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Abstract. This paper addresses the problem of optimizing the variable 
ordering in Binary Decision Diagrams (BDDs). A new hybrid embryonic 
genetic algorithm is proposed for optimizing the variable ordering that 
combines a branch & bound technique with the basic genetic algorithm. It 
uses fitness based on a lower bound and embryos instead of full 
chromosomes. A novel growing technique introduces two new growing 
operators. The results of an experimental evaluation demonstrate the 
efficiency of the approach. 
 

I. INTRODUCTION 
 

Reduced Ordered Binary Decision Diagrams (ROBDDs, often BDDs for 
short) have numerous applications- e.g. in formal verification of digital 
circuits and other finite state systems, algorithms for symbolic model 
checking manipulate Boolean functions by use of BDDs or derived data 
structures. BDDs offer a good trade-off between efficiency of manipulation 
and compactness of representation of Boolean functions, and they have 
improved time and memory performance of the aforementioned applications. 
This paper addresses the problem of optimizing the variable order in BDDs. In 
this problem, a switching function is represented as a BDD, a directed acyclic 
graph that essentially models how the assignments of truth values to the 
Boolean input variables are evaluated in a fixed order π , and satisfying a set 
of properties [1]. The BDD’s size is given by the number of its nonterminal 
nodes and strongly dependents on the chosen variable ordering. An 
appropriate ordering leads to a smaller number of nodes, whereas a bad  
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ordering can lead to an exponential growth in the size of BDD. 
This sensitivity to the ordering of variables is a significant problem for some 
applications in logic synthesis. For example, in Pass Transistor Logic (PTL) 
or other multiplexor-based design styles, the BDD is mapped to a digital 
circuit, and therefore the BDD size directly transfers to chip area. 
Therefore, many methods for optimizing the variable order [1, 2, 3] have been 
proposed, including both static (e.g. [4]) and dynamic techniques. The most 
commonly used are the dynamic techniques [5, 6, 7], which dynamically 
proceed in obtaining an improved variable order 'π  (and consequently a better 
size) of an already built BDD with an initial variable order π . The most 
popular dynamic technique is Rudell’s sifting algorithm [7]. 

Besides sifting, simulation-based algorithms (SA) and genetic algorithms 
(GA) for optimizing the variable ordering have been proposed: e.g. a 
technique based on simulated annealing is reported in [8], and the first GA for 
BDD optimization has been introduced in [9]. Methods based on genetic 
algorithms yield better results than other heuristic techniques, as experimental 
studies from [9, 10] have demonstrated. The use of sifting as a genetic 
operation that replaces crossover techniques or advanced strategies for setting 
the parameters are among the key ideas of a range of approaches [11, 12, 13] 
that focused on the speed up of the computations. 

Parallel or distributed GAs used in [14, 15] are reported to obtain better 
results than sequential GAs. However, the fitness evaluation remains an 
expensive task increasing the total cost of solution.  

The use of hybrid techniques that combine GAs with other optimization 
method is the actual trend of the research into new methods for BDD 
optimization [3, 16]. This paper follows this trend and describes a new hybrid 
GA for optimizing the variable order in BDDs. The starting point is 
represented by a basic GA (BGA) that includes an information energy based 
mechanism [17] used for adjusting the variability level of the current 
population along the evolution stages [13]. A branch & bound technique is 
combined with the BGA by adopting and operating with embryos as subsets 
of orders instead of individual complete orders. This hybridization contributes 
to a better balancing between exploration and exploitation of the search space.  

Section II formulates the problem of variable ordering in BDDs. Section III 
describes the main components of the double hybridized GA. Section IV 
presents the experimental evaluation of its performance. Last section 
summarizes the work.  
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II. THE VARIABLE ORDERING PROBLEM AND ITS IMPORTANCE FOR BDDS 
 

In this section the reduced OBDDs and the importance of variable ordering 
are briefly reviewed. 

Let {0,1} , BB f: B mn =→  be a switching function and π - a total order on a 
fixed set of Boolean variables nxxx ,...,, 21 , Bxi ∈ .  

Definition 1. An OBDD for f  with respect to order π  is a single rooted 
direct acyclic graph that satisfies [18]: 

 a) there are exactly two terminal nodes labeled by Boolean constants 0 and 
1, respectively.  

b) each non-terminal node is labeled by a variable ix , and has two outgoing 
edges, called 0-edge and 1-edge. At each inner node, two subfunctions are 
usually computed according to Shannon decomposition [1]: 

 
  

ii xixi fxfxf += )1( ni ≤≤       (1) 
 
Starting at the root node that is labeled by some variable ix , f  is 

decomposed into two subfunctions. These are the cofactors of f  with respect 
to ix . The same decomposition scheme is carried out recursively at each node 
representing one of the subfunctions. Eventually, constant subfunctions are 
obtained, and the outlined process of decomposition terminates. 

 c) each variable appears at most once on a path from the root to a terminal 
node and the order in which the variables appear is consistent with the 
variable order π .  

If reduction rules are applied [18] to obtain an irreducible form (i.e. a form 
where no more reduction rule applies), this form is called reduced OBDD or 
ROBDD. A ROBDD is a canonical representation for Boolean functions [1]. 

Definition 2. The size of an OBDD is given by the number of its non-
terminal nodes. 

The reduced OBDDs were introduced by Bryant [18], based on these rules.  
In the case of multi-output Boolean functions  B  Bf mn →: , BDDs can be 
defined analogously since the multi-output Boolean function can be seen as a 
family of single-output component functions miiff ≤≤= 1)( . A BDD iG  is used 
for every component function if  in the shared representation G  of f . The 
compactness of the BDD representation can further be enhanced by the use of 
so-called ROBDDs. Complement Edges (CEs). They allow for the 
simultaneous representation of a function and its complement by the same 
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graph. In the following, BDDs with CEs are assumed without mentioning it 
further (and, to obtain a more instructive presentation, also without using CEs 
in the illustrations). Note that all results reported here directly transfer to 
BDDs without CEs. Moreover, only reduced, ordered BDDs are considered, 
and for brevity these graphs are called BDDs. 

The main problem in dealing with BDDs is the strong dependence between 
the order of the input variables and the BDDs’ size (Fig. 1) which can vary 
from linear to exponential.  
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(a)                                                (b) 

Fig. 1. The influence of the variable ordering for f(a,b,c,d)=a+bc+def with 
order a, b, c, d, e, f (a) and order a, b, d, c, e, f  (b), (0- edges are dashed). 

It has been proven that deciding whether the order of a given BDD can be 
improved is NP-complete [19]. However, by the use of heuristic approaches, 
we can often find an ordering of variables that is good enough to keep the size 
of the corresponding BDD maintainable for real-life applications like 
hardware verification or software model checking. 

This paper describes a new technique for optimizing variable ordering in 
BDDs based on hybridization of GAs with a branch & bound technique. The 
resulting hybrid algorithm inherits the best attributes from its both 
constituents. 

The basic components of the proposed GA are further described. 
 

III. BASIC COMPONENTS OF THE DOUBLE HYBRIDIZED GA 
 
Genetic algorithms [20] (GAs) for the variable ordering problem rely on a 

representation of the variable orderings in permutation form (chromosomes) 
and act on an initial population by applying genetic operators in order to 
obtain a new population of solutions. A GA uses a survival selection of the 
individuals and a fitness function that indicates the degree in which a solution 
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fulfill the problem constraints. The chromosomes undergo repeated changes 
usually organized as evolution stages, by means of the chosen genetic 
operators until a set of best found solutions is produced.  

 
 
A. Basic components of hybrid genetic algorithm  
 Incorporating a branch & bound technique in the mechanism of the GA 
implies changing the representation, the adaptation of genetic operators and an 
appropriate population management. 

Solution representation. Each adult chromosome ),...,,( 21 nxxxx =  
represents a specific BDD variable order of f . 

The combination between GA and branch & bound technique must use 
embryonic representations corresponding to nonterminal edges in the state 
space tree partially constructed during the process of this method. So, 

),...,( 1 kxxx =  denotes an embryo with nk <≤1 .   
Initial population. Initial population P  is randomly generated. It contains 

embryos having a random length 0λ , where 3/2 0 n≤≤ λ . Table 1 describes an 
empiric function to choose the population size P  according to the number of 
input variables.  

 
           Table 1. Population size 

n <20 21-150 150-250 >250 
|P| 50 75 120 200 

 

Mutation operators. Three mutation operators are used: mutual exchange, 
group mutation and inversion [20]. All mutation operators are adaptive 
operators in the sense that the distance between the cutting points linearly 
decreases with the number of generations in order to ensure a small disruption 
rate as the algorithm converges [13]. The whole population bears mutation 
with a given probability mp . The three mutation operators remain the same 
when dealing with embryos. A variant of AX1 which assumes that the left cut 
point for the bigger parent embryo is equal to the length of the smaller embryo 
is used as an additional crossover operator. 

Crossover operators. The first crossover operator AX1 is a block variant of 
the alternating crossover described in [9]. A second crossover AX2 is a 
restricted version of AX1 and the hybridized GA makes exclusive use of it. 
Also crossover operators are adapted during progress of the algorithm: the 
lengths of the segments which the offspring inherits from its parents linearly 
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increase with the number of generations. This ensures preserving of good 
constructive blocks of the solutions. The mating pool is formed by the first 
40% of the best individuals and crossover operations are produced with the 
probability cp . When applied to embryos, crossover operators act in the same 
way. 

Growing operators. A growing mechanism is needed since all embryos 
have to reach maturity, i.e. to reach full (adult) length. Two growing operators 
are proposed, both of them applied with the same probability Gp .  

The first growing operator extends x  with a sequence of q  variables, 
chosen by random, where }})({{1 /10kn1,10,maxminq −≤≤ . 

The second growing operator replaces x  by a number σ  of its children, 
}10/,1{1 smax≤≤ σ , where s  is the sample size, rkns ⋅−−+= )2(2 , and 

]ln,1[ nr ∈  is a parameter that determines the size of the sampling [13]. Let 
)(xS  be the set of all orders having the prefix x  and let syy ,...,1  be the 

randomly select s  members of )(xS . Let scc ,...,1  be random numbers between 
1 and q , where q  is the value defined for first growing operator. Let jz  be the 
prefix of length jck + , sj ,...1= . The best σ  embryos σzz ,...,1  replace the parent 
x  in the population. In this way, the branching of x  uses the most promising 
extensions of a sample. Of note is that the original motivation for constructing 
the sample was the computation of a sample-based fitness function [13]. 

 
B. Fitness function 

Since this genetic algorithm operates with embryos that are partial 
solutions, the objective function based fitness is replaced by a lower bound  
based fitness. This choice is a part of the heritage of the branch & bound 
technique. Let ),...,( 1 kxxx = , with nk ≤≤1 , be a chromosome. The fitness of 
the prefix is knnxfit k

i ilb −+∑= =1)( , where in  is the number of nodes on the i -th 
level of the BDD built on an arbitrary ordering in )(xS . Clearly, if nk =  then 

)(xfitlb  is exactly the size of the ordered BDD built on x , and the hybrid GA 
behaves as a classical GA.  

Most of the research on BDD minimization by branch and bound 
algorithms use a lemma proved in [21]. The result from [21] states that in , 

ki ,...,1=  are the same for all possible extensions of the prefix ),...,( 1 kxx . The 
term kn −  corresponds to the last kn −  variables in the order and, in the 
definition of )(xfitlb , plays the role of the predictive part, while the sum term 
corresponds to the first k  variables and gives the contribution of the prefix 
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itself to the size of any BDD respecting a variable order that is an extension of 
prefix x . In general, when the fitness function is a lower bound on the sizes of 
the BDDs respecting an ordering in the set )(xS , the longer embryos usually 
lose the competition against the shorter ones because the predictive part of the 
lower bound could be imprecise. The best-first approach of [16] deals with 
this problem by first driving the search to the shorter ones and keeping the 
longer prefixes in the list of active (“open”) search nodes for a later use. The 
risk is a list of search nodes whose length could exceed the available memory.  

 
C. Management of population 

Growing strategy. In order to obtain the final population containing adult 
chromosomes, the growing operators can be used in different ways. The 
strategy adopted in this paper for applying the growing operators is called 
random generational growing (shortly, RGG) and consists in randomly 
applying the growing operators with the given probability Gp  to the current 
population. Each time, when the growing event is produced, each embryo has 
the same chance to be selected for growing, regardless of its length. The 
growing of an embryo ),...( 1 kxxx =  means its replacement with one or many 
new embryos descendants from x . 

Even if the crossover is an implicit source of growing, it is not enough to 
ensure a feasible evolution. In RGG used in this paper, each growing operator 
is applied with the same probability Gp  and each embryo in the current 
population has the same chance to suffer the growing effect.   

Mechanism for controlling the variability.  
A mechanism for tuning the values of mp  and cp  based on the information 

energy [17] is adopted in order to prevent premature stagnation and to 
improve the solution quality. Information energy gives a measure of 
variability of the fitness values in the current population. A good tradeoff 
between exploration and exploitation could be achieved if an appropriate level 
of population variability is maintained during the evolution. Therefore, the 
probabilities mp  and cp  both have initial value 0.5 and are modified at each 
evolution stage according to the rules: 

αλ−= mm pp , βλ+= cc pp ,  ]1,0[, ∈βα                      (2) 
where TEE cob /)( −=λ  is the speed wherewith a generic target variability 
value obE  is reached by the current value of the information energy cE , and 

62 , ≤≤ TT  is also a  parameter that controls the speed of adjustment of these 
probabilities. cE  is the current computed variability which is distributed along 
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the time period T . Information energy formula in [17] gives the current level 
of variability cE  

∑
=

′=
p

k
kcE

1

2)(ϕ     ,                (3)                     

where pϕϕ ,...,1 represents the relative frequencies of the values of the fitness 
function distributed in p  sampling intervals, each such interval having the 
same length.  A low (high) population variability is indicated by a high (low) 
value of cE .  As established in [13] the periodic function  

221 |cos|)()( AtAAtEob +−= ω , 1/1 12 ≤<≤ AAp , ,...3,2=ω                 (4)  
offers good results and is adopted in this paper. Values for the other 
parameters that we recommend here are: 0.5 A2 1,A1 ==  for obE  periodic, 

3=ω and 4=T . 
Selection for survival. The selection is deterministic and elitist [20]. At the 

end of each stage, the newly created individuals compete with the current 
population and those with better fitness survives for the next stage, in the limit 
of || P . 

Stop condition. The algorithm stops if the population contains only adult 
chromosomes and if the variation of the ratio ekkk mmm <Φ−Φ−Φ )(/)]1()([  is 
true for a given number stopn  of successive iterations. )(kmΦ  represents the 
average of the fitnesses at stage k  and e  is a prescribed tolerance. 

 
IV. EXPERIMENTAL EVALUATION 

 
A subset of LGSynth91 benchmarks suite [22] was used in experiments that 

we conducted with the new hybrid approach. The algorithm was implemented 
using the CUDD package [23] on a Dual Core system, with 2,4 GHz 
processors and 2G RAM available memory. A number of 10 runs per circuit 
test were executed for each type of experiment. 

Setting of parameters. The first goal of the experiments was to find 
appropriate values for the parameters. The values in Table 1 are resulted from 
experiments. A recommended value for e  involved in stop condition is 0.001 
while appropriate setting for stopn  is 20. Adequate distribution of probability 
for AX1, AX2 is 0.7 and 0.3 respectively. For simple mutation, inversion and 
group mutation recommended probabilities are 0.3, 0.3 and 0.4, respectively. 
The most adequate hypermutation probability found was 1.0=Hp . The 
increment q  of the extensions made by the first growing operator and the 
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number σ  of descendents of an embryo for the second growing operator was 
set to 2. A high value of 6.04.0 ÷=Gp  is adopted in order to avoid the 
dominance of the short embryos over the long ones. 

Qualitative estimation of the behavior. In random generational growing 
strategy embryos with different lengths compete between them during each 
evolution stage. The lengths of embryos from initial population are at most 
1/3 of adult size. Typical behaviors of population when applying this strategy 
are illustrated below using the alu4 benchmark (14 input, 8 output, best 
number of nodes 350). 
Fig. 2 (a) shows typical variations of the length of the best chromosome vs. 
number of evolution stage. The variation of the fitness of the best 
chromosome is shown in Fig. 2 (b). 
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Fig. 2. Length (a) and fitness (b) of the best chromosome vs. number of 
evolution stage (alu4) 

 
Fig. 2 (b) indicates that in the first 21 iterations the fitness increases as the 
accuracy of estimation by lower bound becomes higher. Fitness goes down 
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after the phase where all embryos have become adults (starting with 
generation 21, all embryos have full length 14) when the GA acts as a classic 
GA. 

Fig 3 shows the variations of the average of lengths (a) and the average of 
the fitness values of the chromosomes in current population during the 
evolution (b). Growing was applied with probability 5.0=Gp . 

Fig. 2-3 show that a reduction to about of a half from the highest of the 
fitness function is obtained after all the embryos in population reach full 
length. To achieve this, it takes about 40-45% of the total number of evolution 
stages. 
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Fig. 3. Average length (a) and average fitness (b) of the population during 
the evolution (alu4) 

 

As mentioned before, the adopted lower bound based fitness has a term 
representing the history of exploring (the sum of the nodes of the levels 
corresponding to kxx ,...,1 ) and a second term ( kn − ) that is the predictive part 
of the fitness. Due to the fact that the predictive part completes the first one to 
a lower bound on the minimum size of the BDDs whose orderings respect the 
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prefix corresponding to the current embryo x , and since this can be far 
enough from this minimum, the score of the shorter chromosomes could be 
too optimistic when compared with the actual fitness of longer chromosomes 
(that better reflect the sizes of BDDs resulting from extensions of the embryo 

),...,( 1 kxx ). In some cases, this could lead to a massive elimination of longer 
chromosomes in some stages of the evolution and to a failure in obtaining 
adult chromosomes. This shorter wins phenomenon can be compensated by a 
rapid growing of embryos to adult size and by using the mechanisms for 
controlling the population variability for providing a good variability of the 
embryonic population. 

The shorter wins phenomenon is illustrated in Figure 4 that shows a case 
where the evolution is stuck and explores a subset of embryos of length 10. 
Small values for 25.0=Gp  and 2.0=cp  leads to this behavior. Embryos can 
not reach full size as result of the unbalanced (and thus, unfair) competition 
between short and long embryos. The growing is slower and the average of 
fitness has a slow improvement to a value (501) far from optimum (350 for 
alu4). 
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Fig. 4. Average length and fitness vs. evolution stages in a case when 
embryos can not reach the adulthood (alu4) 

 

Figure 5 shows the phenomenon of elimination of the poorest embryos from 
the population. The weakest embryos are those with longer lengths which tend 
to loose the competition more frequently than the shorter ones.  
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Fig. 5. Length (a) and score (b) of the worst chromosome 

 
Fig. 6 describes the average length (a) and the average fitness (b) of the 

chromosomes that lose the competition during the evolution.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Average length (a) and average fitness (b) of the embryos removed 

from the curent population. 
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a) transfer to variations of the average length of the removed individuals (Fig. 
6 a).  

Performance estimation. Table 2 shows best found results and costs for 
RGG strategy. Column #best gives the best ever reported [24] number of 
nodes for each benchmark. The column labeled with #nodes gives best-found 
results for RGG and the column labeled #iter gives the corresponding number 
of iterations. The circuits marked by an asterisk indicate the circuits for which 
the best-known results were obtained from [8]. Comparing with the results 
from [8] RGG obtained #best or best #nodes in all cases except apex7. 

 
 

Table 2. Best found results and costs for random generational growing 
RGG Bench In Out #best #nodes #iter 

*cm85a 11 3 28 28 42 
*cm163a 16 5 26 26 42 

*cu 14 11 32 32 63 
*alu4 14 8 350 350 79 

*s1494 14 25 369 369 146 
vda 17 39 478 479 242 

misex3 14 14 478 478 90 
*apex2 39 3 - 304 405 
*apex7 49 37 - 243 382 

dalu 75 16 689 704 610 
cordic 23 2 42 42 118 

ttt2 24 21 107 107 136 
apex6 135 99 498 548 777 

i3 132 6 133 135 696 
 
Table 3 gives the average ( m ), standard deviation (σ ) and unitized risk 

( m/σ ) for absolute error abs_err = #nodes - #best. Smaller values of unitized 
risk indicate a more robust and stable technique as unitized risk is considered 
to be a measure of stability. The column labeled with iter contains the average 
number of iterations until the algorithm stops. The last column labeled with f  
gives the average number of fitness evaluations. 

 
 

Table 3. Performance and costs for RGG 
Bench m σ σ/m iter f  
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*cm85a 0.3 0.94 3.16 59.1 1374.71 
*cm163a 1 1.05 1.05 68.7 1448.40 

*cu - - - 237.6 5108.40 
*alu4 1.9 4.97 2.61 101.5 2395.30 

*s1494 11.5 10.43 0.90 139.5 3658.48 
vda 9.7 6.56 0.67 159.2 3800.10 

misex3 25.5 44.38 1.74 101.7 2267.91 
*apex2 360.3 63.99 0.17 387.3 7838.95 
*apex7 259.7 13.11 0.05 404.8 9448.03 

dalu 45.5 28.30 0.62 588.9 11813.33 
cordic 1.9 3.24 1.7 140.5 3450.68 

ttt2 12.4 15.79 1.27 166.3 3962.92 
apex6 119.8 43.87 0.36 721.1 15049.36 

i3 22.6 16.19 0.71 615.9 13617.55 
 

The values from both tables indicate that the proposed algorithm gives good 
results and have a good stability. For 66% of cases #best was obtained for the 
benchmarks which #best is known. Combining a GA with an exact technique 
like branch & bound has lead to a better performance that is better than the 
performance of the pure GA. The search space has an initial good covering 
because of the high variability of the short embryos. This improvement is 
explained by the fact that as the algorithm converges and the embryos are 
growing a refinement of the search is done while the search space is 
narrowing.  

 
V. CONCLUSIONS 

 
This paper presents a new hybrid GA for the problem of finding the best 

variable ordering of BDDs.  
The main novelty of the work is the adopting of embryonic chromosomes as 

subsets of variable orders instead of full-length variable orders for combining 
the GA with the branch & bound technique. A fitness definition based on a 
lower bound is used. The random generational growing strategy is used for 
applying the newly introduced growing operators.  

The performance of the resulting hybrid method was experimentally 
investigated. The obtained results are reported in detail and they show that the 
proposed method performs very well. As further direction of investigation, 
new growing strategies have to be designed and evaluated. 



 
EMBRYONIC GA WITH RANDOM GENERATIONAL GROWING STRATEGY FOR 

OPTIMIZING VARIABLE ORDERING OF BDDS 

 

59 

 

 
 

References 
 

[1] R.E. Bryant, C.Meinel, Ordered Binary Decision Diagrams In 
Electronic Design Automation: Foundations, Applications and 
Innovations, Ed. S. Hassoun and T. Sasao, Kluwer Academic Publishers, 
Dordrecht/Netherlands p. 285-307, 2001.  

[2] C. Meinel, T. Theobald, Algorithms and Data Structures in VLSI 
Design, Springer, 1998. 

[3] R. Ebendt, G., Fey, R. Drechsler, Advanced BDD minimization, 
Springer, 2005. 

[4] H. Fujii, G. Ootomo, C. Hori, Interleaving based variable ordering 
methods for OBDD,  Int'l Conf. on CAD, p. 38-41, 1993. 

[5] C. Meinel, A. Slobodova, Speeding up variable reordering for OBDDs, 
International Conference on Computer Design, p. 338-343, 1997. 

[6] S. Panda, F. Somenzi, Who are the variables in your neighborhood.  
Int'l Conf. of CAD, p. 74-77, 1995. 

[7] R. Rudell, Dynamic variable ordering for ordered binary decision 
diagrams.  Int'l Conf. of CAD, p. 42-47, 1993. 

[8] B. Bollig, M. Löbbing, I. Wegener, Simulated annealing to improve 
variable orderings for OBDDs, International Workshop on Logic 
Synth., pag. 5b:5.1-5.10, 1995.  

[9] R. Drechsler, B. Becker, N. Göckel, A Genetic Algorithm for Variable 
Ordering of OBDDs, IEEE Proceedings, 143(6), p. 363–368, 1996. 

[10] W. Lenders, C. Baier, Genetic Algorithms for Variable Ordering 
Problem of Binary Decision Diagrams, Lecture Notes in Computer 
Science, Springer, p. 1-20, vol. 3469/2005.  

[11] R. Drechsler, N. Göckel, Minimization of BDDs by Evolutionary 
Algorithms, International Workshop on Logic Synthesis, 1997. 

[12] M. A. Thornton, J.P. Williams, R. Drechsler, N. Drechsler, D.M. Wesels, 
SBDD Variable Reordering based on Probabilistic and Evolutionary 
Algorithms, IEEE Proceedings, Pacific Rim Conference, p. 381–387, 
1999. 

[13] I. Furdu, O. Brudaru, New hybrid genetic algorithm with adaptive 
operators and variability target for optimizing variable order in 
OBDD, Int’l Conf. on Mathematics and Informatics,  Scientific Studies 
and Research Series Mathematics and Informatics vol. 19, no. 2, p.241-
256, 2009. 



 
O. BRUDARU, I. FURDU AND R. EBENDT 

 

 
60 

 

[14] U.S. Costa, A. M. Moreira, D. Deharbe, A cache-based parallel genetic 
algorithm for the bdd variable ordering problem. Proc. of SBAC-
PAD’2000, p.99-104, 2000. 

[15] S. Droste, D. Heutelbeck, I. Wegener, Distributed Hybrid Genetic 
programming for Learning Boolean Functions, Parallel Problem 
Solving from Nature- PPSN 6th International Conference, p. 181-190, 
Paris, 2000. 

[16] R. Ebendt, W.Günther, R.Drechsler, Combining Ordered Best-First 
Search with Branch and Bound for Exact BDD Minimization, IEEE 
Trans. on CAD of Integrated Circuits and Systems 24(10), p. 1515-1529, 
2005.  

[17] O. Onicescu, Elements of Informational Statistics with Applications, 
Technical Editing House, Bucharest, 1979 (in Romanian). 

[18] R.E. Bryant, Graph-based algorithms for Boolean function 
manipulation, IEEE Trans on Computers. 35(8) pag. 667-691, 1986. 

[19] B. Bollig, I. Wegener, Improving the Variable Ordering of OBDDs Is 
NP-Complete, IEEE, Transactions on Computers, vol. 45, p. 993–1002, 
1996.  

[20] D.E., Goldberg, Genetic Algorithms in Search, Optimization and 
Machine Learning, Addison Wesley, 1989.  

[21] S. J. Friedman, K. J. Supowit, Finding the Optimal Variable Ordering 
for Binary Decision Diagrams, IEEE Transactions on Computers, vol. 
39, p. 710-713, 1990. 

[22] http://cadlab.cs.ucla.edu/~kirill/, accessed June 2010. 
[23] CUDD package url: vlsi.colorado.edu/ ~fabio/ CUDD. 
[24] ftp://vlsi.colorado.edu/pub/  orders.tar.gz, accessed June 2010. 

Octav Brudaru 

Institute of Computer Science, Romanian Academy, Iaşi Subsidiary, 
“Gh. Asachi” Technical University Iaşi, Department of Management and 
Production Systems Engineering, Iaşi, Romania, e-mail: brudaru@tuiasi.ro 

Iulian Furdu  
“Vasile Alecsandri” University of Bacău,  
Department of Mathematics and Informatics, Bacău, Romania, e-mail: 
ifurdu@ub.ro 

Rüdiger Ebendt 
German Aerospace Center, Institute of Transportation Systems, Berlin, 
Germany, e-mail: ruediger.ebendt@dlr.de  


