
45

"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 20 (2010), No. 1, 45-60

EMBRYONIC GENETIC ALGORITHM WITH RANDOM
GENERATIONAL GROWING STRATEGY FOR OPTIMIZING

VARIABLE ORDERING OF BDDS

OCTAV BRUDARU, IULIAN FURDU AND RÜDIGER EBENDT

Abstract. This paper addresses the problem of optimizing the variable
ordering in Binary Decision Diagrams (BDDs). A new hybrid embryonic
genetic algorithm is proposed for optimizing the variable ordering that
combines a branch & bound technique with the basic genetic algorithm. It
uses fitness based on a lower bound and embryos instead of full
chromosomes. A novel growing technique introduces two new growing
operators. The results of an experimental evaluation demonstrate the
efficiency of the approach.

I. INTRODUCTION

Reduced Ordered Binary Decision Diagrams (ROBDDs, often BDDs for
short) have numerous applications- e.g. in formal verification of digital
circuits and other finite state systems, algorithms for symbolic model
checking manipulate Boolean functions by use of BDDs or derived data
structures. BDDs offer a good trade-off between efficiency of manipulation
and compactness of representation of Boolean functions, and they have
improved time and memory performance of the aforementioned applications.
This paper addresses the problem of optimizing the variable order in BDDs. In
this problem, a switching function is represented as a BDD, a directed acyclic
graph that essentially models how the assignments of truth values to the
Boolean input variables are evaluated in a fixed order π , and satisfying a set
of properties [1]. The BDD’s size is given by the number of its nonterminal
nodes and strongly dependents on the chosen variable ordering. An
appropriate ordering leads to a smaller number of nodes, whereas a bad

Keywords and phrases: BDD, OBDD Optimization, GA
(2000) Mathematics Subject Classification: 06E30, 94C10, 68W35

O. BRUDARU, I. FURDU AND R. EBENDT

46

ordering can lead to an exponential growth in the size of BDD.
This sensitivity to the ordering of variables is a significant problem for some
applications in logic synthesis. For example, in Pass Transistor Logic (PTL)
or other multiplexor-based design styles, the BDD is mapped to a digital
circuit, and therefore the BDD size directly transfers to chip area.
Therefore, many methods for optimizing the variable order [1, 2, 3] have been
proposed, including both static (e.g. [4]) and dynamic techniques. The most
commonly used are the dynamic techniques [5, 6, 7], which dynamically
proceed in obtaining an improved variable order 'π (and consequently a better
size) of an already built BDD with an initial variable order π . The most
popular dynamic technique is Rudell’s sifting algorithm [7].

Besides sifting, simulation-based algorithms (SA) and genetic algorithms
(GA) for optimizing the variable ordering have been proposed: e.g. a
technique based on simulated annealing is reported in [8], and the first GA for
BDD optimization has been introduced in [9]. Methods based on genetic
algorithms yield better results than other heuristic techniques, as experimental
studies from [9, 10] have demonstrated. The use of sifting as a genetic
operation that replaces crossover techniques or advanced strategies for setting
the parameters are among the key ideas of a range of approaches [11, 12, 13]
that focused on the speed up of the computations.

Parallel or distributed GAs used in [14, 15] are reported to obtain better
results than sequential GAs. However, the fitness evaluation remains an
expensive task increasing the total cost of solution.

The use of hybrid techniques that combine GAs with other optimization
method is the actual trend of the research into new methods for BDD
optimization [3, 16]. This paper follows this trend and describes a new hybrid
GA for optimizing the variable order in BDDs. The starting point is
represented by a basic GA (BGA) that includes an information energy based
mechanism [17] used for adjusting the variability level of the current
population along the evolution stages [13]. A branch & bound technique is
combined with the BGA by adopting and operating with embryos as subsets
of orders instead of individual complete orders. This hybridization contributes
to a better balancing between exploration and exploitation of the search space.

Section II formulates the problem of variable ordering in BDDs. Section III
describes the main components of the double hybridized GA. Section IV
presents the experimental evaluation of its performance. Last section
summarizes the work.

EMBRYONIC GA WITH RANDOM GENERATIONAL GROWING STRATEGY FOR

OPTIMIZING VARIABLE ORDERING OF BDDS

47

II. THE VARIABLE ORDERING PROBLEM AND ITS IMPORTANCE FOR BDDS

In this section the reduced OBDDs and the importance of variable ordering
are briefly reviewed.

Let {0,1} , BB f: B mn =→ be a switching function and π - a total order on a
fixed set of Boolean variables nxxx ,...,, 21 , Bxi ∈ .

Definition 1. An OBDD for f with respect to order π is a single rooted
direct acyclic graph that satisfies [18]:

 a) there are exactly two terminal nodes labeled by Boolean constants 0 and
1, respectively.

b) each non-terminal node is labeled by a variable ix , and has two outgoing
edges, called 0-edge and 1-edge. At each inner node, two subfunctions are
usually computed according to Shannon decomposition [1]:

ii xixi fxfxf +=)1(ni ≤≤ (1)

Starting at the root node that is labeled by some variable ix , f is

decomposed into two subfunctions. These are the cofactors of f with respect
to ix . The same decomposition scheme is carried out recursively at each node
representing one of the subfunctions. Eventually, constant subfunctions are
obtained, and the outlined process of decomposition terminates.

 c) each variable appears at most once on a path from the root to a terminal
node and the order in which the variables appear is consistent with the
variable order π .

If reduction rules are applied [18] to obtain an irreducible form (i.e. a form
where no more reduction rule applies), this form is called reduced OBDD or
ROBDD. A ROBDD is a canonical representation for Boolean functions [1].

Definition 2. The size of an OBDD is given by the number of its non-
terminal nodes.

The reduced OBDDs were introduced by Bryant [18], based on these rules.
In the case of multi-output Boolean functions B Bf mn →: , BDDs can be
defined analogously since the multi-output Boolean function can be seen as a
family of single-output component functions miiff ≤≤= 1)(. A BDD iG is used
for every component function if in the shared representation G of f . The
compactness of the BDD representation can further be enhanced by the use of
so-called ROBDDs. Complement Edges (CEs). They allow for the
simultaneous representation of a function and its complement by the same

O. BRUDARU, I. FURDU AND R. EBENDT

48

graph. In the following, BDDs with CEs are assumed without mentioning it
further (and, to obtain a more instructive presentation, also without using CEs
in the illustrations). Note that all results reported here directly transfer to
BDDs without CEs. Moreover, only reduced, ordered BDDs are considered,
and for brevity these graphs are called BDDs.

The main problem in dealing with BDDs is the strong dependence between
the order of the input variables and the BDDs’ size (Fig. 1) which can vary
from linear to exponential.

b b

1 01 0

c c

d dc

d

e
e

f f

a a

(a) (b)

Fig. 1. The influence of the variable ordering for f(a,b,c,d)=a+bc+def with
order a, b, c, d, e, f (a) and order a, b, d, c, e, f (b), (0- edges are dashed).

It has been proven that deciding whether the order of a given BDD can be
improved is NP-complete [19]. However, by the use of heuristic approaches,
we can often find an ordering of variables that is good enough to keep the size
of the corresponding BDD maintainable for real-life applications like
hardware verification or software model checking.

This paper describes a new technique for optimizing variable ordering in
BDDs based on hybridization of GAs with a branch & bound technique. The
resulting hybrid algorithm inherits the best attributes from its both
constituents.

The basic components of the proposed GA are further described.

III. BASIC COMPONENTS OF THE DOUBLE HYBRIDIZED GA

Genetic algorithms [20] (GAs) for the variable ordering problem rely on a

representation of the variable orderings in permutation form (chromosomes)
and act on an initial population by applying genetic operators in order to
obtain a new population of solutions. A GA uses a survival selection of the
individuals and a fitness function that indicates the degree in which a solution

EMBRYONIC GA WITH RANDOM GENERATIONAL GROWING STRATEGY FOR

OPTIMIZING VARIABLE ORDERING OF BDDS

49

fulfill the problem constraints. The chromosomes undergo repeated changes
usually organized as evolution stages, by means of the chosen genetic
operators until a set of best found solutions is produced.

A. Basic components of hybrid genetic algorithm
 Incorporating a branch & bound technique in the mechanism of the GA
implies changing the representation, the adaptation of genetic operators and an
appropriate population management.

Solution representation. Each adult chromosome),...,,(21 nxxxx =
represents a specific BDD variable order of f .

The combination between GA and branch & bound technique must use
embryonic representations corresponding to nonterminal edges in the state
space tree partially constructed during the process of this method. So,

),...,(1 kxxx = denotes an embryo with nk <≤1 .
Initial population. Initial population P is randomly generated. It contains

embryos having a random length 0λ , where 3/2 0 n≤≤ λ . Table 1 describes an
empiric function to choose the population size P according to the number of
input variables.

 Table 1. Population size

n <20 21-150 150-250 >250
|P| 50 75 120 200

Mutation operators. Three mutation operators are used: mutual exchange,
group mutation and inversion [20]. All mutation operators are adaptive
operators in the sense that the distance between the cutting points linearly
decreases with the number of generations in order to ensure a small disruption
rate as the algorithm converges [13]. The whole population bears mutation
with a given probability mp . The three mutation operators remain the same
when dealing with embryos. A variant of AX1 which assumes that the left cut
point for the bigger parent embryo is equal to the length of the smaller embryo
is used as an additional crossover operator.

Crossover operators. The first crossover operator AX1 is a block variant of
the alternating crossover described in [9]. A second crossover AX2 is a
restricted version of AX1 and the hybridized GA makes exclusive use of it.
Also crossover operators are adapted during progress of the algorithm: the
lengths of the segments which the offspring inherits from its parents linearly

O. BRUDARU, I. FURDU AND R. EBENDT

50

increase with the number of generations. This ensures preserving of good
constructive blocks of the solutions. The mating pool is formed by the first
40% of the best individuals and crossover operations are produced with the
probability cp . When applied to embryos, crossover operators act in the same
way.

Growing operators. A growing mechanism is needed since all embryos
have to reach maturity, i.e. to reach full (adult) length. Two growing operators
are proposed, both of them applied with the same probability Gp .

The first growing operator extends x with a sequence of q variables,
chosen by random, where }})({{1 /10kn1,10,maxminq −≤≤ .

The second growing operator replaces x by a number σ of its children,
}10/,1{1 smax≤≤ σ , where s is the sample size, rkns ⋅−−+=)2(2 , and

]ln,1[nr ∈ is a parameter that determines the size of the sampling [13]. Let
)(xS be the set of all orders having the prefix x and let syy ,...,1 be the

randomly select s members of)(xS . Let scc ,...,1 be random numbers between
1 and q , where q is the value defined for first growing operator. Let jz be the
prefix of length jck + , sj ,...1= . The best σ embryos σzz ,...,1 replace the parent
x in the population. In this way, the branching of x uses the most promising
extensions of a sample. Of note is that the original motivation for constructing
the sample was the computation of a sample-based fitness function [13].

B. Fitness function

Since this genetic algorithm operates with embryos that are partial
solutions, the objective function based fitness is replaced by a lower bound
based fitness. This choice is a part of the heritage of the branch & bound
technique. Let),...,(1 kxxx = , with nk ≤≤1 , be a chromosome. The fitness of
the prefix is knnxfit k

i ilb −+∑= =1)(, where in is the number of nodes on the i -th
level of the BDD built on an arbitrary ordering in)(xS . Clearly, if nk = then

)(xfitlb is exactly the size of the ordered BDD built on x , and the hybrid GA
behaves as a classical GA.

Most of the research on BDD minimization by branch and bound
algorithms use a lemma proved in [21]. The result from [21] states that in ,

ki ,...,1= are the same for all possible extensions of the prefix),...,(1 kxx . The
term kn − corresponds to the last kn − variables in the order and, in the
definition of)(xfitlb , plays the role of the predictive part, while the sum term
corresponds to the first k variables and gives the contribution of the prefix

EMBRYONIC GA WITH RANDOM GENERATIONAL GROWING STRATEGY FOR

OPTIMIZING VARIABLE ORDERING OF BDDS

51

itself to the size of any BDD respecting a variable order that is an extension of
prefix x . In general, when the fitness function is a lower bound on the sizes of
the BDDs respecting an ordering in the set)(xS , the longer embryos usually
lose the competition against the shorter ones because the predictive part of the
lower bound could be imprecise. The best-first approach of [16] deals with
this problem by first driving the search to the shorter ones and keeping the
longer prefixes in the list of active (“open”) search nodes for a later use. The
risk is a list of search nodes whose length could exceed the available memory.

C. Management of population

Growing strategy. In order to obtain the final population containing adult
chromosomes, the growing operators can be used in different ways. The
strategy adopted in this paper for applying the growing operators is called
random generational growing (shortly, RGG) and consists in randomly
applying the growing operators with the given probability Gp to the current
population. Each time, when the growing event is produced, each embryo has
the same chance to be selected for growing, regardless of its length. The
growing of an embryo),...(1 kxxx = means its replacement with one or many
new embryos descendants from x .

Even if the crossover is an implicit source of growing, it is not enough to
ensure a feasible evolution. In RGG used in this paper, each growing operator
is applied with the same probability Gp and each embryo in the current
population has the same chance to suffer the growing effect.

Mechanism for controlling the variability.
A mechanism for tuning the values of mp and cp based on the information

energy [17] is adopted in order to prevent premature stagnation and to
improve the solution quality. Information energy gives a measure of
variability of the fitness values in the current population. A good tradeoff
between exploration and exploitation could be achieved if an appropriate level
of population variability is maintained during the evolution. Therefore, the
probabilities mp and cp both have initial value 0.5 and are modified at each
evolution stage according to the rules:

αλ−= mm pp , βλ+= cc pp ,]1,0[, ∈βα (2)
where TEE cob /)(−=λ is the speed wherewith a generic target variability
value obE is reached by the current value of the information energy cE , and

62 , ≤≤ TT is also a parameter that controls the speed of adjustment of these
probabilities. cE is the current computed variability which is distributed along

O. BRUDARU, I. FURDU AND R. EBENDT

52

the time period T . Information energy formula in [17] gives the current level
of variability cE

∑
=

′=
p

k
kcE

1

2)(ϕ , (3)

where pϕϕ ,...,1 represents the relative frequencies of the values of the fitness
function distributed in p sampling intervals, each such interval having the
same length. A low (high) population variability is indicated by a high (low)
value of cE . As established in [13] the periodic function

221 |cos|)()(AtAAtEob +−= ω , 1/1 12 ≤<≤ AAp , ,...3,2=ω (4)
offers good results and is adopted in this paper. Values for the other
parameters that we recommend here are: 0.5 A2 1,A1 == for obE periodic,

3=ω and 4=T .
Selection for survival. The selection is deterministic and elitist [20]. At the

end of each stage, the newly created individuals compete with the current
population and those with better fitness survives for the next stage, in the limit
of || P .

Stop condition. The algorithm stops if the population contains only adult
chromosomes and if the variation of the ratio ekkk mmm <Φ−Φ−Φ)(/)]1()([is
true for a given number stopn of successive iterations.)(kmΦ represents the
average of the fitnesses at stage k and e is a prescribed tolerance.

IV. EXPERIMENTAL EVALUATION

A subset of LGSynth91 benchmarks suite [22] was used in experiments that

we conducted with the new hybrid approach. The algorithm was implemented
using the CUDD package [23] on a Dual Core system, with 2,4 GHz
processors and 2G RAM available memory. A number of 10 runs per circuit
test were executed for each type of experiment.

Setting of parameters. The first goal of the experiments was to find
appropriate values for the parameters. The values in Table 1 are resulted from
experiments. A recommended value for e involved in stop condition is 0.001
while appropriate setting for stopn is 20. Adequate distribution of probability
for AX1, AX2 is 0.7 and 0.3 respectively. For simple mutation, inversion and
group mutation recommended probabilities are 0.3, 0.3 and 0.4, respectively.
The most adequate hypermutation probability found was 1.0=Hp . The
increment q of the extensions made by the first growing operator and the

EMBRYONIC GA WITH RANDOM GENERATIONAL GROWING STRATEGY FOR

OPTIMIZING VARIABLE ORDERING OF BDDS

53

number σ of descendents of an embryo for the second growing operator was
set to 2. A high value of 6.04.0 ÷=Gp is adopted in order to avoid the
dominance of the short embryos over the long ones.

Qualitative estimation of the behavior. In random generational growing
strategy embryos with different lengths compete between them during each
evolution stage. The lengths of embryos from initial population are at most
1/3 of adult size. Typical behaviors of population when applying this strategy
are illustrated below using the alu4 benchmark (14 input, 8 output, best
number of nodes 350).
Fig. 2 (a) shows typical variations of the length of the best chromosome vs.
number of evolution stage. The variation of the fitness of the best
chromosome is shown in Fig. 2 (b).

best_l

0
2
4
6
8

10
12
14
16

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

iteration

le
ng

th

best_l

(a)

best_f

0
100
200
300
400
500
600

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

iteration

fit
ne

ss

best_f

(b)

Fig. 2. Length (a) and fitness (b) of the best chromosome vs. number of
evolution stage (alu4)

Fig. 2 (b) indicates that in the first 21 iterations the fitness increases as the
accuracy of estimation by lower bound becomes higher. Fitness goes down

O. BRUDARU, I. FURDU AND R. EBENDT

54

after the phase where all embryos have become adults (starting with
generation 21, all embryos have full length 14) when the GA acts as a classic
GA.

Fig 3 shows the variations of the average of lengths (a) and the average of
the fitness values of the chromosomes in current population during the
evolution (b). Growing was applied with probability 5.0=Gp .

Fig. 2-3 show that a reduction to about of a half from the highest of the
fitness function is obtained after all the embryos in population reach full
length. To achieve this, it takes about 40-45% of the total number of evolution
stages.

avg length

0
2
4
6
8

10
12
14
16

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

stage

le
ng

th

length

(a)

avg fitness

0
100
200
300
400
500
600
700

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

stage

fit
ne

ss

fitness

(b)

Fig. 3. Average length (a) and average fitness (b) of the population during
the evolution (alu4)

As mentioned before, the adopted lower bound based fitness has a term
representing the history of exploring (the sum of the nodes of the levels
corresponding to kxx ,...,1) and a second term (kn −) that is the predictive part
of the fitness. Due to the fact that the predictive part completes the first one to
a lower bound on the minimum size of the BDDs whose orderings respect the

EMBRYONIC GA WITH RANDOM GENERATIONAL GROWING STRATEGY FOR

OPTIMIZING VARIABLE ORDERING OF BDDS

55

prefix corresponding to the current embryo x , and since this can be far
enough from this minimum, the score of the shorter chromosomes could be
too optimistic when compared with the actual fitness of longer chromosomes
(that better reflect the sizes of BDDs resulting from extensions of the embryo

),...,(1 kxx). In some cases, this could lead to a massive elimination of longer
chromosomes in some stages of the evolution and to a failure in obtaining
adult chromosomes. This shorter wins phenomenon can be compensated by a
rapid growing of embryos to adult size and by using the mechanisms for
controlling the population variability for providing a good variability of the
embryonic population.

The shorter wins phenomenon is illustrated in Figure 4 that shows a case
where the evolution is stuck and explores a subset of embryos of length 10.
Small values for 25.0=Gp and 2.0=cp leads to this behavior. Embryos can
not reach full size as result of the unbalanced (and thus, unfair) competition
between short and long embryos. The growing is slower and the average of
fitness has a slow improvement to a value (501) far from optimum (350 for
alu4).

0
200
400
600
800

1 11 21 31 41 51 61 71 81 91
stage

fit
ne

ss

0

5

10

15

le
ng

th
fitness
length

Fig. 4. Average length and fitness vs. evolution stages in a case when
embryos can not reach the adulthood (alu4)

Figure 5 shows the phenomenon of elimination of the poorest embryos from
the population. The weakest embryos are those with longer lengths which tend
to loose the competition more frequently than the shorter ones.

0
2
4
6
8

10
12
14
16

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

iteration

le
ng

th

length

O. BRUDARU, I. FURDU AND R. EBENDT

56

(a)

0
100
200
300
400
500
600
700
800

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

iteration

fit
ne

ss

fitness

(b)

Fig. 5. Length (a) and score (b) of the worst chromosome

Fig. 6 describes the average length (a) and the average fitness (b) of the

chromosomes that lose the competition during the evolution.

Fig. 6. Average length (a) and average fitness (b) of the embryos removed

from the curent population.

 The high variations recorded for the length of the worst chromosome (Fig. 5

length

0
2
4
6
8

10
12
14
16

1 11 21 31 41 51 61 71 81 91101111121

iterationlength

(a)

fitness

0
200
400
600
800

1000

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

iteration

av
g_

fit
n

fitness

(b)

EMBRYONIC GA WITH RANDOM GENERATIONAL GROWING STRATEGY FOR

OPTIMIZING VARIABLE ORDERING OF BDDS

57

a) transfer to variations of the average length of the removed individuals (Fig.
6 a).

Performance estimation. Table 2 shows best found results and costs for
RGG strategy. Column #best gives the best ever reported [24] number of
nodes for each benchmark. The column labeled with #nodes gives best-found
results for RGG and the column labeled #iter gives the corresponding number
of iterations. The circuits marked by an asterisk indicate the circuits for which
the best-known results were obtained from [8]. Comparing with the results
from [8] RGG obtained #best or best #nodes in all cases except apex7.

Table 2. Best found results and costs for random generational growing
RGG Bench In Out #best #nodes #iter

*cm85a 11 3 28 28 42
*cm163a 16 5 26 26 42

*cu 14 11 32 32 63
*alu4 14 8 350 350 79

*s1494 14 25 369 369 146
vda 17 39 478 479 242

misex3 14 14 478 478 90
*apex2 39 3 - 304 405
*apex7 49 37 - 243 382

dalu 75 16 689 704 610
cordic 23 2 42 42 118

ttt2 24 21 107 107 136
apex6 135 99 498 548 777

i3 132 6 133 135 696

Table 3 gives the average (m), standard deviation (σ) and unitized risk

(m/σ) for absolute error abs_err = #nodes - #best. Smaller values of unitized
risk indicate a more robust and stable technique as unitized risk is considered
to be a measure of stability. The column labeled with iter contains the average
number of iterations until the algorithm stops. The last column labeled with f
gives the average number of fitness evaluations.

Table 3. Performance and costs for RGG
Bench m σ σ/m iter f

O. BRUDARU, I. FURDU AND R. EBENDT

58

*cm85a 0.3 0.94 3.16 59.1 1374.71
*cm163a 1 1.05 1.05 68.7 1448.40

*cu - - - 237.6 5108.40
*alu4 1.9 4.97 2.61 101.5 2395.30

*s1494 11.5 10.43 0.90 139.5 3658.48
vda 9.7 6.56 0.67 159.2 3800.10

misex3 25.5 44.38 1.74 101.7 2267.91
*apex2 360.3 63.99 0.17 387.3 7838.95
*apex7 259.7 13.11 0.05 404.8 9448.03

dalu 45.5 28.30 0.62 588.9 11813.33
cordic 1.9 3.24 1.7 140.5 3450.68

ttt2 12.4 15.79 1.27 166.3 3962.92
apex6 119.8 43.87 0.36 721.1 15049.36

i3 22.6 16.19 0.71 615.9 13617.55

The values from both tables indicate that the proposed algorithm gives good
results and have a good stability. For 66% of cases #best was obtained for the
benchmarks which #best is known. Combining a GA with an exact technique
like branch & bound has lead to a better performance that is better than the
performance of the pure GA. The search space has an initial good covering
because of the high variability of the short embryos. This improvement is
explained by the fact that as the algorithm converges and the embryos are
growing a refinement of the search is done while the search space is
narrowing.

V. CONCLUSIONS

This paper presents a new hybrid GA for the problem of finding the best

variable ordering of BDDs.
The main novelty of the work is the adopting of embryonic chromosomes as

subsets of variable orders instead of full-length variable orders for combining
the GA with the branch & bound technique. A fitness definition based on a
lower bound is used. The random generational growing strategy is used for
applying the newly introduced growing operators.

The performance of the resulting hybrid method was experimentally
investigated. The obtained results are reported in detail and they show that the
proposed method performs very well. As further direction of investigation,
new growing strategies have to be designed and evaluated.

EMBRYONIC GA WITH RANDOM GENERATIONAL GROWING STRATEGY FOR

OPTIMIZING VARIABLE ORDERING OF BDDS

59

References

[1] R.E. Bryant, C.Meinel, Ordered Binary Decision Diagrams In
Electronic Design Automation: Foundations, Applications and
Innovations, Ed. S. Hassoun and T. Sasao, Kluwer Academic Publishers,
Dordrecht/Netherlands p. 285-307, 2001.

[2] C. Meinel, T. Theobald, Algorithms and Data Structures in VLSI
Design, Springer, 1998.

[3] R. Ebendt, G., Fey, R. Drechsler, Advanced BDD minimization,
Springer, 2005.

[4] H. Fujii, G. Ootomo, C. Hori, Interleaving based variable ordering
methods for OBDD, Int'l Conf. on CAD, p. 38-41, 1993.

[5] C. Meinel, A. Slobodova, Speeding up variable reordering for OBDDs,
International Conference on Computer Design, p. 338-343, 1997.

[6] S. Panda, F. Somenzi, Who are the variables in your neighborhood.
Int'l Conf. of CAD, p. 74-77, 1995.

[7] R. Rudell, Dynamic variable ordering for ordered binary decision
diagrams. Int'l Conf. of CAD, p. 42-47, 1993.

[8] B. Bollig, M. Löbbing, I. Wegener, Simulated annealing to improve
variable orderings for OBDDs, International Workshop on Logic
Synth., pag. 5b:5.1-5.10, 1995.

[9] R. Drechsler, B. Becker, N. Göckel, A Genetic Algorithm for Variable
Ordering of OBDDs, IEEE Proceedings, 143(6), p. 363–368, 1996.

[10] W. Lenders, C. Baier, Genetic Algorithms for Variable Ordering
Problem of Binary Decision Diagrams, Lecture Notes in Computer
Science, Springer, p. 1-20, vol. 3469/2005.

[11] R. Drechsler, N. Göckel, Minimization of BDDs by Evolutionary
Algorithms, International Workshop on Logic Synthesis, 1997.

[12] M. A. Thornton, J.P. Williams, R. Drechsler, N. Drechsler, D.M. Wesels,
SBDD Variable Reordering based on Probabilistic and Evolutionary
Algorithms, IEEE Proceedings, Pacific Rim Conference, p. 381–387,
1999.

[13] I. Furdu, O. Brudaru, New hybrid genetic algorithm with adaptive
operators and variability target for optimizing variable order in
OBDD, Int’l Conf. on Mathematics and Informatics, Scientific Studies
and Research Series Mathematics and Informatics vol. 19, no. 2, p.241-
256, 2009.

O. BRUDARU, I. FURDU AND R. EBENDT

60

[14] U.S. Costa, A. M. Moreira, D. Deharbe, A cache-based parallel genetic
algorithm for the bdd variable ordering problem. Proc. of SBAC-
PAD’2000, p.99-104, 2000.

[15] S. Droste, D. Heutelbeck, I. Wegener, Distributed Hybrid Genetic
programming for Learning Boolean Functions, Parallel Problem
Solving from Nature- PPSN 6th International Conference, p. 181-190,
Paris, 2000.

[16] R. Ebendt, W.Günther, R.Drechsler, Combining Ordered Best-First
Search with Branch and Bound for Exact BDD Minimization, IEEE
Trans. on CAD of Integrated Circuits and Systems 24(10), p. 1515-1529,
2005.

[17] O. Onicescu, Elements of Informational Statistics with Applications,
Technical Editing House, Bucharest, 1979 (in Romanian).

[18] R.E. Bryant, Graph-based algorithms for Boolean function
manipulation, IEEE Trans on Computers. 35(8) pag. 667-691, 1986.

[19] B. Bollig, I. Wegener, Improving the Variable Ordering of OBDDs Is
NP-Complete, IEEE, Transactions on Computers, vol. 45, p. 993–1002,
1996.

[20] D.E., Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison Wesley, 1989.

[21] S. J. Friedman, K. J. Supowit, Finding the Optimal Variable Ordering
for Binary Decision Diagrams, IEEE Transactions on Computers, vol.
39, p. 710-713, 1990.

[22] http://cadlab.cs.ucla.edu/~kirill/, accessed June 2010.
[23] CUDD package url: vlsi.colorado.edu/ ~fabio/ CUDD.
[24] ftp://vlsi.colorado.edu/pub/ orders.tar.gz, accessed June 2010.

Octav Brudaru

Institute of Computer Science, Romanian Academy, Iaşi Subsidiary,
“Gh. Asachi” Technical University Iaşi, Department of Management and
Production Systems Engineering, Iaşi, Romania, e-mail: brudaru@tuiasi.ro

Iulian Furdu
“Vasile Alecsandri” University of Bacău,
Department of Mathematics and Informatics, Bacău, Romania, e-mail:
ifurdu@ub.ro

Rüdiger Ebendt
German Aerospace Center, Institute of Transportation Systems, Berlin,
Germany, e-mail: ruediger.ebendt@dlr.de

