"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 20 (2010), No. 2, 21 - 28

INDICATRIX OF A FINSLER VECTOR BUNDLE

MIHAI ANASTASIEI AND MANUELA GÎRŢU

Abstract. We consider a Finsler vector bundle i.e. a vector bundle $\xi:(E,p,M)$ endowed with a smooth function $F:E\to \mathbb{R}, (x,y)\mapsto F(x,y)$ that is positively homogeneous of degree 1 with respect to the variables y in fibres of ξ . Then F(x,y)=1 with a fixed x defines the indicatrix of the given Finsler bundle in the fibre E_x and F(x,y)=1 for every x and y is its indicatrix bundle. We show in Section 2 that the indicatrix is a totally umbilical submanifold in E_x of constant mean curvature -1. The indicatrix bundle is a submanifold of $E\setminus 0$. Assuming that ξ is endowed with a nonlinear connection compatible with F and the base M is a Riemannian manifold we define a Riemannian metric on $E\setminus 0$ and determine the normal to the indicatrix bundle.

Introduction

A nonlinear connection in a vector bundlle (v.b) $\xi = (E, p, M)$ is a distribution that is supplementary to the vertical distribution (vertical subbundle) defined by the kernel of the differential (tangent map) of p. From a nonlinear connection N a linear connection in the vertical bundle over E is easily derived. This is called the Berwald connection associated to N. The vector bundle ξ is called a Finsler vector bundle if it is endowed with a fundamental Finsler function. This determine a Riemannian metric in the vertical bundle but not a nonlinear connection.

Keywords and phrases: Finsler vector bundles, indicatrix, indicatrix bundle.

(2000) Mathematics Subject Classification: 53C07,53C60.

We shall assume these two objects are compatible as it happens in Finsler geometry. This is the content of Section 1. For more details see [1] and [2]. In Section 2 we study the geometry of the indicatrix given by the equation F(x,y)=1 for a fixed $x\in M$ viewed as a submanifold of codimension 1 in the fibre E_x of the vector bundle ξ . We establish the Gauss and Weingarten formulae and we find that the indicatrix is totally umbilical and of mean curvature -1. A case when it is of constant curvature 1 is pointed out. In Section 3 we assume that the base manifold is a Riemannian manifold. We construct on $E\setminus 0$ a Riemannian metric of Sasaki type and determine a normal versor field to the indicatrix bundle as a submanifold of the Riemannian manifold $E\setminus 0$. The notations and terminology are those from [3], [4] and [5]

1. Finsler vector bundles

Let $\xi = (E, p, M)$, $p : E \to M$, be a vector bundle of rank m. Here M is a smooth i.e. C^{∞} manifold of dimension n. The type fibre is \mathbb{R}^m and E is a smooth manifold of dimension n+m. The projection p is a smooth submersion. Let $(U,(x^i))$ be a local chart on M and let $\varepsilon_a(x)$, $x \in U$, be a field of local sections of ξ over U. Then every section A of ξ over U takes the form $A = A^a(x)\varepsilon_a(x)$, $x \in U$, and an element $u \in p^{-1}(x) := E_x$ can be written as $u = y^a\varepsilon_a(x)$, $(y^a) \in \mathbb{R}^m$. The indices i, j, k, \ldots will range over $\{1, 2, \ldots, n\}$ and the indices a, b, c, \ldots will take their values in $\{1, 2, \ldots, m\}$. The convention on summation over repeated indices of the same kind will be used.

The local coordinates on $p^{-1}(U)$ will be (x^i, y^a) and a change of coordinates $(x^i, y^a) \to (\widetilde{x}^i, \widetilde{y}^a)$ on $U \cap \widetilde{U} \neq \emptyset$ has the form

$$(1.1) \qquad \begin{aligned} \widetilde{x}^i &= \widetilde{x}^i(x^1,...,x^n), \ \operatorname{rank}\left(\frac{\partial \widetilde{x}^i}{\partial x^j}\right) = n, \\ \widetilde{y}^a &= M_b^a(x)y^b, \ \operatorname{rank}(M_b^a(x)) = m, \ \ \forall x \in U \cap \widetilde{U}. \end{aligned}$$

On E we have the vertical distribution $u \to V_u E = \operatorname{Ker} p_{x,u}$, where p_* denotes the differential of p. This consists of vectors which are tangent to fibres and it is locally spanned by $\left(\dot{\partial}_a := \frac{\partial}{\partial y^a}\right)$. We shall regard also the vertical distribution as a vector subbundle $VE := \bigcup_{u \in E} V_u E \to E$ of $TE \to E$. Its sections will be called vertical vector fields of E. The tensorial algebra $\mathcal{T}(VE) = \oplus \mathcal{T}_q^p(VE)$, $p,q \in \mathbb{N}$ of this subbundle will be used. Its elements will be indicated by the word "vertical".

Definition 1.1. A nonlinear connection N on E is a distribution $N: u \to N_u E, u \in E$, on E, which is supplementary to the vertical distribution on E.

We take the distribution N as being locally spanned by $\delta_k = \partial_k - N_k^a(x,y)\dot{\partial}_a$, for $\partial_k := \frac{\partial}{\partial x^k}$. By a change of coordinates (1.1), the condition $\delta_k = \frac{\partial \widetilde{x}^i}{\partial x^k} \widetilde{\delta}_i$ is equivalent with

(1.2)
$$\widetilde{N}_{j}^{a} \partial_{k} \widetilde{x}^{j} = M_{b}^{a}(x) N_{k}^{b}(x, y) - \partial_{k} (M_{b}^{a}(x)) y^{b}$$

It is important to notice that from (1.2) it follows that the set of functions $F_{bk}^a(x,y) = \dot{\partial}_b N_k^a(x,y)$ behaves under a change of coordinates (1.1) as the local coefficients of a linear connection in the vertical bundle over ξ , that is (1.3)

$$\widetilde{F}_{bk}^{a}(\widetilde{x}(x),\widetilde{y}(x,y)) = M_{c}^{a}(x)\widetilde{M}_{b}^{d}(\widetilde{x}(x))\frac{\partial x^{i}}{\partial \widetilde{x}^{k}} F_{di}^{c}(x,y) - \partial_{i}(M_{c}^{a}(x))\frac{\partial x^{i}}{\partial \widetilde{x}^{k}} y^{c},$$

where $\left(\frac{\partial x^i}{\partial \widetilde{x}^k}\right)$ is the inverse matrix of $\left(\frac{\partial \widetilde{x}^k}{\partial x^j}\right)$ and (\widetilde{M}_b^d) denotes the inverse matrix of (M_c^b) .

We should like to construct a linear connection D in the vertical bundle $VE \to E$. In order to do this it suffices to provide $D_{\delta_k}\dot{\partial}_a$ and $D_{\dot{\partial}_a}\dot{\partial}_b$. Using (1.3) we have the possibility

(1.4)
$$D_{\delta_k}\dot{\partial}_a = F_{ak}^b(x,y)\dot{\partial}_b, \ D_{\dot{\partial}_b}\dot{\partial}_c = V_{bc}^a(x,y)\dot{\partial}_a,^{\circ}$$

where necessarily $(V_{bc}^a(x,y))$ behave like the components of a vertical tensor field of type (1,2).

In particular, we may take $V_{bc}^a = 0$ and introduce

Definition 1.2. The linear connection D in the vertical bundle $VE \rightarrow E$ given by

(1.4')
$$D_{\delta_k} \dot{\partial}_a = F_{ak}^b(x, y) \dot{\partial}_b, \quad D_{\dot{\partial}_a} \dot{\partial}_b = 0,$$

is called the Berwald connection associated to N.

We notice that , if ξ is endowed with a linear connection of local coefficients $F_{bk}^a(x)$, then the functions

(1.5)
$$N_k^a(x,y) = F_{bk}^a(x,y)y^b,$$

define by setting $\delta_{\dot{k}} = \partial_{\dot{k}} - N_k^a(x,y)\dot{\partial}_a$ a nonlinear connection on E.

We remark that the nonlinear connection (1.5) is positively homogeneous of degree 1 in $y = (y^a)$.

Definition 1.3. A smooth function $F: E := E \setminus 0 \to \mathbb{R}$, $(x,y) \to F(x,y)$ is called a Finsler function if

- (i) $F(x,y) \ge 0$,
- (ii) $F(x, \lambda y) = \lambda F(x, y), \ \forall \lambda > 0,$
- (iii) the matrix with the entries $g_{ab}(x,y) = \frac{1}{2} \dot{\partial}_a \dot{\partial}_b F^2$ is positive definite $(g_{ab}(x,y)\zeta^a\zeta^a > 0 \text{ for } (\zeta^a) \neq 0)$.

When ξ is endowed with a Finsler function F we call it a vector Finsler bundle.

The pairs (E_x, F_x) are called Minkowski spaces and F_x is called a Minkowski norm on E_x . The reason is that F_x , besides the conditions (i)–(iii) from Definition 1.3 satisfies also (see [3] p.6; (iv) $F_x(y) > 0$ whenever $y \neq 0$; (v) $F_x(y_1 + y_2) \leq F_x(y_1) + F_x(y_2)$.

Let $\xi = \tau_M = (TM, \tau, M)$ be the tangent bundle of M. If τ_M is endowed with a Finsler function F, the pair (M, F) is called a Finsler manifold. For the geometry of these manifolds we refer to [3], [5].

The Finsler function F induces the Cartan nonlinear connection $\overset{\circ}{N}{}^{i}_{j}(x,y) = \gamma^{i}_{j0} - C^{i}_{jk}\gamma^{j}_{00}$, where $2\gamma^{i}_{jk} = g^{ih}(\partial_{j}g_{kh} + \partial_{k}g_{jh} - \partial_{h}g_{jk})$, $2C^{i}_{jk} = g^{ih}\dot{\partial}_{h}g_{jk}$, $\gamma^{i}_{j0} = \gamma^{i}_{jk}y^{k}$ and $\gamma^{i}_{00} = \gamma^{i}_{jk}(x,y)y^{j}y^{k}$. Of course, $g_{jk} = \frac{1}{2}\dot{\partial}_{j}\dot{\partial}_{k}F^{2}$ denotes the Finsler metric. This nonlinear connection is p-homogeneous of degree 1 in y.

2. On the geometry of indicatrix of F

Let ξ be a Finsler vector bundle. This means that it is endowed with a Finsler function $F: E \to \mathbb{R}$ that is positively homogeneous of degree 1 in y.

The indicatrix $I_x = \{(x, y) \in E_x \mid F(x, y) = 1\}$ in a fixed x in M is a submanifold of codimension 1 in the Riemannian manifold (E_x, g_x) , where g_x in the basis $\frac{\partial}{\partial y^a}$ has the components $g_{ab}(x, y)$.

As in what follows x is fixed we shall omit it. Let $\overline{\nabla}$ be the Levi-Civita connection of g. Its Christoffel symbols are $\frac{1}{2}g^{ad}(\frac{\partial g_{db}}{\partial y^c} + \frac{\partial g_{dc}}{\partial y^b} - \frac{\partial g_{bc}}{\partial v^d}) = C_{bc}^a$ and the Riemannian curvature can be put in the form

$$S_{b}{}^{a}{}_{cd} = C_{ec}^{a} C_{db}^{e} - C_{eb}^{a} C_{cd}^{e},$$

and verifies

$$(2.2) S_{abcd}y^a = S_{abcd}y^b = \dots = 0,$$

where $S_{abcd} = g_{ae} S_b{}^e{}_{cd}$.

The indicatrix is also described by the equations $F^2(x,y) = 1$ or $g_{ab}y^ay^b = 1$. It can be parameterized in the form

(2.3)
$$y^a = y^a(u^\alpha)$$
, $rank(\frac{\partial y^a}{\partial u^\alpha}) = m - 1$, $\alpha = 1, 2, \dots, m - 1$.

It follows that the vectors $B_{\alpha} = \frac{\partial y^a}{\partial u^{\alpha}} \frac{\partial}{\partial y^a}$ provide a local basis of the tangent bundle over I. We look for a vector field normal to I. By deriving with respect to u^{α} the identity $F^2(x, y^a(u^{\alpha})) \equiv 1$ we get $\frac{\partial F^2}{\partial y^a} \frac{\partial y^a}{\partial u^{\alpha}} = 0$, $\alpha = 1, 2, \ldots, m-1$. But $\frac{\partial F^2}{\partial y^a} = 2g_{ab}y^b$. Hence $g_{ab}\frac{\partial y^a}{\partial u^{\alpha}}y^b = 0$. This means that the vector field $C = y^a(u^{\alpha})\frac{\partial}{\partial y^a}$ is normal on B_{α} for every $\alpha = 1, 2, \ldots, m-1$. Moreover, it is an unitary vector field since $g_{ab}y^a(u^{\alpha})y^b(u^{\alpha}) = 1$. This is nothing but the restriction to I of the Liouville vector field $C = y^a\frac{\partial}{\partial y^a}$.

It satisfies

Lemma 2.1. $\overline{\nabla}_X C = X$ for every vector field X tangent to E_x . **Proof.** Let be $X = X^b(y) \frac{\partial}{\partial y^b}$. We have $\overline{\nabla}_X C = X^b \overline{\nabla}_{\frac{\partial}{\partial y^b}} \left(y^a \frac{\partial}{\partial y^a} \right) = X^b \left(\frac{\partial}{\partial y^b} + y^a C^c_{ab} \frac{\partial}{\partial y^c} \right) = X$, because of $C^c_{ab} y^a = 0$, q.e.d.

Let U, V, W, Z, ... be vector field that are tangent to I. The Weingarten formula $\overline{\nabla}_U C = -AU$, where A is the Weingarten operator and Lemma 2.1 give us A = -I (identity) and so the Gauss and Weigarten formulae for I take the form

(2.4)
$$\overline{\nabla}_U V = \nabla_U V - g(U, V)C, \overline{\nabla}_U C = -U.$$

Here ∇ denotes the Levi-Civita connection induced by $\overline{\nabla}$ on the indicatrix I.

Therefore, we have

Theorem 2.1. The indicatrix I_x in (E_x, g_x) is totally umbilical and of mean curvature H = -1.

Let S, R be the curvature tensor field of $\overline{\nabla}$ and ∇ , respectively. With the notations R(W, Z, U, V) = g(R(U, V)Z, W), S(W, Z, U, V) = g(S(U, V)Z, W) the Gauss equation for I looks as follows: (2.5)

$$S(W, Z, U, V) = R(W, Z, U, V) + g(U, Z)g(V, W) - g(V, Z)g(U, W).$$

It takes the equivalent form

(2.5')
$$S(U,V)Z = R(U,V)Z + g(Z,U)V - g(Z,V)U,$$

which says that the normal component of S(U, V)Z vanishes. As S(U, V)C = 0, we have no other integrability conditions. We write

the Gauss equation (2.5') for $V = B_{\alpha}$, take the inner product of both members by B_{β} and sum up over $\alpha, \beta = 1, 2, ..., m-1$. We get

(2.6)
$$Ric(U,Z) = \overline{Ric}(U,Z) - (n-2)g(U,Z),$$

where Ric is the Ricci tensor of ∇ and \overline{Ric} is the Ricci tensor of $\overline{\nabla}$. From (2.6) it immediately follows

$$(2.7) Sc = \overline{Sc} - (n-1)(n-2),$$

where \overline{Sc} and Sc is the scalar curvature of $\overline{\nabla}$ and ∇ , respectively.

Coming back to the Gauss equation, R(W, Z, U, V) = S(W, Z, U, V) + g(V, Z)g(U, W) - g(U, Z)g(V, W) taking W = U = X, Z = V = Y and dividing the both members by $g(X, X)g(Y, Y) - g^2(X, Y)$ one obtains

(2.8)
$$K(X,Y) = \overline{K}(X,Y) + 1,$$

where K and \overline{K} mean respectively sectional curvatures of 2-plan (X,Y). We have

Theorem 2.2. The indicatrix I is of constant sectional curvature 1 if and only if S vanishes.

Proof. If K = 1, we get $\overline{K} = 0$. It is well known that \overline{K} determines S in such a way that $\overline{K} = 0$ implies S = 0. The converse is obvious.

3. Normal of the indicatrix bundle

The set $IB = (x, y) \in E \setminus 0$, F(x, y) = 1 is a (2n - 1)-dimensional submanifold of $E \setminus 0$. We call it the indicatrix bundle of the vector bundle ξ , extending a term used in Finsler geometry.

We assume that the base M is a Riemannian manifold with the Riemannian metric of local coefficients h_{ij} . Then we may consider a Riemannian metric of Sasaki type on $E \setminus 0$ defined in the adapted basis as follows: $G = h_{ij} dx^i dx^j + g_{ab} \delta y^a \delta y^b$. Moreover, we assume that ξ is endowed with a nonlinear connection that is compatible with F i.e. the condition $\delta_i F = 0$, holds. We are interested to find the unit normal vector field to IB.

Let be

(3.1)
$$x^i = x^i(u^\alpha), y^i = y^i(u^\alpha), \alpha = 1, 2, ..., 2n - 1$$

a parametrization of the submanifold IB. The local vector fields $\frac{\partial}{\partial u^{\alpha}}$ that form a basis of the tangent space to IB can be put in the form

(3.2)
$$\frac{\partial}{\partial u^{\alpha}} = \frac{\partial x^{i}}{\partial u^{\alpha}} \delta_{i} + \left(\frac{\partial y^{i}}{\partial u^{\alpha}} + N_{j}^{i}(x, y) \frac{\partial x^{j}}{\partial u^{\alpha}} \right) \dot{\partial}_{i}.$$

If one derives the identity $F(x(u^{\alpha}), y(u^{\alpha})) \equiv 1$ with respect to u^{α} , one obtains

(3.3)
$$(\delta_i F) \frac{\partial x^i}{\partial u^\alpha} + (\dot{\partial}_i F) \left(\frac{\partial y^i}{\partial u^\alpha} + N_j^i \frac{\partial x^j}{\partial u^\alpha} \right) \equiv 0.$$

On using (3.2) and (3.3) we see that the vector field C is normal to IB since

$$(3.4) \qquad G(\frac{\partial}{\partial u^{\alpha}}, y^{a}\dot{\partial}_{a}) = (g_{ab}y^{b}) \left(\frac{\partial y^{a}}{\partial u^{\alpha}} + N_{j}^{a}(x(u), y(u)) \frac{\partial x^{j}}{\partial u^{\alpha}} \right) = 0.$$

for every $\alpha = 1, 2, ..., 2n - 1$.

References

- [1] Anastasiei, M., *The geometry of Berwald Cartan spaces*, Algebras, Groups and geometries, vol.21(3),2004, 251-262.
- [2] Anastasiei, M., Metrizable linear connections in vector bundles, Publ.Math.Debrecen,vol.62(2003),277-287.
- [3] Bao, D., Chern, S.-S., Shen, Z., An Introduction to Riemann–Finsler Geometry, Springer–Verlag New York, Inc., 2000.
- [4] Matsumoto, M., Foundations of Finsler Geometry and Special Finsler Spaces Kaisheisha Press, Otsu, 1986
- [5] Miron, R., Anastasiei, M., The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Academic Publishers. FTPH 59, 1994.

Mihai Anastasiei Faculty of Mathematics, University "Al.I.Cuza" Iaşi 700506, Iaşi, Romania and Mathematics Institute "O.Mayer" Romanian Academy Iaşi Branch 700506, Iaşi, Romania email: anastas@uaic.ro Manuela Gîrţu
"Vasile Alecsandri" University of Bacău
Faculty of Sciences
Department of Mathematics and Informatics
Calea Mărăşeşti 157, Bacău 600115, ROMANIA
email: girtum@yahoo.com