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Application of the Taguchi method for the compensation of errors
determined by springback in the case of a conical lied made from
metal sheets
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Abstract: Springback of draw parts considerably affects their accuracy and deviations
from the theoretical profile, this instability phenomenon determining the following
changes of the part shape and geometric parameters: arching of the part sidewall,
modification of the angle formed by the part bottom and the sidewall, modification of
the angle between the flange and the sidewall. The methods applied in order to reduce or
eliminate springback are based on tools correction after designing and testing, on the
utilization of special tools and devices, on the optimization of process parameters based
on some methods that establish a link among springback parameters and the influencing
factors of this phenomenon. These methods are expensive and necessitate a big number
of experimental tests. Based on these conclusions, it is necessary the development of a
method for the reduction or the elimination of the springback from the designing stage.
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1. INTRODUCTION

The analysis of the researches concerning the drawing processes, emphasizes the following aspects concerning
the springback phenomenon and the methods applied in order to increase the precision of the formed parts:
springback of draw parts affects considerably the precision and the deviations from the theoretical profile, this
instability phenomenon determining the following changes of the part shape and geometric parameters: arching
of the part sidewall, modification of the angle formed by the part bottom and the sidewall, modification of the
angle between the flange and the sidewall; blank holder force is the main process parameter that has an essential
influence on springback intensity; the methods applied in order to reduce or to eliminate springback are based on
tools correction after designing and testing, on the utilization of special tools and devices, on the optimization of
process parameters based on some methods that establish a link among springback parameters and the
influencing factors of this phenomenon. These methods are expensive and necessitate a big number of
experimental tests.

Starting from the above presented aspects, we can conclude that in order to increase the accuracy of the drawing
processes it is necessary the development of a method for the reduction or the elimination of the springback from
the designing stage. An optimal solution can be obtained by using the process simulation in combination with a
statistical modelling that allows the mathematical description of the influence of different process parameters on
the draw part geometry and accuracy. For this purpose, the factorial design offers the possibility to use a
statistical method — for example Taguchi method. The present paper analyses the possibilities to apply such
method in the case of a conical lied made from steel sheets.
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2. APPLICATION OF THE TAGUCHI METHOD
2.1. Description of optimization method

The optimization method of the forming process using Taguchi method has the purpose to reduce springback of
a draw part. The Method is applied in the following six steps: 1. Definition of geometric parameters that
characterize the geometric deviations of the part. 2. Selection of process parameters that influence the part
geometry and its field of variation. 3. Selection of the model of linear or quadratic polynomial dependence and
construction of fractioned factorial plane of experiment. 4. Process simulation according to experimental plane
and the measurement of geometric deviations of the resulted parts. 5. Calculation of coefficients of the
polynomial models and verification of the models. 6. Optimization of the process parameters in order to obtain
the desired geometric parameters of the draw part. The above presented method and steps were applied in the
case of a conical lied (Figure 1) made from steel sheets. In order to obtain the part represented in Fig. 1 the
technologic process must be achieved in the following two steps: drawing operation; trimming, shearing and
punching operations (Fig. 2). The geometric model considered in simulation using ABAQUS software is
represented in Fig. 3.

Fig.1 Geometry of the finished part Fig. 2 Main steps of the technologic process

41,5
30,0
R15.0 Blank holder
: Punch *—RD l lFl l
A l Lo
RdTgx e |
RS.0
36.5 |
70.0
Y &K S0.0
_> X

Fig. 3 Geometric model used in simulation

2.2 Parameters used in simulation:

The used blank was made from FEPO SMBH steel having the following dimensions: diameter @ = 140 mm and
thickness g = 1 mm. The material parameters were as follows: Young’s modulus = 2x10° MPa; Poisson’s
coefficient = 0,3; density p = 7800 kg/m?; for description of the material plastic behaviour 10 points from the
stress-strain curve were chosen.

The integration method was Gaussian with 5 integration points equally distributed on the sheet thickness and the
type of the finite element was SAX 1. The discretizing of the blank was made in 50 elements and 51 nodes. The
working conditions and parameters were as follows: Friction coefficient p = 0.075; Punch displacement in the
negative sense of Y axis: 30mm; Drawing speed: 30mm/s.

In order to decrease the calculation time needed for simulation the following simplifications were applied: a bi-
dimensional symmetric model was used; a condition of symmetry in the point A in comparison with the axis Y
(axis of symmetry) was imposed for the blank (Fig. 3); the die components were considered as no deformable;
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this condition eliminated the need of their discretization in finite elements but it imposed to associate a symbolic
weight equal to 1kg for the blank holder; the die was considered as fixed, but for the punch and blank holder
component a condition of displacement on Y axis was imposed.

The state of stress after springback was obtained by importing the results from simulation using the
ABAQUS/Explicit module immediately after drawing, without removing the punch, die and blank holder
element and their exporting in ABAQUS/Standard.

Because during simulation the ABAQUS software calculates the stresses and displacements for the nodes
located on the medium axis (Fig. 4), in order to compare the results of simulation we considered the following
geometric parameters as ideal for the finished part: R1 = 5,5mm and R2 = 15,5 mm.

From the simulation using the geometric model with initial tools (Rd=5mm, Rp=15mm) — shown in Fig. 3 a
sheet thickness equal to Imm, a blank holder force equal to 15 kN and a friction coefficient equal to 0,075, the
geometric deflections of the part caused by springback resulted as it is shown in Fig. 5.

Because the obtained values are different from the desired ones (R1=5.5 mm, R2=41.5mm, R3=15.5mm - Fig.
4), it follows to identify the geometric parameters that must be optimized.
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Fig. 4 Geometry of the part considered in simulation Fig. 5 Geometry of the part after drawing

2.3 Application of the optimization method
2.3.1. Basic considerations

The parameters that must be optimized in order to eliminate the effects of springback are as follows: the punch
radius (Rp), the die radius (Rd) and the blank holder force F (Fig. 6). These parameters will be modified
according to the experimental plane elaborated on the basis of the Taguchi method. The variation of the
geometric parameters R1, R2 and R3 of the desired part shown in Fig. 6 will be also controlled.

Fig. 6 Geometry of the desired part after drawing

The domain of variation for the selected parameters is indicated bellow:

F [KN] Rd [mm] Rp[mm]
Min 10 4 13
Max 20 6 17
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2.3.2 Linear optimization
We considered the following polynomial function:

Y =ap+ a1 X; T aXot ... +a, Xy T apXi Xy ...+ 2y 1 X1 X .. (L.D
where: Y represents the followed value (R1, R2 or R3) and X..X,, represent the reduced values of the input

parameters that must be optimized (F, Rd and Rp). Hence it result the following equations that correspond to
each followed parameter:

R1= ap + alF’ + asz’ + a3Rp: + ale’Rd’ + a13F’Rp’ + 323Rd’Rp’ . (12)
R2 = ap + alF’ + asz’ + a3Rp’ + ale’Rd’ + a|3F’Rp’ + a23Rd’Rp’ . (13)
R3 = ag + alF’ + asz’ + a3Rp + ale’Rd’ + al3F’Rp’ + 323Rd’Rp7 cee (14)

The reduced values ( F’, Rd’, Rp”) used in the above presented equations present a linear correspondence with
the real values (F,Rd, Rp ) according to the following function:

X — Xmax + Xmin
2
X'= ceeee (15
Xmax — Xmin ( )
2
For example: for F =20 (maximum value) it results F* = +1, and for F = 10 (minimum value) it results F* = -

1

In order to determine the coefficients ag, a;, a,...a15...a»3 corresponding to each function a series of 8 simulations
was performed. The results obtained from simulations are presented in table no. 1. After calculation the
following equations were obtained:

R1=5.18799 —0.062 * F* + 0.8402 * Rd’ — 0.064 * Rp’,f 0.012 * F’Rd’ - 0.1 * F’Rp’ —0.0041 * Rd’Rp’ (1.6)
R2=15.453 +0.0004 * F* —0.007 * Rd’ +1.9912 * R,, —0.002 * F’Rd’ - 0.002 * F’Rp” — 0.002 * Rd’Rp’ (1.7)
R3=41.3697-0.03 * F* —0.084 * Rd’ - 0.031 * R, —0.003 * F’Rd’ — 0.048 * F’Rp’ — 0.0002 * Rd’Rp’ (1.8)

Table 1
Modified values Obtained values
Nr. F [kN] Rd [mm] Rp [mm] R1 [mm] R2 [mm)] R3 [mm]
1 10 4 13 43721 13.4557 41.4712
2 10 4 17 4.4240 17.4591 41.4891
3 10 6 13 6.0561 13.4636 41.2948
4 10 6 17 6.1494 17.4318 41.3422
5 20 4 13 4.4427 13.4789 41.4982
6 20 4 17 4.1522 17.4473 41.3561
7 20 6 13 6.1360 13.4490 41.3393
8 20 6 17 5.7714 17.4384 41.1664

In order to test the above presented relations, a simulation for the case when: F = 15 kN, p =0.075, Rp = 15 mm,
Rd =5 mm (in the centre of the domain of variation) was performed. The obtained results from simulation were
compared with that obtained using the relations 1.6...1.8 ( where the parameters F’, Rd’ and Rp’ were calculated
using equation 1.5). The results of these calculations are presented in table no 2.

Table 2
Values obtained from relations (1.6) — (1.8) Values obtained from simulation
R1 [mm] 5.187988 4.8824
R2 [mm] 15.45298 15.4375
R3 [mm] 41.36966 41.1855
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From the analysis of the above presented results we can observe some differences between the two modalities of
calculation, especially in the case of radius R1. Hence we can conclude that the geometric parameters of the
draw part have not a linear variation in comparison with variation of the geometric parameters of tools and with
variation of blank holder force. In this case it is needed to apply an optimization based on quadratic model.

2.3.3 Quadratic optimization
We considered the following polynomial function of 2™ degree:

Y= ap + a1X| + 32X2 + .. +aan + 311X12 + ...+ ananz + 312X1X2 +...+ an_lann_lxn (19)
where: Y represents the followed value (R1, R2 or R3 ) and X,.. X, represents the reduced values of the input
parameters that will be varied (F, Rd, Rp ). For determining the coefficients of the quadratic model a,, a,
a;...212...823.an.1 0, @ NUMber of 6 additional simulations were needed. The results of these simulations are given
in table no 3.

Table 3
Modified values Obtained values

Nr. F [kN] Rd [mm] Rp [mm] R1 [mm] R2 [mm] R3 [mm)]
1 10 4 13 4.3721 13.4557 41.4712
2 10 4 17 4.4240 17.4591 41.4891
3 10 6 13 6.0561 13.4636 41.2948
4 10 6 17 6.1494 17.4318 41.3422
5 20 4 13 4.4427 13.4789 41.4982
6 20 4 17 4.1522 17.4473 41.3561
7 20 6 13 6.1360 13.4490 41.3393
8 20 6 17 5.7714 17.4384 41.1664
9 15 5 15 4.8824 15.4375 41.1855
10 8.565 5 15 5.3851 15.4496 41.4684
11 21.435 5 15 4.9008 15.4379 41.2202
12 15 3.713 15 42212 15.4499 41.5329
13 15 6.287 15 6.3732 15.4396 41.3184
14 15 5 12.426 4.9226 12.8889 41.2017
15 15 5 17.574 5.1296 18.0063 41.2994

From calculation the following equations were obtained:

R1 =4.95896 — 0.099 * F’ + 0.839 * Rd” — 0.0215 * Rp’ —0.012 * F’Rd’ — 0.10004 * F’Rp’ — 0.004 *
Rd’Rp’ +0.077 * F**+0.17 * Rd’2+ 0.0061 * Rp™ (1.10)
R2 =15.437-0.001 * F* - 0.006 * Rd’ + 1.99028 * Rp, —0.002 * F’Rd’ - 0. 00172 * F’Rp’ — 0.002 *
Rd’Rp’ + 0.004 * F>* + 0.005 * Rd’2 + 0.0066 * Rp2 (1.11)
R3=41.2244-0.049 * F* - 0.084 * Rd’ — 0.011 * RP’ —0.003 * F’Rd’ — 0. 04754 * F’Rp’ — 0.0002 *
Rd’Rp’ +0.055 * F>>+0.104 * Rd’2— 0.002 * Rp’ (1.12)

In order to test the above presented relations, a simulation for the case when: F = 15 kN, p = 0.075, Rp = 15 mm,
Rd =5 mm (in the centre of the domain of variation) was performed. The obtained results from simulation were
compared with that obtained using the relations 1.10-1.12 (where the parameters F’, Rd’ and Rp’ were calculated
using equation 1.5). The results of these calculations are presented in table no 4.
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Table 4
Values obtained using the relations Values obtained from simulation
1.10...1.12
R1 [mm] 4.95896 4.8824
R2 [mm] 15.437 15.4375
R3 [mm] 41.2244 41.1855

From the above presented results we can observe a diminution of the differences between the values obtained
using the both modalities of calculation. We can also observe that in case of quadratic model the differences are
smaller than in case of linear model.

3. OPTIMIZATION OF THE TOOL GEOMETRY

In order to optimize the tool geometry we tried the simultaneous accomplishment of the three conditions of
optimization (R1 =5 mm, R2 = 15 mm, R3 = 41.5 mm) by using the following function:

L (R1,R2,R3)= (Rl -5+ (R2- 15) + (R3—41.5) (1.13)

For the domain of variation between -1 and +1 in the case of reduced values, the function 1.13 presents some
minima but any of these are not equal to 0 (L =0 for R1 =5 mm, R2 = 15 mm, R3 = 41.5 mm). Thus we must
choose for this domain the smallest values of function L as being the optimum value for which the three

conditions of optimization are better and simultaneous satisfied. The function L will present a minimum for the
values indicated in table no.5.

Table 5

Values for which the function L | Values resulted for the

has a minimum value followed parameters

F[kN] Rd[mm] | Rp[mm] | RI[mm] | R2[mm] | R3[mm]
Values ~ obtained  — from 500176 | 15403 | 41.4804
calculation ( eq. 1.10...1.12)

: 11.0327 | 5 15

Values = obtained  drom 55108 | 154587 | 41.5229
simulation

From the results presented in table 5, we can conclude that it is not need to modify the geometry of the initial
tools considered in the optimization procedure. But, taking into account the deviations of the parts resulted after
their measurement, the geometry of the used tools must be modified. In order to optimize the drawing process
we must only adopt the blank holder force equal to 11kN. The geometry of the corrected tools and the
parameters of the drawing process (optimized values) are indicated in Fig. 7.
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Fig. 7 Geometry of tools and the parameters of the drawing process (optimized values)

Note: we must mention that the values resulted from simulation represent the values calculated on the medium
axis of the blank. Hence on the blank surface the geometric parameters of the part will be as follows: R1 =
5.0108 mm, R2 = 14.9587 mm and R3 = 41.5229 (real values).

4. CONCLUSIONS

1.The selection of the process parameters and geometric parameters of the part must be performed taking into
account that these parameters must be independents. For each combination of the process parameter values will
be achieved a FEM simulation and from the data post-processing will result the desired geometric parameters of
the draw part.

2.The best results were obtained by using the polynomial quadratic functions that offered the possibility of a
global optimization of the factors of influence of the drawing process.

3.Based on the optimized parameters it is possible the correction of the tools geometry in their designing stage
and also the determination of the optimum process parameters. In this way, a minimization of the springback
effects will be obtained.

4. The method applied for the conical lied can be extended for all drawing processes of metal sheets,
indifferently by the parts configuration.
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