. From the definition of the function ¢(z), we have
90(2) =14+ f:B anl
< n=2 "

where
(Ozl)n_l...(al)n_l 1
(B )n-1-(Bp)n-1T(n)

for n > 2. Since «;,3; > 0 for all i = 1,...,l and j = 1, ..., m, we have
B,, > 0 for all n € N. Then we find

(1)p-(aq)y 1

(2) B, =

= B B 1T 00)
3) _ ()p—1(ar+n—1)()p1(g+n—-1) 1
(B1)n-1(By +n = 1).(B)n-1(B,, + 1 — 1) nl'(n)
_(aa+n-1)..(utn-1)1
By n—=1..(3, +n—1)n""
and
()
By — (1) nt1--- ()1 1
" (B)ns1+(Bm)nr1 n(n + 1)I'(n)
(1)n—1(ar +n—1) (g +n)...()pn-1(cy +n — 1)(ay + n) 1

(B 1By +n—=1)(B1 + 1) (B )n-1(B + 1 — 1)(B,, + n) n(n+ 1)['(n)
(ag+n—1)(ar+n)...(as +n— 1)y +n) 1 B
By +n=1)(By +n)ee.(Bp + 1 = 1)(By, +0)n(n+1) "

Thus from the assumption it follows that
(1 +n)(ay+n) 1
By +n)..(Bp + 1) (R +1)

Bny1— Bnyo = By (1 - ) >0, Vn e N.

Now we show that

(5) Bn — 28n+1 + Bn+2 2 O7 ¥Yn €N.
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By using (3) and (4) we find
B, —2Bpi1 + Bpyo =
(a1 +n—1)..(y+n—1)
n(n+1)(B1 +n =1 (B +n)...(8, +n—1)(B, +n)
x[n(on +n)...(1 +n) — 2(n +1)(B, + n)...(B,, +n)]}
> 0.

:Bn{1+

Thus the sequence {B,,} is convex decreasing and in virtue of Lemma
1.2, we obtain that

w1+ B, -]

The proof is complete.

We define S*,C, QS* and QC the subclasses of A consisting of func-
tions which are, respectively, starlike in U, convex in U, close-to-convex
and quasi-convex in U. Thus by definition, we have

S*i={p € A:?R(ZSDI(Z)) >0,z €U},

(2)
C:={p e A:R(1+ Zz(ij)) >0,z e U},

QS* :={p € A:3g € S*s.t. R( (ngfz()z)) >0,z € U},
and

QC:={p e A:3g € Cs.t.%((zj%) >0,z €U}
It is easily observed from the above definitions that
(6) p(z) € C & 29"
and
(7) 0(2) € QC & zp™.

Note that ¢ € QS* if and only if there exists a function g € S* such
that

(8) 29 (2) = g(2)p(2)
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where p(z) € P, the class of all analytic functions of the form

p(z) =1+pi+ 2+ p2®+ ..., st. p(0) = 1.

Let be given two functions ¢, g € A, o(z) =

00 al)n...(a)p znt1 0o a1)n...(a;)n zn+1 .
Yo ((511))71--~((/3;))nzn-; , and g(z) = anomﬂ; , then their

convolution or Hadamard product ¢(z) * g(z) is defined by

n+1

S (a1)n---()n (a1)n---(ar)n 2
Ez(ﬁnnu(ﬁmxlwgn“(@@nyunr

We can verify the following result for f € A and takes the form (1).

p(2) x g(z) =

n=0

Lemma 1.4. [5]

(i) If ¢ € C and g € S* then px g € S*.
(i) If ¢ € C and g € S*,p € P with p(0) = 1, then pxgp = (v*g)p;

where p1(U) C close convex hull of p(U).

2. THE MAIN RESULTS.

The Ceséro sums of order p where € NU{0} of series of the form
(1) can defined as

E—n+u

05 (2, ) = o) * p(z) = zk: ( k—n ) (1) () 2"

s (kzu) (B (Br)n !

where ( Z ) = b,(aa—lb), We have the following result:

Theorem 2.1. Let p € A be conver in U. Then the Cesdro means
oi(z,0), z € U of order u > 1, of ¢'(z) are zero-free on U for all
k.

Proof. In view of Lemma 1.1, the analytic function ¢ of the form
(1) is convex in U if (,..0,, > 2 or ay...aq + (;...5,, > 3 where
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0 < aj..oq < B0, Let ¢(z) :=>72 (n+ 1)z"" be defined such
that

¢'(2) = o(2) * o(2)

S e

n=0 1

Then

2¢'(2) * zo,
z

p(2) ¥ 9(2) » z0, _ pl2) * 2(z0h)”

z z

ok (2, ¢") = ¢'(2) x ok (2) =

In view of Lemma 1.3, the relation (8) and the fact that zo is convex
yield that there exists a function g € S* and p € P with p(0) = 1
such that

p(2) x 2(201)" _ p(2) x gp(z) _ (p(2) * 9(2))pa(2) L0,

z z

We know that R{p;(z)} > 0 and that ¢(2) * g(z) = 0 if and only if
z = 0. Hence, 0%/ (z,¢") # 0 and the proof is complete.

Corollary 2.1. If ¢(U) is bounded convex domain, then the Cesdro
means o4(z), z € U for the outer function ¢'(z) are zero-free on U

for all k.

Proof. It comes from the fact that the derivatives of bounded convex
functions are outer function (see [3]).

Theorem 2.2. Let ¢ € C. Then for pn > 2,04 (z,¢') have their ranges
contained in a cone (from 0) with opening 207 where [ < 1.

Proof. By using the fact that ¢ € C'= ¢ € S*(3) (see [4]). We pose

o2, ) = () w ot(z) = 22 . 20} (2)
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Thus we have (see [7])

1
2
where p(z) € P(3) i.e. R{p(z)} > 3. As in Theorem 2.1, we get

p(2) x2(z00)  @(2) % (z00) p(2) _ (p(2) * (20%) )p1(2)

z z z
where p; € P(3). This implies that ¢(z) * (zaif),) € P(3) (see [5]).
Hence by using the concept of the subordination [9], the bounded

polynomial 2{¢(z) * zo},(2)} € P(3) satisfies that there exists p < 1
such that

z(za’,ﬁ(z))l '

h(e) €5°(5) = T =l

) <

o(2) * zo!! (2 P
Then

(2) * 204 ()

jargot(z,¢')| = |arg{Z Y (2)

2) % zot' (2
< |arg{ EE 2Ty gy (o)
pT T
< — — = .
=5 + 5 O

The next result shows the upper and lower bound for o} (z, ¢').

Theorem 2.3. Let ¢ € A. Assume that [3,...0,, > 2 or aj..qq +
B1...3,, = 3 where 0 < ay...aq < B4...3,,, and > 0. Then

(k+1)
(k—1)!

m?

1
§|z\<]0’,:(z,cp')]§ , 1<k<oo, zeU, z#0.

Proof. Under the conditions of the theorem, we have that f is convex
(Lemma 1.1), then in virtue of Theorem 2.1, we obtain that o/ (z, ¢') #
0 thus |o}(z,¢")| > 0. Now by applying Lemma 1.3, on o//(z,¢') and
using the fact that R{z} < |z| and since

(k—n+u)
k— (ke — !
n KNk —n4p)! 1

(9) (k+u> T =)kt ) =

k
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forpu>0and n=0,1,.. k yield

1 ok (2 ) _ lo(z @)l
- <
2 i z b ||

For the other side, we pose that

, 12| >0 and z € U.

when n — k. Hence the proof.

Theorem 2.4. Let ¢ € A. Then for ((ﬁa

Jim o (2, 0) = A=

1)

1)

ne-
Neee

~(0‘l)n

= 2(A)n,

o A>1 zel.
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Proof. By the assumption and the fact (9), we have
E—n+up

aﬁ(w)—ﬁ|é< o )<“1>n-~<al>n L

( ko ) (Br)ne Byl

R 1 & (kgﬁﬂb)
2y ( k;Z ) o~ Ol
S

For 0 < v < 1, let B(v) denote the class of functions f of the form
(1) so that ®{f'} > v in U. The functions in B(v) are called functions
of bounded turning (c.f. [11, Vol. II}). By the Nashiro-Warschowski
Theorem (see e.g. [11, Vol. I]) the functions in B(v) are univalent and
also close-to-convex in U.

In the sequel we need to the following results.

Lemma 2.1. [10] For z € U we have
i .n

W sl> o Gen

n=1

Lemma 2.2. [11, Vol. 1| Let P(z) be analytic in U, such that
P(0) = 1, and R(P(2)) > 5 in U. For functions Q analytic in U
the convolution function P % @) takes values in the convex hull of the
image on U under Q.
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Theorem 2.5. Let g € H the class of normalized function takes the

form g(z) == 24300, ayz", (2 € U). Denoted by hy, := {52u=loke >

1 such that a; = 1. If 3 <v <1 and g(z) € B(v ),then

3(k+p)! — (n+ 1)k — y))‘

ohi(z,¢)g(2) € B( UE

Proof. Let g(z) € B(v) that is

R{g(2)} > v, (%<V<1, zeU).

Implies

1

R{1 + Znanz”_l} > >
n=2

Now for % < v < 1 we have

Vz”_l} > %{1 + inanz”_l}.

n=2

§R{1 .

+ D any
n=2

It is clear that

(10) {1+Z?hj; 2 }>

N | —

_ (@)n..(a)n
Denoted by H,, = BnBo)n

Applying the convolution properties of power series to [o}(2, ¥)g(2)]’
we may write
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) <k;;(_n(;i);)rﬂ) .
(11) [0 (2,90)9(2)]ns ( p Z“) i

. k—(n—1)+p
*[1:2;( ’“(‘;Z; § e

k
= P(2) x Q(2).
In virtue of Lemma 2.1 and for j = k£ — 1, we receive
Bt 1
12 > .
(12) %{ ;; n+ 1} - 3
Since
k k Zn—l
n—1 > .
T SRR D ot st

Then yields

k
(14) 3%{ ;zn—l} > —%.
Thus when n — k, a computation gives
Ek—(n—1)+p
%{Q(z)} - 3%{1 + zk: ( k= (=) > (1- V)z”_l} >
n=2

(1)

3k+p)! — (n+ DKL —v)
~ 3k + p0)!

69
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On the other hand, the power series

P(z) = [1 + zk: (lehjyl) anz"_l}, (ze€U)

Therefore, by Lemma 2.2, we have

%{[a‘g(z, go)g(z)]’} - 3(k+p)! ;(/iuj;?!k!(l —v)

This completes the proof of Theorem 2.5.

, (z €U).

Corollary 2.1. Let the assumptions of Theorem 2.5 hold. Then for
k—(n—1)+p
k—(n—1)

(5
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24 v

— 1, oi(z,¢)9(2) € B(T)
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