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Abstract. A mechanical system Q generated by a Lagrangian
L (t, z, &) is considered, whose the evolution equations is described by
the Euler-Lagrange equations (2.1.). The geometry of the dynamical
system determined by Q is the geometry of a semispray whose inte-
gral curves are the evolution equations of ). The theory is extended
to Lagrangians of higher order.

1. INTRODUCTION

General theory of mechanical Lagrangian systems was realized by
R.Miron [1] .

We consider a Lagrange space L" = (M, L(x,y), F;(x,y)) where
F;(z,y)are the external forces.

Following the Miron’s theory we take the evolution equations of

(L) 4 (%) - L =Ry =%

These equations are equivalent with the system of differential equa-
tions of se2chd order:

(1.2.) L2 +2G (2, &) = 1Fi(z, &)

dt?
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where ‘ 3

(1.3) F' = g F;

and '

(1.4) G =4 (2ky - &)

The system of differential equations (1.2) defines a dynamical sys-
tem of second order.
The solution curves of evolution equations (1.2) are integral curves

of S on TM = TM\{0}.
(1.5) S =y L —2G — 1F)2

ox? 4 oyt

~

S is a semispray on the phases space T'M.
The geometry of mechanical Lagrangian systems is determined by

the geometry of the pair (T'M,S5).
2. MAIN RESULT

Following the Miron’s theory from mechanical Lagrangian systems,
we obtain some results for Lagrange dynamical systems.

The dynamical systems determined by mechanical systems are given
by Euler-Lagrange equations or by differential equations of the order
2 obtained in variational problems for the Lagrangians which depend
on the time t, on the material points and on their velocity.

Let us assume that an mechanical system (Q generated by a La-
grangian L (t, x, ¥) is given, in which ¢ is time, z = ('), i =1,...,n
is a material point and i* = % the velocity.

The evolution of the system F is described by the Euler — Lagrange
equations

1) oo

These equations actually give the optimally conditions of the con-
sidered system F.

We shall note

(2:2) 9ii = y505s

the metric tensor determined by the Lagrangian L.

The equations (2.1) describe the evolution of the dynamical system
associated to the mechanical system Q.

Developed, they give the system

(2.3) 20; %% = gt — [¥'50 — 5] 5

Two cases are obtained: the metric tensor g;; is non singular or the

metric tensor g;; is singular.
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In the first case, the det (g;;) # 0, in the second det (g;;) = 0.
If we note (g”) (g,])_1 we obtain in the first case:

(2.4) “(z, &) =0
with
i i 27 . 2
(2.4") 2G" = g" [afjaLikxk - a?aéj - %

Thus, the evolution equations of the system Q) are given by a system
of second order equations (2.4), (2.4').

It occurs:
Theorem 1.1 The operator
(2.5) S =il —2G" 2

15 a vectorial field whose integral curves are given by the equations
(2.4).

The demonstration follows the common path expressed in [1].

In the second case, the Euler — Lagrange system of equations could
be reduced to a 1st order system.

For example, let us assume that z has a single coordinate x. Then
(2.3) is written in the form'

_ oL . 92L 2L
(2.6) 2011 G dt2 = o |:x8a'c8w 8t8a::|
with g11 = %37%- But det (g11) = gn
For gi; # 0 the dynamical system is given by the 2"¢ order equa-

tions.

For g;; = 0 the dynamical system is given by an equation of order
one:

(2.6) x?ﬁéx—é’f—aé—?)—%o-
to which the condltlon =0 is added.

This condition leads to o = At ).
Integrating again we get

L(t,z, )=A(t, z)i+ B(t, x).
Substituting in (2.6") we get:

% B % 0A . +4 9B 0B _0
890 ot 890 ox

or further

8A 0B

ot 8x =0
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Thus, the Lagrangian L (¢, x, @) that satisfy the condition g;; =
0 are given by L(t, x, ) = A(t, z)& + B(t, ) and the Euler —
Lagrange equations is reduced to

8A oB
ot 6’x
The study of mechanical systems can be done by Lagrangians of a
higher order which depend on ¢, z, ™M, ... z®): _
(2.7) L (t, z, 2 ... ,x(k)) , x(l) dft A W %

Thus, L depends on time ¢, on dimension z and on the accelerations
xof 1, 2, ..., k order.

In this case, the Euler- Lagrange equations are given by:

(2.8) or — dranty T+ (1) gl = 0

The difficulty of the equations (2.8) in applications consists in the
fact that the equations are of the 2k order and, although they are self
adjunct, it is extremely difficult to determine vectorial space whose
integral curves are given by the equations (2.8).

Assuming %—% = Oand applying the semispray theory from [1], we
shall demonstrate that some evolution equations of (k+1) order which
have a geometrical character and which give the integral curves of a
vector field S determined only by the Lagrangian L can be associated
to the Lagrangians of k order given by (2.1).

Indeed, let us consider the following system of differential equations

oL  _ d 9L __ (1)i _ da? (k)i _ 1 d*a?
(2.9) 57~ gigger = 0, =Tt = g

to which the Lagrangian L (:c, AN ,x’“) of k order satisfies.
In the case of the Lagrangians L which have the fundamental tensor
non singular, that is (g;;) # 0 with

2
(2.10) 9ij = 3 GaiasTT
the equations (2.9) take the equivalent form:
k+1 .4
(2.11) dd;H + (k+1)!G* (t z, 2, 2k =0,

(1)i 1dkar (k)i
=o)L G =
in which the coefficients G* are given by
(2.11) (k+1)G' = 397 [T (3585 — 5rem)]
[' being the nonlinear operator
(2.117) M=z 4+ ka®i 2

Indeed, the equation (2.11) developed, is
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cde®i _ JL (1)j_98 (2)j_0 (k)j__ 08 oL  __
20i % = goaemr — [2W g + 20505 + L+ kW gy | 5o =
_ oL T oL
- ax(k—l)z‘ ax(k)z'

Contracting with g% we get (2.11).

Thus the evolution equations of the systems are given by the system
of differential equations of (k+1) order (2.11).

The following theorem holds:

Theorem 2.2. The operator

(212) S =aWi L +20@ Bt 4 kaWi L — (k+1) G50

has the following properties:

(1) S is a wvector field determined only by the Lagrangian
L (ZL‘, M ,x(k))

(2) The evolution curves of S are given by the integral curves of
the evolution equations (2.11).

Proof. 1) In (1) it is shown that when G* are the coefficients from
the equations (2.11), S is given by (2.12) is a vector field on the space
of the accelerations of k order, T") M

2) The integral curves of S are given by the system

()i (k—1)i (k)i
dr i o e AT ki 4T
dt Todt U dt Todt

Thus, the dynamical system defined by the equations (2.11) is char-
acterized by the vectorial field S which governs the fundamental prop-
erties of the mechanical system described by the Lagrangian L of &
order.

=—(k+1)G
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