"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 20 (2010), No. 1, 83 - 92

AN APPLICATION OF COMPLEX LEGENDRE TRANSFORMATION TO V-COHOMOLOGY GROUPS

CRISTIAN IDA

Abstract. In this paper, using the Lagrangian-Hamiltonian formalism (\mathcal{L} -dual proces) on the holomorphic tangent bundle of a complex Lagrange space (M, L), we obtain similar results as in [10] concerning to v-cohomology groups of a complex Hamilton space (M, H). Finally we study a relative vertical cohomology associated to complex Legendre transformation.

1. Introduction and preliminaries

In [10] are introduced the v-cohomology groups of a complex Finsler (Lagrange) space. The main purpose of this paper is to find a similar cohomology of a complex Hamilton space. In this sense, firstly we make a short review on the geometry of the holomorphic tangent and cotangent bundles of a complex manifold endowed with a complex regular Lagrangian and a complex regular Hamiltonian, respectively. Next, following [8], [9], using the complex Legendre transformation, we briefly recall the complex Lagrangian-Hamiltonian formalism (the \mathcal{L} -dual proces).

Keywords and phrases: complex Lagrange and Hamilton spaces, v-cohomology.

(2000) Mathematics Subject Classification: 53B40, 55N30, 32C35.

In the last part of the paper, we define (p, s, r, q)-forms with complex values on T'*M as the image by complex Legendre transformation of the (p, q, r, s)-forms with complex values on T'M, we prove a Grothendieck-Dolbeault type lema for these forms and we define the v-cohomology groups of complex Hamilton spaces. Finally, we study the relative vertical cohomology associated to complex Legendre transformation.

Let us consider a complex manifold M where $\dim_{\mathbb{C}} M = n$ and $(U, z^i), i = \overline{1, n}$ are the complex coordinates in a local chart. The complexification $T_{\mathbb{C}}M$ of the tangent bundle is decomposed in each point $z \in M$ after the (1,0) vector fields and their conjugates of (0,1) type, $T_{\mathbb{C}}M = T'M \oplus T''M$. As it is well-known [1], [2], [8], T'M is also a complex manifold of complex dimension 2n and the natural projection $\pi_T : T'M \to M$ defines on $V(T'M) = \{\xi \in T'(T'M) / \pi_{T*}(\xi) = 0\}$ a structure of holomorphic vector bundle of rank n over T'M, called the holomorphic vertical bundle.

A given supplementary subbundle H(T'M) of V(T'M) in T'(T'M) i.e. $T'(T'M) = H(T'M) \oplus V(T'M)$ defines a complex nonlinear connection, briefly c.n.c. on T'M.

Considering also their conjugates $\overline{V(T'M)}$ and $\overline{H(T'M)}$, we obtain the following decomposition of the complexified tangent bundle $T_{\mathbb{C}}(T'M) = H(T'M) \oplus V(T'M) \oplus \overline{H(T'M)} \oplus \overline{V(T'M)}$.

If $(\pi_T^{-1}(U), u = (z^i, \eta^i))$ are the complex local coordinates on T'M and if $N_i^j(z, \eta)$ are the coefficients of the c.n.c., then the following set of complex vector fields $\{\delta/\delta z^i = \partial/\partial z^i - N_i^j\partial/\partial \eta^j\}$, $\{\partial/\partial \eta^i\}$, $\{\delta/\delta \overline{z}^i = \partial/\partial \overline{z}^i - \overline{N_i^j}\partial/\partial \overline{\eta}^j\}$, $\{\partial/\partial \overline{\eta}^i\}$ are called the local adapted bases of H(T'M), V(T'M), $\overline{H(T'M)}$ and $\overline{V(T'M)}$, respectively. The dual adapted bases are given by $\{dz^i\}$, $\{\delta\eta^i = d\eta^i + N_j^i dz^j\}$, $\{d\overline{z}^i\}$ and $\{\delta\overline{\eta}^i = d\overline{\eta}^i + \overline{N_i^i} d\overline{z}^j\}$, respectively.

Now, let us consider $L:T'M\to\mathbb{R}$ a complex regular Lagrangian, that is a function $L(z,\eta)$ defining a metric tensor $g_{i\bar{j}}=\partial^2 L/\partial\eta^i\partial\overline{\eta}^j$ which is Hermitian, i.e. $g_{i\bar{j}}=\overline{g_{j\bar{i}}}$ and $\det(g_{i\bar{j}})\neq 0$ in any point $u=(z,\eta)$ of T'M. By $g^{\bar{j}i}$ is denoted its inverse metric tensor. According to [8], a c.n.c. on T'M depending only of the complex Lagrangian L, is the Chern-Lagrange c.n.c., locally given by $N_i^j=g^{\bar{k}j}\partial^2 L/\partial z^i\partial\overline{\eta}^k$.

Definition 1.1. The pair (M, L) is called a complex Lagrange space.

In the sequel, we consider $\pi_T^*: T'^*M \to M$ the holomorphic cotangent bundle of M. Likewise as above, T'^*M has a natural structure of complex manifold of complex dimension 2n and a point is denoted by $u^* = (z^k, \zeta_k)$, $k = \overline{1,n}$. If we consider $V(T'^*M) = \ker \pi_{T^*}^*$ the holomorphic vertical bundle over T'^*M then, a c.n.c. on T'^*M is defined by a supplementary distribution $H(T'^*M)$ of $V(T'^*M)$ in $T'(T'^*M)$, i.e. $T'(T'^*M) = H(T'^*M) \oplus V(T'^*M)$. By conjugation, we obtain a decomposition of the complexified tangent bundle,

 $T_{\mathbb{C}}(T'^*M) = H(T'^*M) \oplus V(T'^*M) \oplus \overline{H(T'^*M)} \oplus \overline{V(T'^*M)}.$

If $N_{jk}(z,\zeta)$ are the coefficients of the c.n.c. on T'^*M , then the following set of complex vector fields $\{\delta^*/\delta z^i = \partial/\partial z^i + N_{ji}\partial/\partial\zeta_j\}$, $\{\partial/\partial\zeta_i\}$, $\{\delta^*/\delta\overline{z}^i = \partial/\partial\overline{z}^i + \overline{N_{ji}}\partial/\partial\overline{\zeta}_j\}$, $\{\partial/\partial\overline{\zeta}_i\}$ are called the local adapted bases of $H(T'^*M)$, $V(T'^*M)$, $\overline{H(T'^*M)}$ and $\overline{V(T'^*M)}$, respectively. The dual adapted bases are denoted by $\{d^*z^i\}$, $\{\delta\zeta_i = d\zeta_i - N_{ij}d^*z^j\}$, $\{d^*\overline{z}^i\}$ and $\{\delta\overline{\zeta}_i = d\overline{\zeta}_i - \overline{N_{ij}}d^*\overline{z}^j\}$, respectively.

A complex regular Hamiltonian is a function $H: T'^*M \to \mathbb{R}$ such that $h^{\bar{j}i} = \partial^2 H/\partial \zeta_i \partial \overline{\zeta}_j$ defines a Hermitian metric tensor on T'^*M , i.e. $h^{\bar{j}i} = \overline{h^{i\bar{j}}}$ and $\det(h^{\bar{j}i}) \neq 0$ on T'^*M . Let $h_{i\bar{j}}$ be its inverse. A c.n.c. connection on T'^*M depending only of the complex Hamiltonian H is the Chern-Hamilton c.n.c., locally given by $N_{ij} = -h_{i\bar{k}} \partial^2 H/\partial z^j \partial \overline{\zeta}_k$.

Definition 1.2. The pair (M, H) is called a complex Hamilton space.

In the real case is well-known the Lagrangian-Hamiltonian formalism from the clasical mechanics, this being possible via Legendre transformation. An excelent solution in the study of real geometry of the correspondent spaces was given by R. Miron [5].

In the complex case, a solution of complex Lagrangian-Hamiltonian formalism is recently given by ([8], Ch. VI.7), by using a complex Legendre morphism. By complex Legendre transformation (the \mathcal{L} -dual proces) the image of a complex Lagrange space is (at least locally) a complex Hamilton space. The complex Legendre transformation pushes-forward and its inverse pulls-back the various described geometric objects of a complex Hamilton space, respectively.

Let us consider L a local Lagrangian on $U \subset T'M$. Then the map $\phi: U \subset T'M \to \overline{U^*} \subset \overline{T'^*M}$ given by $\phi(z^k, \eta^k) = (z^k, \overline{\zeta}_k = \partial L/\partial \overline{\eta}^k)$ is a local diffeomorphism. Since the sections of V(T'M) are identified with those of T'M, we can extend ϕ to the open set of

V(T'M). By conjugation, the local diffeomorphism $\phi \times \overline{\phi}$ sends the sections of the complexified bundle $V(T'M) \times \overline{V(T'M)}$ into sections of $V(T^{*}M) \times \overline{V(T^{*}M)}$. This (local) morphism is called the complex Legendre transformation, briefly c.L.t.

Then, locally the function $H=\zeta_k\eta^k+\overline{\zeta}_k\overline{\eta}^k-L$ defines a regular (local) Hamiltonian on $T^{'*}M$. By the inverse $\phi^{-1}:\overline{U^*}\to \overline{U^*}$ $U, \phi^{-1}(z^k, \overline{\zeta}_k) = (z^k, \eta^k = \partial H/\partial \zeta_k)$ from a Hamiltonian structure on T'^*M , a Lagrangian structure on T'M is obtained by $L = \zeta_k \eta^k +$ $\overline{\zeta}_{k}\overline{\eta}^{k}-H.$

The properties obtained by c.L.t. are called \mathcal{L} -dual one to other. As in [8], [9], in the following, with "*" will be designed the image of an object by ϕ and with " \circ " their image by ϕ^{-1} .

According to [8], the unique pair of c.n.c. on T'M and on T'^*M which correspond by \mathcal{L} -duality is given by Chern-Lagrange c.n.c. and Chern-Hamilton c.n.c., i.e. $(N_i^k)^* = N_{ki}$ and $(N_{ki})^\circ = N_i^k$. In the sequel we consider the simply notations: $\partial/\partial\zeta^k := h_{k\bar{i}}\partial/\partial\overline{\zeta}_i$, $\partial/\partial\overline{\zeta}^k := h_{j\overline{k}}\partial/\partial\zeta_j, \ \delta\zeta^k := h^{\overline{j}k}\delta\overline{\zeta}_j \ \text{and} \ \delta\overline{\zeta}^k := h^{\overline{k}j}\delta\zeta_j.$ We have

Proposition 1.1. ([8]). If the adapted bases and cobases are considered with respect to Chern-Lagrange c.n.c. and Chern-Hamilton c.n.c., the following equalities hold by \mathcal{L} -duality

- $\begin{array}{ll} \text{(i)} & (f^*)^\circ = f, \, \forall \, f \in \mathcal{F}(U), \, (g^\circ)^* = g, \, \forall \, g \in F(U^*); \\ \text{(ii)} & (\delta/\delta z^k)^* = \, \delta^*/\delta z^k, \, \, (\partial/\partial \eta^k)^* = \, \partial/\partial \zeta^k, \, \, (\delta/\delta \overline{z}^k)^* \, = \, \delta^*/\delta \overline{z}^k, \end{array}$ $\begin{array}{ll} (\partial/\partial\overline{\eta}^k)^* = \partial/\partial\overline{\zeta}^k;\\ (\mathrm{iii}) \ (\delta^*/\delta z^k)^\circ \ = \ \delta/\delta z^k, \ (\partial/\partial\zeta^k)^\circ \ = \ \partial/\partial\eta^k, \ (\delta^*/\delta\overline{z}^k)^\circ \ = \ \delta/\delta\overline{z}^k, \end{array}$
- $(\partial/\partial\overline{\zeta}^k)^\circ = \partial/\partial\overline{\eta}^k;$
- (iv) $(dz^k)^* = d^*z^k$, $(\delta\eta^k)^* = \delta\zeta^k$, $(d\overline{z}^k)^* = d^*\overline{z}^k$, $(\delta\overline{\eta}^k)^* = \delta\overline{\zeta}^k$;
- (v) $(d^*z^k)^\circ = dz^k$, $(\delta\zeta^k)^\circ = \delta\eta^k$, $(d^*\overline{z}^k)^\circ = d\overline{z}^k$, $(\delta\overline{\zeta}^k)^\circ = \delta\overline{\eta}^k$

2. V-COHOMOLOGY GROUPS OF COMPLEX HAMILTON SPACES

At the beginning of this section following [10], we make a short review on v-cohomology groups of a complex Lagrange (Finsler) space (M, L).

Let us consider $\mathcal{A}^{p,q,r,s}(T'M)$ the set of all (p,q,r,s)-forms with complex values on T'M locally defined by,

(2.1)
$$\omega = \sum \omega_{IJ\overline{H}\overline{K}} dz^I \wedge \delta \eta^J \wedge d\overline{z}^H \wedge \delta \overline{\eta}^K$$

where $I = (i_1, \ldots, i_p)$; $J = (j_1, \ldots, j_q)$; $H = (h_1, \ldots, h_r)$; $K = (k_1, \ldots, k_s)$ and the sum is after the indices $i_1 \leq \ldots \leq i_p$; $j_1 \leq \ldots \leq j_q$; $h_1 \leq \ldots \leq h_r$ and $k_1 \leq \ldots \leq k_s$, respectively.

The conjugated vertical differential operator $d''^v: \mathcal{A}^{p,q,r,s} \to \mathcal{A}^{p,q,r,s+1}$ is locally defined by

$$(2.2) d''^v \omega = \sum \frac{\partial \omega_{IJ\overline{H}\overline{K}}}{\partial \overline{\eta}^k} \delta \overline{\eta}^k \wedge dz^I \wedge \delta \eta^J \wedge d\overline{z}^H \wedge \delta \overline{\eta}^K.$$

This operator has the property $(d''^v)^2 = 0$ and satisfies a Dolbeault type lemma (for details see [10]). Also, the v-cohomology groups of a complex Lagrange space with coefficients in the sheaf $\Phi^{p,q,r}$ of germs of (p,q,r,0)-forms d''^v -closed, are given by

(2.3)
$$H^{s}(M, L, \Phi^{p,q,r}) = Z^{p,q,r,s}/d''^{v} \mathcal{A}^{p,q,r,s-1}(T'M)$$

where $Z^{p,q,r,s}$ is the space of d''v-closed (p,q,r,s)-forms.

In the sequel, using the \mathcal{L} -dual proces we obtain the v-cohomology groups of complex Hamilton spaces.

For $\omega \in \mathcal{A}^{p,q,r,s}(T'M)$ locally given by (2.1) we denote

$$\omega^* := \varphi(\omega)$$

the image of ω by c.L.t. and we consider

$$(2.4) \ \mathcal{A}^{p,s,r,q}(T'^*M) = \varphi(\mathcal{A}^{p,q,r,s}(T'M)) = \{\varphi(\omega) | \omega \in \mathcal{A}^{p,q,r,s}(T'M)\}.$$

Since c.L.t is a diffeomorphism, $\varphi: \mathcal{A}^{p,q,r,s}(T'M) \to \mathcal{A}^{p,s,r,q}(T'^*M)$ is bijective and

$$\varphi^{-1}(\omega^*) = (\varphi(\omega))^{\circ} = \omega.$$

According to Proposition 1.1., the local expression of $\varphi(\omega)$ is

(2.5)
$$\varphi(\omega) = \sum \omega_{I\overline{K}\overline{H}J}^* d^* z^I \wedge \delta \overline{\zeta}^K \wedge d^* \overline{z}^H \wedge \delta \zeta^J$$

where $\omega_{I\overline{K}\overline{H}J}^*(z,\zeta) = (\omega_{IJ\overline{H}\overline{K}}(z,\eta))^*$, $d^*z^I = d^*z^{i_1} \wedge \ldots \wedge d^*z^{i_p}$, $\delta\overline{\zeta}^K = \delta\overline{\zeta}^{k_1} \wedge \ldots \wedge \delta\overline{\zeta}^{k_s}$, $d^*\overline{z}^H = d^*\overline{z}^{h_1} \wedge \ldots \wedge d^*\overline{z}^{h_r}$ and $\delta\zeta^J = \delta\zeta^{j_1} \wedge \ldots \wedge \delta\zeta^{j_q}$. We consider the following diagram

$$\mathcal{A}^{p,q,r,s}(T'M) \xrightarrow{d''^{v}} \mathcal{A}^{p,q,r,s+1}(T'M)
\downarrow \varphi \qquad \qquad \downarrow \varphi
\mathcal{A}^{p,s,r,q}(T'^{*}M) \xrightarrow{} \mathcal{A}^{p,s+1,r,q}(T'^{*}M)$$

and we define $d'^{*v}: \mathcal{A}^{p,s,r,q}(T'^*M) \to \mathcal{A}^{p,s+1,r,q}(T'^*M)$ by (2.6) $d'^{*v} = \varphi \circ d''^{v} \circ \varphi^{-1}.$

Proposition 2.1. The operator d^{**v} satisfies $(d^{**v})^2 = 0$.

Proof. According to (2.6) we have

$$(d'^{*v})^2 = (\varphi \circ d''^v \circ \varphi^{-1})^2 = \varphi \circ (d''^v)^2 \circ \varphi^{-1}$$

and taking into account $(d''^v)^2 = 0$ and φ is bijective we get $(d'^{*v})^2 = 0$.

Let us consider $\Phi^{p,r,q}(U^*) = \{\omega^* \in \mathcal{A}^{p,0,r,q}(U^*)/d'^{*v}\omega^* = 0\}$ the set of all d'^{*v} -closed (p,0,r,q)-forms on U^* . We have

Theorem 2.1. Let ω^* be a $d^{'*v}$ -closed (p, s, r, q)-form defined on a neighborhood U^* on $T^{'*}M$ and $s \geq 1$. Then there exists a (p, s-1, r, q)-form θ^* on some neighborhood $U^{'*} \subset U^*$ and such that $d^{'*v}\theta^* = \omega^*$ on $U^{'*}$.

Proof. Let ω^* be a (p, s, r, q)-form on U^* such that $d^{'*v}\omega^* = 0$. Then

$$(\varphi \circ d''^{v} \circ \varphi^{-1})\omega^{*} = \varphi(d''^{v}(\varphi^{-1}\omega^{*})) = 0$$

and since φ is bijective we get $d''^v(\varphi^{-1}\omega^*)=0$, for $\varphi^{-1}\omega^*=\omega$ a (p,q,r,s)-form on $U=\varphi^{-1}(U^*)$. Here $\phi=\phi\times\overline{\phi}$ and $U=U\times\overline{U}$. By Theorem 1 from [10], there exists a (p,q,r,s-1)-form θ on $U'\subset U$ such that $d''^v\theta=\omega$ on U'. But, for this θ exists θ^* a (p,s-1,r,q)-form on $U'^*=\varphi(U')$ such that $\theta=\varphi^{-1}\theta^*$. Thus, for $\omega=\varphi^{-1}\omega^*$, $\theta=\varphi^{-1}\theta^*$ and $\omega=d''^v\theta$ we have

$$\omega^* = \varphi(\omega) = \varphi(d^{"v}\theta) = \varphi(d^{"v}(\varphi^{-1}\theta^*)) = (\varphi \circ d^{"v} \circ \varphi^{-1})\theta^* = d^{'*v}\theta^*$$
 which ends the proof.

Let $\mathcal{F}^{p,s,r,q}$ be the sheaf of germs of (p,s,r,q)-forms on $T^{'*}M$ and we denote by $i:\Phi^{p,r,q}\to\mathcal{F}^{p,0,r,q}$ the natural inclusion. The sheaves $\mathcal{F}^{p,s,r,q}$ are fine and taking into account Theorem 2.1, it follows that the sequence of sheaves

$$0 \to \Phi^{p,r,q} \xrightarrow{i} \mathcal{F}^{p,0,r,q} \xrightarrow{d'^{*v}} \mathcal{F}^{p,1,r,q} \xrightarrow{d'^{*v}} \xrightarrow{d'^{*v}} \mathcal{F}^{p,s,r,q} \xrightarrow{d'^{*v}} \cdots$$

is a fine resolution of $\Phi^{p,r,q}$, and we denote by $H^s(M,H,\Phi^{p,r,q})$ the cohomology groups of M with coefficients in the sheaf $\Phi^{p,r,q}$, called v-cohomology groups of (M,H). Then we have a de Rham type theorem, namely

Theorem 2.2. The v-cohomology groups of the complex Hamilton space (M, H) are given by

(2.7) $H^s(M, H, \Phi^{p,r,q}(T'^*M)) \approx Z^{p,s,r,q}(T'^*M)/d'^{*v}\mathcal{A}^{p,s-1,r,q}(T'^*M)$ where $Z^{p,s,r,q}(T'^*M)$ is the space of d'^{*v} -closed (p,s,r,q)-forms globally defined on T'^*M .

Now, from the above discussion we have

Proposition 2.2. $H^s(M, L, \Phi^{p,q,r}(T'M))$ and $H^s(M, H, \Phi^{p,r,q}(T'^*M))$ are isomorphic by the map $[\omega] \mapsto [\omega^*], \forall \omega \in \mathcal{A}^{p,q,r,s}(T'M)$.

Finally, following [3] pag. 78 and [11], we define a relative vertical cohomology with respect to complex Legendre transformation ϕ .

Define the differential complex

$$0 \longrightarrow \mathcal{A}^{p,q,r,0}(\phi) \xrightarrow{\widetilde{d}''^{v}} \mathcal{A}^{p,q,r,1}(\phi) \xrightarrow{\widetilde{d}''^{v}} \dots$$
where $\mathcal{A}^{p,q,r,s}(\phi) = \mathcal{A}^{p,q,r,s}(T'M) \oplus \mathcal{A}^{p,s-1,r,q}(T'^{*}M)$ and
$$\widetilde{d}''^{v}(\omega,\theta) = (d''^{v}\omega,\varphi\omega - d'^{*v}\theta).$$

Taking into account $(d''^v)^2 = (d'^{*v})^2 = 0$ and (2.6) we easily verify that $(\tilde{d}''^v)^2 = 0$. Denote the cohomology groups of this complex by $H^{p,q,r,*}(\phi)$.

If we regraduate the complex $\mathcal{A}^{p,s,r,q}(T'^*M)$ as $\widetilde{\mathcal{A}}^{p,s,r,q}(T'^*M) := \mathcal{A}^{p,s-1,r,q}(T'^*M)$, then we obtain an exact sequence

$$(2.8) \quad 0 \longrightarrow \widetilde{\mathcal{A}}^{p,s,r,q}(T^{\prime *}M) \stackrel{\alpha}{\longrightarrow} \mathcal{A}^{p,q,r,s}(\phi) \stackrel{\beta}{\longrightarrow} \mathcal{A}^{p,q,r,s}(T^{\prime}M) \longrightarrow 0$$

with the obvious mappings α and β given by $\alpha(\theta) = (0, \theta)$ and $\beta(\omega, \theta) = \omega$, respectively. From (2.8) we have an exact sequence in cohomologies, see for instance [12] p. 69, namely

$$\dots \longrightarrow H^{s-1}(M, H, \Phi^{p,r,q}(T'^*M)) \xrightarrow{\alpha^*} H^{p,q,r,s}(\phi) \xrightarrow{\beta^*}$$

$$H^s(M, L, \Phi^{p,q,r}(T'M)) \xrightarrow{\delta^*} H^s(M, H, \Phi^{p,r,q}(T'^*M)) \longrightarrow \dots$$

It is easily seen that $\delta^* = \phi^*$. Here ϕ^* denotes the corresponding map between cohomology groups. Let $\omega \in \mathcal{A}^{p,q,r,s}(T'M)$ be a d''^v -closed form, and $(\omega,\theta) \in \mathcal{A}^{p,q,r,s}(\phi)$. Then $\widetilde{d}''^v(\omega,\theta) = (0,\varphi\omega - d'^{*v}\theta)$ and by the definition of the operator δ^* we have

$$\delta^*[\omega] = [\varphi\omega - d'^{*v}\theta] = [\varphi\omega].$$

Hence we finally get a long exact sequence

which leads to

Proposition 2.3. If $\dim_{\mathbb{C}} M = n$ then

- (i) $\beta^*: H^{p,q,r,n+1}(\phi) \to H^{n+1}(M,L,\Phi^{p,q,r}(T'M))$ is an epimorphism;
- (ii) $\alpha^*: H^n(M, H, \Phi^{p,r,q}(T'^*M)) \to H^{p,q,r,n+1}(\phi)$ is an epimorphism;
- (iii) $\beta^*: H^{p,q,r,s}(\phi) \to H^s(M,L,\Phi^{p,q,r}(T'M))$ is an isomorphism for s > n+1;
- (iv) $\alpha^*: H^s(M, H, \Phi^{p,r,q}(T'^*M)) \to H^{p,q,r,s+1}(\phi)$ is an isomorphism for s > n;
- (v) $H^{p,q,r,s}(\phi) = 0$ for s > n+1.

References

- [1] M. Abate, G. Patrizio, Finsler metrics-A global approach, Lectures Notes in Math., 1591, Springer-Verlag, 1994.
- [2] T. Aikou, The Chern-Finsler connection and Finsler-Kähler manifolds, Adv. Stud. in Pure Math., 48 (2007), 343-373.
- [3] R. Bott, L. W. Tu, **Differential Forms in Algebraic Topology**, Graduate Text in Math., 82 Springer-Verlag, Berlin, 1982.
- [4] J.J. Faran, The equivalence problem for complex Finsler Hamiltonians, Cont. Math., 196 (1996), 133-143.
- [5] R. Miron, Hamilton Geometry, An. Şt. ale Univ. "Al. I. Cuza" din Iaşi,S. I., Mat., 35 (1989), 38-85.
- [6] R. Miron, M. Anastasiei, The Geometry of Lagrange Spaces. Theory and Applications, Kluwer Acad. Publ. 59 1994.
- [7] R. Miron, D. Hrimiuc, H. Shimada, S. Sabău, **The geometry of Hamilton and Lagrange spaces**, Kluwer Acad. Publ., 118 2001.
- [8] G. Munteanu, Complex spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Acad. Publ., 141 FTPH 2004.
- [9] G. Munteanu, Gauge field theory in terms of complex Hamilton geometry, Balkan J. of Geom. and Appl., 12(1) (2007), 107-121.
- [10] G. Pitiş, G. Munteanu, V-cohomology of complex Finsler manifolds, Studia Univ., "Babeş-Bolyai", 43(3) (1998), 75-81.
- [11] Z. Tevdoradze, Vertical cohomologies and their application to completely integrable Hamiltonian systems, Georgian Math. J. 5 (5) (1998), 483-500.
- [12] I. Vaisman, Cohomology and differential forms, M. Dekker Publ. House, New York, 1973.

Department of Algebra, Geometry and Differential Equations Transilvania University of Braşov,

Address: Braşov 500091, Str. Iuliu Maniu 50, România

 ${\it email:} cristian.ida@unitbv.ro$