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INDICATRIX OF A FINSLER VECTOR BUNDLE

MIHAI ANASTASIEI AND MANUELA GÎRŢU

Abstract. We consider a Finsler vector bundle i.e. a vector bundle
ξ : (E, p,M) endowed with a smooth function F : E → IR, (x, y) 7→
F (x, y) that is positively homogeneous of degree 1 with respect to the
variables y in fibres of ξ. Then F (x, y) = 1 with a fixed x defines the
indicatrix of the given Finsler bundle in the fibre Ex and F (x, y) = 1
for every x and y is its indicatrix bundle. We show in Section 2 that the
indicatrix is a totally umbilical submanifold in Ex of constant mean
curvature −1. The indicatrix bundle is a submanifold of E \ 0 . As-
suming that ξ is endowed with a nonlinear connection compatible with
F and the base M is a Riemannian manifold we define a Riemannian
metric on E \ 0 and determine the normal to the indicatrix bundle.

Introduction

A nonlinear connection in a vector bundlle (v.b) ξ = (E, p,M) is a
distribution that is supplementary to the vertical distribution (vertical
subbundle) defined by the kernel of the differential (tangent map) of
p. From a nonlinear connection N a linear connection in the vertical
bundle over E is easily derived. This is called the Berwald connection
associated to N . The vector bundle ξ is called a Finsler vector bundle
if it is endowed with a fundamental Finsler function. This determine
a Riemannian metric in the vertical bundle but not a nonlinear con-
nection.

————————————–
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We shall assume these two objects are compatible as it happens in
Finsler geometry. This is the content of Section 1.For more details see
[1]and [2]. In Section 2 we study the geometry of the indicatrix given
by the equation F (x, y) = 1 for a fixed x ∈M viewed as a submanifold
of codimension 1 in the fibre Ex of the vector bundle ξ. We establish
the Gauss and Weingarten formulae and we find that the indicatrix
is totally umbilical and of mean curvature −1. A case when it is of
constant curvature 1 is pointed out. In Section 3 we assume that the
base manifold is a Riemannian manifold. We construct on E \ 0 a
Riemannian metric of Sasaki type and determine a normal versor field
to the indicatrix bundle as a submanifold of the Riemannian manifold
E \ 0 .The notations and terminology are those from [3], [4] and [5]

1. Finsler vector bundles

Let ξ = (E, p,M), p : E →M , be a vector bundle of rank m. Here
M is a smooth i.e. C∞ manifold of dimension n. The type fibre is IRm

and E is a smooth manifold of dimension n+m. The projection p is a
smooth submersion. Let (U, (xi)) be a local chart on M and let εa(x),
x ∈ U , be a field of local sections of ξ over U . Then every section A
of ξ over U takes the form A = Aa(x)εa(x), x ∈ U , and an element
u ∈ p−1(x) := Ex can be written as u = yaεa(x), (ya) ∈ IRm. The
indices i, j, k, ... will range over {1, 2, ..., n} and the indices a, b, c, ...
will take their values in {1, 2, ...,m}. The convention on summation
over repeated indices of the same kind will be used.

The local coordinates on p−1(U) will be (xi, ya) and a change of

coordinates (xi, ya)→ (x̃i, ỹa) on U ∩ Ũ 6= ∅ has the form

(1.1)
x̃i = x̃i(x1, ..., xn), rank

(
∂x̃i

∂xj

)
= n,

ỹa = Ma
b (x)yb, rank(Ma

b (x)) = m, ∀x ∈ U ∩ Ũ .

On E we have the vertical distribution u→ VuE = Ker px,u, where p∗
denotes the differential of p. This consists of vectors which are tangent

to fibres and it is locally spanned by

(
∂̇a :=

∂

∂ya

)
. We shall regard

also the vertical distribution as a vector subbundle V E :=
⋃
u∈E

VuE →

E of TE → E. Its sections will be called vertical vector fields of E.
The tensorial algebra T (V E) = ⊕T pq (V E), p, q ∈ IN of this subbundle
will be used. Its elements will be indicated by the word ”vertical”.
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Definition 1.1. A nonlinear connection N on E is a distribution
N : u → NuE, u ∈ E, on E, which is supplementary to the vertical
distribution on E.

We take the distribution N as being locally spanned by δk =

∂k − Na
k (x, y)∂̇a, for ∂k :=

∂

∂xk
. By a change of coordinates (1.1),

the condition δk =
∂x̃i

∂xk
δ̃i is equivalent with

(1.2) Ña
j ∂kx̃

j = Ma
b (x)N b

k(x, y)− ∂k(Ma
b (x))yb

It is important to notice that from (1.2) it follows that the set of

functions F a
bk(x, y) = ∂̇bN

a
k (x, y) behaves under a change of coordinates

(1.1) as the local coefficients of a linear connection in the vertical
bundle over ξ, that is
(1.3)

F̃ a
bk(x̃(x), ỹ(x, y)) = Ma

c (x)M̃d
b (x̃(x))

∂xi

∂x̃k
F c
di(x, y)− ∂i(Ma

c (x))
∂xi

∂x̃k
yc,

where

(
∂xi

∂x̃k

)
is the inverse matrix of

(
∂x̃k

∂xj

)
and (M̃d

b ) denotes the

inverse matrix of (M b
c ).

We should like to construct a linear connection D in the vertical
bundle V E → E. In order to do this it suffices to provide Dδk ∂̇a and

D∂̇a
∂̇b. Using (1.3) we have the possibility

(1.4) Dδk ∂̇a = F b
ak(x, y)∂̇b, D∂̇b

∂̇c = V a
bc(x, y)∂̇a,

◦

where necessarily (V a
bc(x, y)) behave like the components of a vertical

tensor field of type (1, 2).
In particular, we may take V a

bc = 0 and introduce

Definition 1.2. The linear connection D in the vertical bundle V E →
E given by

(1.4’) Dδk ∂̇a = F b
ak(x, y)∂̇b, D∂̇a

∂̇b = 0,

is called the Berwald connection associated to N .

We notice that , if ξ is endowed with a linear connection of local
coefficients F a

bk(x), then the functions

(1.5) Na
k (x, y) = F a

bk(x, y)yb,

define by setting δk̇ = ∂k̇ −Na
k (x, y)∂̇a a nonlinear connection on E.
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We remark that the nonlinear connection (1.5) is positively homo-
geneous of degree 1 in y = (ya).

Definition 1.3. A smooth function F : E := E \ 0 → IR, (x, y) →
F (x, y) is called a Finsler function if

(i) F (x, y) ≥ 0,
(ii) F (x, λy) = λF (x, y), ∀λ > 0,

(iii) the matrix with the entries gab(x, y) = 1
2
∂̇a∂̇bF

2 is positive
definite (gab(x, y)ζaζa > 0 for (ζa) 6= 0).

When ξ is endowed with a Finsler function F we call it a vector Finsler
bundle.

The pairs (Ex, Fx) are called Minkowski spaces and Fx is called a
Minkowski norm on Ex. The reason is that Fx, besides the conditions
(i)–(iii) from Definition 1.3 satisfies also (see [3] p.6; (iv) Fx(y) > 0
whenever y 6= 0 ; (v) Fx(y1 + y2) ≤ Fx(y1) + Fx(y2).

Let ξ = τM = (TM, τ,M) be the tangent bundle of M . If τM is
endowed with a Finsler function F , the pair (M,F ) is called a Finsler
manifold. For the geometry of these manifolds we refer to [3], [5].

The Finsler function F induces the Cartan nonlinear connection
◦
N i
j(x, y) = γij0 − Ci

jkγ
j
00, where 2γijk = gih(∂jgkh + ∂kgjh − ∂hgjk),

2Ci
jk = gih∂̇hgjk, γ

i
j0 = γijky

k and γi00 = γijk(x, y)yjyk. Of course,

gjk =
1

2
∂̇j ∂̇kF

2 denotes the Finsler metric. This nonlinear connection

is p–homogeneous of degree 1 in y.

2. On the geometry of indicatrix of F

Let ξ be a Finsler vector bundle. This means that it is endowed
with a Finsler function F : E → IR that is positively homogeneous of
degree 1 in y.

The indicatrix Ix = {(x, y) ∈ Ex |F (x, y) = 1} in a fixed x in M is
a submanifold of codimension 1 in the Riemannian manifold (Ex, gx),
where gx in the basis ∂

∂ya
has the components gab(x, y).

As in what follows x is fixed we shall omit it. Let ∇ be the Levi-
Civita connection of g. Its Christoffel symbols are 1

2
gad(∂gdb

∂yc
+ ∂gdc

∂yb
−

∂gbc
∂yd

) = Ca
bc and the Riemannian curvature can be put in the form

(2.1) Sb
a
cd = Ca

ecC
e
db − Ca

ebC
e
cd,

and verifies

(2.2) Sabcdy
a = Sabcdy

b = . . . = 0,
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where Sabcd = gaeSb
e
cd.

The indicatrix is also described by the equations F 2(x, y) = 1 or
gaby

ayb = 1. It can be parameterized in the form

(2.3) ya = ya(uα), rank(
∂ya

∂uα
) = m− 1, α = 1, 2, . . . ,m− 1.

It follows that the vectors Bα = ∂ya

∂uα
∂
∂ya

provide a local basis of the

tangent bundle over I. We look for a vector field normal to I. By
deriving with respect to uα the identity F 2(x, ya(uα)) ≡ 1 we get
∂F 2

∂ya
∂ya

∂uα
= 0, α = 1, 2, . . . ,m−1. But ∂F 2

∂ya
= 2gaby

b. Hence gab
∂ya

∂uα
yb = 0.

This means that the vector field C = ya(uα) ∂
∂ya

is normal on Bα for

every α = 1, 2, . . . ,m− 1. Moreover, it is an unitary vector field since
gaby

a(uα)yb(uα) = 1. This is nothing but the restriction to I of the
Liouville vector field C = ya ∂

∂ya
.

It satisfies
Lemma 2.1. ∇XC = X for every vector field X tangent to Ex.
Proof. Let be X = Xb(y) ∂

∂yb
. We have ∇XC =

Xb∇ ∂

∂yb

(
ya ∂

∂ya

)
= Xb

(
∂
∂yb

+ yaCc
ab

∂
∂yc

)
= X, because of Cc

aby
a = 0,

q.e.d.
Let U, V,W,Z, . . . be vector field that are tangent to I. The Wein-

garten formula ∇UC = −AU , where A is the Weingarten operator and
Lemma 2.1 give us A = −I (identity) and so the Gauss and Weigarten
formulae for I take the form

(2.4) ∇UV = ∇UV − g(U, V )C,∇UC = −U.
Here ∇ denotes the Levi-Civita connection induced by ∇ on the

indicatrix I.
Therefore, we have
Theorem 2.1. The indicatrix Ix in (Ex, gx) is totally umbilical and

of mean curvature H = −1.
Let S,R be the curvature tensor field of ∇ and ∇, respectively.

With the notations R(W,Z,U, V ) = g(R(U, V )Z,W ), S(W,Z,U, V ) =
g(S(U, V )Z,W ) the Gauss equation for I looks as follows:
(2.5)
S(W,Z,U, V ) = R(W,Z,U, V ) + g(U,Z)g(V,W )− g(V, Z)g(U,W ).

It takes the equivalent form

(2.5’) S(U, V )Z = R(U, V )Z + g(Z,U)V − g(Z, V )U,

which says that the normal component of S(U, V )Z vanishes. As
S(U, V )C = 0, we have no other integrability conditions. We write
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the Gauss equation (2.5’) for V = Bα, take the inner product of both
members by Bβ and sum up over α, β = 1, 2, . . . ,m− 1. We get

(2.6) Ric(U,Z) = Ric(U,Z)− (n− 2)g(U,Z),

where Ric is the Ricci tensor of ∇ and Ric is the Ricci tensor of ∇.
From (2.6) it immediately follows

(2.7) Sc = Sc− (n− 1)(n− 2),

where Sc and Sc is the scalar curvature of ∇ and ∇, respectively.
Coming back to the Gauss equation, R(W,Z,U, V ) =

S(W,Z,U, V ) + g(V, Z)g(U,W ) − g(U,Z)g(V,W ) taking
W = U = X, Z = V = Y and dividing the both members by
g(X,X)g(Y, Y )− g2(X, Y ) one obtains

(2.8) K(X, Y ) = K(X, Y ) + 1,

where K and K mean respectively sectional curvatures of 2-plan
(X, Y ). We have

Theorem 2.2. The indicatrix I is of constant sectional curvature
1 if and only if S vanishes.

Proof. If K = 1, we get K = 0. It is well known that K
determines S in such a way that K = 0 implies S = 0. The converse
is obvious.

3. Normal of the indicatrix bundle

The set IB = (x, y) ∈ E \ 0, F (x, y) = 1 is a (2n − 1)-dimensional
submanifold of E \ 0. We call it the indicatrix bundle of the vector
bundle ξ, extending a term used in Finsler geometry.

We assume that the base M is a Riemannian manifold with the
Riemannian metric of local coefficients hij. Then we may consider a
Riemannian metric of Sasaki type on E \ 0 defined in the adapted
basis as follows : G = hijdx

idxj + gabδy
aδyb. Moreover, we assume

that ξ is endowed with a nonlinear connection that is compatible with
F i.e. the condition δiF = 0, holds. We are interested to find the unit
normal vector field to IB.

Let be

(3.1) xi = xi(uα), yi = yi(uα), α = 1, 2, ..., 2n− 1
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a parametrization of the submanifold IB. The local vector fields
∂

∂uα
that form a basis of the tangent space to IB can be put in the form

(3.2)
∂

∂uα
=
∂xi

∂uα
δi +

(
∂yi

∂uα
+N i

j(x, y)
∂xj

∂uα

)
∂̇i.

If one derives the identity F (x(uα), y(uα)) ≡ 1 with respect to uα, one
obtains

(3.3) (δiF )
∂xi

∂uα
+ (∂̇iF )

(
∂yi

∂uα
+N i

j

∂xj

∂uα

)
≡ 0.

On using (3.2) and (3.3) we see that the vector field C is normal to
IB since

(3.4) G(
∂

∂uα
, ya∂̇a) = (gaby

b)

(
∂ya

∂uα
+Na

j (x(u), y(u))
∂xj

∂uα
) = 0 .

for every α = 1, 2, ..., 2n− 1.
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Faculty of Sciences
Department of Mathematics and Informatics
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