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Abstract:  Springback of draw parts considerably affects their accuracy and deviations 
from the theoretical profile, this instability phenomenon determining the following 
changes of the part shape and geometric parameters: arching of the part sidewall, 
modification of the angle formed by the part bottom and the sidewall, modification of 
the angle between the flange and the sidewall. The methods applied in order to reduce or 
eliminate springback are based on tools correction after designing and testing, on the 
utilization of special tools and devices, on the optimization of process parameters based 
on some methods that establish a link among springback parameters and the influencing 
factors of this phenomenon. These methods are expensive and necessitate a big number 
of experimental tests. Based on these conclusions, it is necessary the development of a 
method for the reduction or the elimination of the springback from the designing stage. 
 
Keywords: springback, conical lid, tools correction, Taguchi’s method 

 
 
 
1. INTRODUCTION 
 
The analysis of the researches concerning the drawing processes, emphasizes the following aspects concerning 
the springback phenomenon and the methods applied in order to increase the precision of the formed parts: 
springback of draw parts affects considerably the precision and the deviations from the theoretical profile, this 
instability phenomenon determining the following changes of the part shape and geometric parameters: arching 
of the part sidewall, modification of the angle formed by the part bottom and the sidewall, modification of the 
angle between the flange and the sidewall; blank holder force is the main process parameter that has an essential 
influence on springback intensity; the methods applied in order to reduce or to eliminate springback are based on 
tools correction after designing and testing, on the utilization of special tools and devices, on the optimization of 
process parameters based on some methods that establish a link among springback parameters and the 
influencing factors of this phenomenon. These methods are expensive and necessitate a big number of 
experimental tests. 
 
Starting from the above presented aspects, we can conclude that in order to increase the accuracy of the drawing 
processes it is necessary the development of a method for the reduction or the elimination of the springback from 
the designing stage. An optimal solution can be obtained by using the process simulation in combination with a 
statistical modelling that allows the mathematical description of the influence of different process parameters on 
the draw part geometry and accuracy. For this purpose, the factorial design offers the possibility to use a 
statistical method – for example Taguchi method. The present paper analyses the possibilities to apply such 
method in the case of a conical lied made from steel sheets. 
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2. APPLICATION OF THE TAGUCHI METHOD 
2.1. Description of optimization method 
 
The optimization method of the forming process using Taguchi method has the purpose to reduce springback of 
a draw part. The Method is applied in the following six steps: 1. Definition of geometric parameters that 
characterize the geometric deviations of the part. 2. Selection of process parameters that influence the part 
geometry and its field of variation. 3. Selection of the model of linear or quadratic polynomial dependence and 
construction of fractioned factorial plane of experiment. 4. Process simulation according to experimental plane 
and the measurement of geometric deviations of the resulted parts. 5. Calculation of coefficients of the 
polynomial models and verification of the models. 6. Optimization of the process parameters in order to obtain 
the desired geometric parameters of the draw part.  The above presented method and steps were applied in the 
case of a conical lied (Figure 1) made from steel sheets. In order to obtain the part represented in Fig. 1 the 
technologic process must be achieved in the following two steps: drawing operation; trimming, shearing and 
punching operations (Fig. 2). The geometric model considered in simulation using ABAQUS software is 
represented in Fig. 3. 
 
 
 
 
 
 
 

 
Fig.1 Geometry of the finished part  Fig. 2 Main steps of the technologic process 

 
 
 
 
 
  
 
 
 
 
 
 
 

Fig. 3 Geometric model used in simulation 
 

2.2 Parameters used in simulation: 
 
The used blank was made from FEPO 5MBH steel having the following dimensions: diameter Ø = 140 mm and 
thickness g = 1 mm. The material parameters were as follows: Young’s modulus = 2x105 MPa; Poisson’s 
coefficient = 0,3; density ρ = 7800 kg/m3; for description of the material plastic behaviour 10 points from the 
stress-strain curve were chosen. 
The integration method was Gaussian with 5 integration points equally distributed on the sheet thickness and the 
type of the finite element was SAX 1. The discretizing of the blank was made in 50 elements and 51 nodes. The 
working conditions and parameters were as follows: Friction coefficient μ = 0.075; Punch displacement in the 
negative sense of Y axis: 30mm; Drawing speed: 30mm/s. 
In order to decrease the calculation time needed for simulation the following simplifications were applied: a bi-
dimensional symmetric model was used; a condition of symmetry in the point A in comparison with the axis Y 
(axis of symmetry) was imposed for the blank (Fig. 3); the die components were considered as no deformable; 
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this condition eliminated the need of their discretization in finite elements but it imposed to associate a symbolic 
weight equal to 1kg for the blank holder; the die was considered as fixed, but for the punch and blank holder 
component a condition of displacement on Y axis was imposed. 
The state of stress after springback was obtained by importing the results from simulation using the 
ABAQUS/Explicit module immediately after drawing, without removing the punch, die and blank holder 
element and their exporting in ABAQUS/Standard. 
Because during simulation the ABAQUS software calculates the stresses and displacements for the nodes 
located on the medium axis (Fig. 4), in order to compare the results of simulation we considered the following 
geometric parameters as ideal for the finished part: R1 = 5,5mm and R2 = 15,5 mm. 
From the simulation using the geometric model with initial tools (Rd=5mm, Rp=15mm) – shown in Fig. 3  a 
sheet thickness equal to 1mm, a blank holder force equal to 15 kN and a friction coefficient equal to 0,075, the 
geometric deflections of the part caused by springback resulted as it is shown in Fig. 5. 
Because the obtained values are different from the desired ones (R1=5.5 mm, R2=41.5mm, R3=15.5mm - Fig. 
4), it follows to identify the geometric parameters that must be optimized. 
 
 
 
 
 
 
 
 

 
 

      Fig. 4 Geometry of the part considered in simulation  Fig. 5 Geometry of the part after drawing 
 
2.3 Application of the optimization method 
2.3.1. Basic considerations 
 
The parameters that must be optimized in order to eliminate the effects of springback are as follows: the punch 
radius (Rp), the die radius (Rd) and the blank holder force F (Fig. 6). These parameters will be modified 
according to the experimental plane elaborated on the basis of the Taguchi method. The variation of the 
geometric parameters R1, R2 and R3 of the desired part shown in Fig. 6 will be also controlled. 

 
 
 
 
 
 
 

Fig. 6 Geometry of the desired part after drawing 
 
The domain of variation for the selected parameters is indicated bellow: 
 
 
 

 F [kN] Rd [mm] Rp[mm] 
Min 10 4 13 
Max 20 6 17 

 
 
 

R1=4.63mm 
R2=40.93mm 
R3=15.45mm 
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2.3.2 Linear optimization 
 
We considered the following polynomial function: 
 

                             Y = a0 + a1X1 + a2X2+ ... + anXn + a12X1X2 +... + an-1,nXn-1Xn.        …      (1.1) 
 

where: Y represents the followed value  (R1, R2 or R3) and X1..Xn represent the reduced values of the input 
parameters that must be optimized (F, Rd and Rp). Hence it result the following equations that correspond to 
each followed parameter: 
 

R1 = a0 + a1F’ + a2Rd’ + a3Rp
’ + a12F’Rd’ + a13F’Rp’ + a23Rd’Rp’             … (1.2) 

R2 = a0 + a1F’ + a2Rd’ + a3Rp
’ + a12F’Rd’ + a13F’Rp’ + a23Rd’Rp’             … (1.3) 

R3 = a0 + a1F’ + a2Rd’ + a3Rp
’ + a12F’Rd’ + a13F’Rp’ + a23Rd’Rp’             … (1.4) 

 
The reduced values ( F’, Rd’, Rp’) used in the above presented equations present a linear correspondence with 
the real values (F,Rd, Rp ) according to the following function: 
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For example:  for  F = 20 (maximum value) it results F’ = +1, and for F = 10 (minimum value) it results F’ = -
1 
In order to determine the coefficients a0, a1, a2...a12...a23 corresponding to each function a series of 8 simulations 
was performed. The results obtained from simulations are presented in table no. 1.  After calculation the 
following equations were obtained: 
 
R1 = 5.18799 – 0.062 * F’ + 0.8402 * Rd’ – 0.064 * Rp

’ – 0.012 * F’Rd’ – 0.1 * F’Rp’ – 0.0041 * Rd’Rp’    (1.6) 
R2 = 15.453 + 0.0004 * F’ – 0.007 * Rd’ + 1.9912 * Rp

’ – 0.002 * F’Rd’ – 0.002 * F’Rp’ – 0.002 * Rd’Rp’ (1.7) 
R3 = 41.3697 – 0.03 * F’ – 0.084 * Rd’ – 0.031 * Rp

’ – 0.003 * F’Rd’ – 0.048 * F’Rp’ – 0.0002 * Rd’Rp’    (1.8) 
 

Table 1 
 Modified values Obtained values 

Nr. F [kN] Rd [mm] Rp [mm] R1 [mm] R2 [mm] R3 [mm] 
1 10 4 13 4.3721 13.4557 41.4712 
2 10 4 17 4.4240 17.4591 41.4891 
3 10 6 13 6.0561 13.4636 41.2948 
4 10 6 17 6.1494 17.4318 41.3422 
5 20 4 13 4.4427 13.4789 41.4982 
6 20 4 17 4.1522 17.4473 41.3561 
7 20 6 13 6.1360 13.4490 41.3393 
8 20 6 17 5.7714 17.4384 41.1664 

 
In order to test the above presented relations, a simulation for the case when: F = 15 kN, µ = 0.075, Rp = 15 mm, 
Rd = 5 mm (in the centre of the domain of variation) was performed. The obtained results from simulation were 
compared with that obtained using the relations 1.6…1.8 ( where the parameters F’, Rd’ and Rp’ were calculated 
using equation 1.5). The results of these calculations are presented in table no 2. 
 

Table 2 
 Values obtained from relations  (1.6) – (1.8) Values obtained from simulation 
R1 [mm] 5.187988 4.8824 
R2 [mm] 15.45298 15.4375 
R3 [mm] 41.36966 41.1855 
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From the analysis of the above presented results we can observe some differences between the two modalities of 
calculation, especially in the case of radius R1. Hence we can conclude that the geometric parameters of the 
draw part have not a linear variation in comparison with variation of the geometric parameters of tools and with 
variation of blank holder force. In this case it is needed to apply an optimization based on quadratic model. 
 
 
2.3.3 Quadratic optimization 
 
We considered the following polynomial function of 2nd degree: 
 

Y = a0 + a1X1 + a2X2 + ... +anXn + a11X12 + ... + annXn2 + a12X1X2 +... + an-1,nXn-1Xn         (1.9)
  

where: Y represents the followed value (R1, R2 or R3 ) and X1..Xn represents the reduced values of the input 
parameters that will be varied (F, Rd, Rp ). For determining the coefficients of the quadratic model a0, a1, 
a2...a12...a23…an-1,n, a number of 6 additional simulations were needed. The results of these simulations are given 
in table no 3. 

Table 3 
 Modified values Obtained values 

Nr. F [kN] Rd [mm] Rp [mm] R1 [mm] R2 [mm] R3 [mm] 
1 10 4 13 4.3721 13.4557 41.4712 
2 10 4 17 4.4240 17.4591 41.4891 
3 10 6 13 6.0561 13.4636 41.2948 
4 10 6 17 6.1494 17.4318 41.3422 
5 20 4 13 4.4427 13.4789 41.4982 
6 20 4 17 4.1522 17.4473 41.3561 
7 20 6 13 6.1360 13.4490 41.3393 
8 20 6 17 5.7714 17.4384 41.1664 
9 15 5 15 4.8824 15.4375 41.1855 

10 8.565 5 15 5.3851 15.4496 41.4684 
11 21.435 5 15 4.9008 15.4379 41.2202 
12 15 3.713 15 4.2212 15.4499 41.5329 
13 15 6.287 15 6.3732 15.4396 41.3184 
14 15 5 12.426 4.9226 12.8889 41.2017 
15 15 5 17.574 5.1296 18.0063 41.2994 

 
From calculation the following equations were obtained: 
 

R1 = 4.95896 – 0.099 * F’ + 0.839 * Rd’ – 0.0215 * Rp
’ – 0.012 * F’Rd’ – 0.10004 * F’Rp’ – 0.004 * 

Rd’Rp’ + 0.077 * F’2 + 0.17 * Rd’² + 0.0061 * Rp’²                                   (1.10) 
R2 = 15.437 – 0.001 * F’ – 0.006 * Rd’ + 1.99028 * Rp

’ – 0.002 * F’Rd’ – 0. 00172 * F’Rp’ – 0.002 * 
Rd’Rp’ + 0.004 * F’2 + 0.005 * Rd’² + 0.0066 * Rp’²                                 (1.11) 

R3 = 41.2244 – 0.049 * F’ – 0.084 * Rd’ – 0.011 * Rp
’ – 0.003 * F’Rd’ – 0. 04754 * F’Rp’ – 0.0002 * 

Rd’Rp’ + 0.055 * F’2 + 0.104 * Rd’² – 0.002 * Rp’²                                                (1.12) 
 

In order to test the above presented relations, a simulation for the case when: F = 15 kN, µ = 0.075, Rp = 15 mm, 
Rd = 5 mm (in the centre of the domain of variation) was performed. The obtained results from simulation were 
compared with that obtained using the relations 1.10-1.12 (where the parameters F’, Rd’ and Rp’ were calculated 
using equation 1.5). The results of these calculations are presented in table no 4.  
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Table 4 
 Values obtained using the relations 

1.10…1.12 
Values obtained from simulation 

R1 [mm] 4.95896 4.8824 
R2 [mm] 15.437 15.4375 
R3 [mm] 41.2244 41.1855 

 
From the above presented results we can observe a diminution of the differences between the values obtained 
using the both modalities of calculation. We can also observe that in case of quadratic model the differences are 
smaller than in case of linear model.  
 
 
3. OPTIMIZATION OF THE TOOL GEOMETRY 
 
In order to optimize the tool geometry we tried the simultaneous accomplishment of the three conditions of 
optimization (R1 = 5 mm, R2 = 15 mm, R3 = 41.5 mm) by using the following function: 
 

                                   L (R1, R2, R3) = (R1 - 5)² + (R2 - 15)² + ( R3 – 41.5)²               (1.13) 
 

For the domain of variation between -1 and +1 in the case of reduced values, the function 1.13 presents some 
minima but any of these are not equal to 0 ( L = 0 for R1 = 5 mm, R2 = 15 mm, R3 = 41.5 mm). Thus we must 
choose for this domain the smallest values of function L as being the optimum value for which the three 
conditions of optimization are better and simultaneous satisfied. The function L will present a minimum for the 
values indicated in table no.5. 

Table 5 
Values for which the function L 
has a minimum value 

Values resulted for the 
followed parameters 

 

F[kN] Rd[mm] Rp[mm] R1[mm] R2[mm] R3[mm] 

Values obtained from 
calculation ( eq. 1.10…1.12) 5.00176 15.403 41.4804 

Values obtained from 
simulation 

11.0327 5 15 
5.5108 15.4587 41.5229 

 
From the results presented in table 5, we can conclude that it is not need to modify the geometry of the initial 
tools considered in the optimization procedure. But, taking into account the deviations of the parts resulted after 
their measurement, the geometry of the used tools must be modified. In order to optimize the drawing process 
we must only adopt the blank holder force equal to 11kN. The geometry of the corrected tools and the 
parameters of the drawing process (optimized values) are indicated in Fig. 7.  
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Fig. 7 Geometry of tools and the parameters of the drawing process (optimized values) 
 
Note: we must mention that the values resulted from simulation represent the values calculated on the medium 
axis of the blank. Hence on the blank surface the geometric parameters of the part will be as follows: R1 = 
5.0108 mm, R2 = 14.9587 mm and R3 = 41.5229 (real values).  
 
 
4. CONCLUSIONS 
 
1.The selection of the process parameters and geometric parameters of the part must be performed taking into 
account that these parameters must be independents. For each combination of the process parameter values will 
be achieved a FEM simulation and from the data post-processing will result the desired geometric parameters of 
the draw part.   
2.The best results were obtained by using the polynomial quadratic functions that offered the possibility of a 
global optimization of the factors of influence of the drawing process.  
3.Based on the optimized parameters it is possible the correction of the tools geometry in their designing stage  
and also the determination of the optimum process parameters. In this way, a minimization of the springback 
effects will be obtained. 
4. The method applied for the conical lied can be extended for all drawing processes of metal sheets, 
indifferently by the parts configuration. 
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