"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 20 (2010), No. 1, 171 - 178

ON SOME WEIGHTED STATISTICAL APPROXIMATION PROPERTIES OF q-SCHURER BERNSTEIN OPERATORS

CARMEN VIOLETA MURARU

Abstract. We investigate some weighted statistical approximation properties of Schurer-Bernstein operators in q-calculus and give an estimation of convergence in terms of Peetre's type K-functional.

1. Preliminaries

In the last decades the theory of q-calculus has developed into an interdisciplinary subject and was intensively used for the construction of various generalizations of many approximations of positive type.

A q-type of the Bernstein operators was introduced in 1987 by Stancu and later in 1997 another generalization of the classical Bernstein polynomials based on q- integer were introduced by Phillips [13]. After this, some authors studied new classes of q- generalized operators and gave approximations properties of them. In [3] O. Doğru and A. Aral constructed q- type generalization of Bleimann, Butzer and Hahn operators. T. Trif investigated Meyer-König and Zeller operators based on q integers ([14]). O.Doğru and O. Duman introduced also a new generalization of Meyer-König and Zeller operators and studied some statistical approximation properties in [5].

Keywords and phrases: positive and linear approximation process, q-calculus, q-Schurer-Bernstein linear operators.

(2000) Mathematics Subject Classification: 54A99 (03E99)

A generalization of Balazs-Szabados operators based on q- integers was introduced and a Stancu type generalization of these operators is also constructed in a paper of O. Doğru. A new q-generalization of Meyer-König and Zeller type operators was constructed by Doğru and Muraru for improve the rate of convergence [7]. Recently were studied generalization of Durmeyer and Kantorovich operators based on q-integer by Gupta and Radu [11].

We remind that q- Bernstein polynomial has the following form (Philips 1997):.

(1)
$$B_n(f;q;x) = \sum_{k=0}^n f\left(\frac{[k]}{[n]}\right) \begin{bmatrix} n \\ k \end{bmatrix} x^k \prod_{s=0}^{n-k-1} (1 - q^s x)$$

where $x \in [0, 1], f \in C([0, 1]), 0 < q < 1$ and

$$[k] = \begin{cases} (1 - q^k)/(1 - q), & q \neq 1 \\ k, & q = 1 \end{cases}$$

$$[k]! = \begin{cases} [k][k-1]....[1], & k = 1, 2, ... \\ 1, & k = 0 \end{cases}$$

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!} \qquad (n \ge k \ge 0)$$

Let
$$B_{\rho}(R) = \{ f : R \to R \mid |f(x)| \le M_f \rho(x), \forall x \in R \}$$

$$C_{\rho}(R) = \{ f \in B_{\rho}(R) : f \text{ is continuous on } R \}$$

$$C_{\rho}^*(R) = \left\{ f \in C_{\rho}(R) : \exists \lim_{x \to \infty} \frac{|f(x)|}{\rho(x)} < \infty \right\}.$$

Endowed with the norm where $||f||_{\rho} := \sup \frac{|f(x)|}{\rho(x)}$, $B_{\rho}(R)$ and $C_{\rho}(R)$ are Banach spaces.

A real function ρ is called a **weight function** if it is continuous on R and

$$\lim_{|x|\to\infty} \rho(x) = \infty, \ \rho(x) \ge 1 \text{ for all } x \in R.$$

2. Approximation properties of Q-Schurer-Bernstein **OPERATORS**

Let $p \in N$ be fixed. In 1962 Schurer introduced and studied the Bernstein-Schurer operators $\tilde{B}_{m,p}: C([0,p+1]) \to C([0,1])$ defined for any $m \in N$ and any function $f \in C([0, p + 1])$ as follows

$$\tilde{B}_{m,p}(f;x) = \sum_{k=0}^{m+p} {m+p \choose k} x^k (1-x)^{m+p-k} f\left(\frac{k}{m}\right)$$

One observe that for p = 0, $B_{m,0}$ we obtain the operators of Bernstein B_m .

For any $m \in N$, $f \in C([0, p+1])$ and p be fixed, we construct the class of generalized q-Bernstein Schurer operators as follows

(2)
$$\tilde{B}_{m,p}(f;q;x) = \sum_{k=0}^{m+p} \begin{bmatrix} m+p \\ k \end{bmatrix} x^k \prod_{s=0}^{m+p-k-1} (1-q^s x) f\left(\frac{[k]}{[m]}\right)$$

Lemma 2.1 ([12]) For the polynomials defined above satisfy the following properties:

- 1. $B_{m,n}(e_0;q;x)=1$
- 2. $\tilde{B}_{m,p}(e_0;q;x) = \frac{x[m+p]}{[m]}$ 3. $\tilde{B}_{m,p}(e_2;q;x) = \frac{[m+p]}{[m]^2} ([m+p]x^2 + x(1-x))$

where we note by $e_i(x) = x^j$, j = 0, 1, 2, the test functions.

The next theorem contains the result regarding the convergence of the sequence of q-Schurer Bernstein operators, based on the well known Korovkin –Popoviciu theorem.

Theorem 2.2([12])

Let $q = q_m$ satisfy $0 < q_m < 1$ and $\lim_{m \to \infty} q_m^p = 1$ and $\lim_{m \to \infty} q_m^m = a$, $a \neq 1$. Then for any $f \in C([0, p+1])$ the next result holds $\lim_{m\to\infty} \tilde{B}_{m,p}(f;q_m) = f \text{ uniformly on } [0,1]$

3. Rate of convergence

We will estimate the rate of convergence the Peetre's K-functional. In 1963 J. Peetre introduced the notion, which represents another important instrument to measure the smoothness of a function.

If we approximate f by a function g with g^r in L_p , then we are interested in how small the norm of f - g can be made compared to the norm of g^r . One way of making such comparisons is through the Peetre's K-functional.

Let $C^2[0, a] = \{ f \in C[0, a] : f' \text{ and } f'' \text{ in } C[0, a] \}$. Then $C^2[0, a]$ is a linear normed space with the following norm:

$$||f||_{C^2[0,a]} = ||f|| + ||f'|| + ||f''||$$

We define a Peetre's type K-functional as follows: $K(f;\delta)$ $\inf \left\{ \|f - g\| + \delta \|g\|_{C^2[0,a]} \right\}.$ Theorem 3.1 Let q_m be a sequence such $0 < q_m < 1$ for each

 $m \in \mathbb{N}$, then for all $f \in \mathbb{C}[0, a]$, 0<a<1 we have

(3)
$$\|\tilde{B}_{m,p}(f;q_m;x) - f(x)\| \le 2K(f;\delta_m)$$
with $\delta_m = \frac{a}{2} \left(1 - q_m^p - \frac{[p]}{[m]} \right) + \frac{a^2}{4} \left(\frac{[m+p]}{[m]} - 1 \right)^2 + \frac{[m+p]}{4[m]^2}$
Proof

$$g \in C^{2}[0, a]; g(t) - g(x) = g'(x)(t - x) + \int_{x}^{t} g''(s)(t - s)ds$$

We conclude for all $m \in N$ that

$$\left| \tilde{B}_{m,p}(g; q_m; x) - g(x) \right| \le \|g'\| \left| \varphi_{m,1}(x) \right| + \frac{\|g''\|}{2} \varphi_{m,2}(x)$$

where $\varphi_{m,1}(x)$ and $\varphi_{m,2}(x)$ are first and second central moment of the operators Schurer-Bernstein as follows:

$$\varphi_{m,1}(x) = \stackrel{\sim}{B_{m,p}}(t-x; q_m; x)$$

$$\varphi_{m,2}(x) = \tilde{B}_{m,p}((t-x)^2; q_m; x)$$

From the Lemma 2.2 we have

APPROXIMATION PROPERTIES OF q-SCHURER BERNSTEIN OPERATOR\$75

$$\begin{split} & |\tilde{B}_{m,p}(g;q_m;x) - g(x)| \leq x \left(1 - q_m^p - \frac{[p]}{[m]}\right) \|g'\| + \\ & + \frac{1}{2} \left(x^2 \left(\frac{[m+p]}{[m]} - 1\right)^2 + x(1-x)\frac{[m+p]}{[m]}\right) \|g''\| \leq \\ & \leq \left[x \left(1 - q_m^p - \frac{[p]}{[m]}\right) + \frac{1}{2}x^2 \left(\frac{[m+p]}{[m]} - 1\right)^2 + \frac{x(1-x)}{2}\frac{[m+p]}{[m]^2}\right] \|g\|_{C^2[0,a]} \\ & \text{By the linearity of operator we have} \\ & |\tilde{B}_{m,p}(f;q_m;x) - f(x)| \leq |\tilde{B}_{m,p}(f;q_m;x) - \tilde{B}_{m,p}(g;q_m;x)| + \\ & + |\tilde{B}_{m,p}(g;q_m;x) - g(x)| + \\ & + |g(x) - f(x)| \leq \|f - g\|_{C[0,a]} \tilde{B}_{m,p}(1;q_m;x) + \|f - g\|_{C[0,a]} + \\ & |\tilde{B}_{m,p}(g;q_m;x) - g(x)| = \\ & = 2 \|f - g\|_{C[0,a]} + |\tilde{B}_{m,p}(g;q_m;x) - g(x)| \leq \\ & \leq 2 \left\{ \|f - g\| + \left[\frac{a}{2} \left(1 - q_m^p - \frac{[p]}{[m]}\right) + \frac{a^2}{4} \left(\frac{[m+p]}{[m]} - 1\right)^2 + \frac{[m+p]}{4[m]^2} \right] \|g\|_{C^2[0,a]} \right\} \\ & \text{We choose} \end{split}$$

(4)
$$\delta_m = \frac{\pi}{2} \left(1 - q_m^p - \frac{[F]}{[m]} \right) + \frac{\pi}{4} \left(\frac{[F] + F]}{[m]} - 1 \right) + \frac{[F] + F]}{4[m]^2}$$

By taking infimum over $g \in C^2[0,a]$ on both sides and letting δ_m as in (4) we get the result from the **Theorem 3.1.**

4. Weighted Statistical Approximation Properties

The concept of statistical convergence was introduced by Fast in [9] and recently has became an important area in approximation theory . The Turkish school have many important result in this area an we remark here the contribution of Gadjev and Orhan which proved a Bohman-Korovkin type theorem for statistical approximation.

A sequence $x = (x_k)$ is said to be statistically convergent to a number L if for every $\varepsilon > 0$

$$\delta\{k \in N : |x_k - L| \ge \varepsilon\} = 0,$$

where $\delta(K)$ is the natural density of the set $K \subseteq N$. The density of subset K is defined by

 $\delta(K) = \lim_{n \to \infty} \frac{1}{n} \{ the \text{ number } k \leq n, k \in K \}$ whenever the limit exist.

We denote this limit by $st - \lim_{n \to \infty} x_n = L$.

Clearly finite subsets have natural density 0.

In this section using a Korovkin type theorem proved in [8] we present the weighted statistical approximation of q-Schurer Bernstein operators.

We recall the concept of A-statistical convergence. Let $A=(a_{in})$ be a non negative regular summability matrix. A sequence $\{x_n\}$ is said to be A-statistically convergent to a number L if for every $\varepsilon > 0$, $\lim_{j} \sum_{n:|x_n-L| \geq \varepsilon} a_{jn} = 0$. We denote this limit by $st_A - \lim_{n} x_n = L$. For $A := C_1$, the Cesaro matrix of order one, A-statistical convergence.

For $A := C_1$, the Cesaro matrix of order one, A-statistical convergence reduces to statistical convergence. We will use the next result due to Duman and Orhan

Theorem 4.1([8]) Let $A = (a_{in})$ be a nonnegative regular summability matrix and let $\{L_n\}$ be a sequence of positive operators from C_{ρ} into $B_{\rho}(R)$ where ρ_1 and ρ_2 satisfy

(5)
$$\lim_{|x| \to \infty} \frac{\rho_1(x)}{\rho_2(x)} = 0$$

Then $st_A - \lim_n ||L_n f - f||_{\rho_2} = 0$ for all $f \in C_{\rho_1}(R)$ if only if $st_A - \lim_n ||L_n F_{\nu} - F_{\nu}||_{\rho_1} = 0$ for all $\nu = 0, 1, 2$.

Where $F_{\nu} = \frac{x^{\nu} \rho_1(x)}{1+x^2}$, $\nu = 0, 1, 2$.

We consider the weight functions $\rho_1(x) = 1 + x^2$, $\rho_2(x) = 1 + x^{2\alpha}$, $\alpha > 1$.

Further on, we consider a sequence $(q_m)_m, q_m \in (0,1)$ such that

$$(6) st - \lim_{m} q_m = 1$$

From the (6) we obtain also that $st - \lim_{m} q_m^p = 1$, for p a fixed natural number.

Theorem 4.2 Let $(q_n)_n$ be a sequence satisfying (6). Then for all non-decreasing $f \in C_{\rho_0}(R_+)$ we have

$$st - \lim \|\tilde{B}_{m,p}(f;q_n;\cdot) - f\|_{\rho_{\alpha}} = 0, \alpha > 0$$

Proof

It is clear that

(7)
$$st - \lim_{m} \|\tilde{B}_{m,p}(e_0; q_m; \cdot) - e_0\|_{\rho_0} = 0.$$

Based on Lemma 2.1 we have

$$\left\| \tilde{B}_{m,p}(e_1; q_m; x) - e_1(x) \right\|_{\rho_0} = \sup_{x \in R_+} \frac{\left| \frac{x[m+p]}{[m]} - x \right|}{1 + x^2} \le \|e_1\|_{\rho_0} \left| \frac{[m+p]}{[m]} - 1 \right|$$

Taking into account that $st - \lim_{m} q_m = 1$ and $st - \lim_{m} \left| \frac{[m+p]}{[m]} - 1 \right| = 0$ the following take place

(8)
$$st - \lim_{m} \|\tilde{B}_{m,p}(e_1; q_m; \cdot) - e_1\|_{\rho_0} = 0$$

Using the last relation from Lemma 2.1 we obtain

$$\frac{\left|\tilde{B}_{m,p}(e_2;q_m;x) - e_2(x)\right|}{1 + x^2} \le \|e_2\|_{\rho_0} \left| \frac{[m+p]^2}{[m]^2} - \frac{[m+p]}{[m]^2} - 1 \right| + \|e_1\|_{\rho_0} \frac{[m+p]}{[m]^2}$$

From the next relation

$$st - \lim_{m} \left| \frac{[m+p]^2}{[m]^2} - \frac{[m+p]}{[m]^2} - 1 \right| = 0$$

we have consequently

(9)
$$st - \lim_{m} \|\tilde{B}_{m,p}(e_2; q_m; \cdot) - e_2\|_{\rho_0} = 0.$$

Finally, using (7), (8), (9) the proof follows from Theorem 3.1 by choosing $A = C_1$, the Cesaro matrix of order one and $\rho_0(x) = 1 + x^2$, $\rho_2(x) = 1 + x^{2+\alpha}$, $x \in R_+$, $\alpha > 0$.

References

- [1] Agratini O., On statistical approximation in spaces of continuous functions, Positivity, 13(2009), 735-743;
- [2] Altomare F., Campiti M., Korovkin-type approximation theory and applications, Berlin, Walter de Gruyter, 1994
- [3] A. Aral, O. Doğru, Bleimann, Butzer, and Hahn Operators based on the q-integers, Journal of Inequalities and Applications, vol. 2007,
- [4] Barbosu D., **Some generalized bivariate Bernstein operators**, Math. Notes (Miskolc) 1,3-10 (2000)
- [5] Doğru O., Duman O., Statistical approximation of Meyer-König and Zeller operators based on q-integers, Publ. Math. Debrecen 68, 199-214 (2006)
- [6] Doğru O., Gupta V., Korovkin-type approximation properties of bivariate q-Meyer-König and Zeller operators , Calcolo $43,\,51-63$ (2006)

- [7] Dogru O., Muraru C.V., **Statistical approximations by a Stancu type** bivariate generalization of Meyer-Konig and Zeller type operators, Mathematical and Computer Modelling, vol. 48, issues 5-6, September 2008, 961-968
- [8] Duman O., Orhan C., Statistical approximation by positive linear operators, Studia Math., 2006, 161,187-197;
- [9] Fast H., Sur la convergence statistique, Collog. Math.2(1951), 241-244.
- [10] Goodman T.N.T., Oru H., Phillips G.M., Convexity and generalized Bernstein polynomials, Proc. Edinburgh Math. Soc. 42(2), 179-190 (1999)
- [11] Gupta V., Radu C., Statistical approximation properties of q-Baskakov-Kantorovich operators, Central European Journal of Mathematics, 7(4), 2009, 809-818
- [12] C.V. Muraru, On a generalized q-Bernstein- Schurer polynomials, Studia Universitatis, ser. Mathematica (to be appear)
- [13] Philips, G.M., **Bernstein polynomials based on q-integers**, Ann.Numer.Math. 4(1997),511-518.
- [14] Trif T., Meyer-König and Zeller operators based on q-integers, Rev. Anal. Numer. Theor. Approx., 29, 221-229 (2000)

"Vasile Alecsandri" University of Bacău Faculty of Sciences Department of Mathematics and Informatics Calea Mărășești 157, Bacău 600115, ROMANIA