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INDICATRIX OF A FINSLER VECTOR BUNDLE

MIHAT ANASTASIEI AND MANUELA GIRTU

Abstract. We consider a Finsler vector bundle i.e. a vector bundle
¢ : (E,p, M) endowed with a smooth function F' : F — IR, (z,y) —
F(z,y) that is positively homogeneous of degree 1 with respect to the
variables y in fibres of £&. Then F'(z,y) = 1 with a fixed = defines the
indicatrix of the given Finsler bundle in the fibre E, and F(z,y) = 1
for every x and y is its indicatrix bundle. We show in Section 2 that the
indicatrix is a totally umbilical submanifold in F, of constant mean
curvature —1. The indicatrix bundle is a submanifold of '\ 0 . As-
suming that ¢ is endowed with a nonlinear connection compatible with
F and the base M is a Riemannian manifold we define a Riemannian
metric on £\ 0 and determine the normal to the indicatrix bundle.

INTRODUCTION

A nonlinear connection in a vector bundlle (v.b) £ = (E,p, M) is a
distribution that is supplementary to the vertical distribution (vertical
subbundle) defined by the kernel of the differential (tangent map) of
p. From a nonlinear connection N a linear connection in the vertical
bundle over E is easily derived. This is called the Berwald connection
associated to V. The vector bundle £ is called a Finsler vector bundle
if it is endowed with a fundamental Finsler function. This determine
a Riemannian metric in the vertical bundle but not a nonlinear con-
nection.
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We shall assume these two objects are compatible as it happens in
Finsler geometry. This is the content of Section 1.For more details see
[1]and [2]. In Section 2 we study the geometry of the indicatrix given
by the equation F'(z,y) = 1 for a fixed x € M viewed as a submanifold
of codimension 1 in the fibre E, of the vector bundle £. We establish
the Gauss and Weingarten formulae and we find that the indicatrix
is totally umbilical and of mean curvature —1. A case when it is of
constant curvature 1 is pointed out. In Section 3 we assume that the
base manifold is a Riemannian manifold. We construct on £\ 0 a
Riemannian metric of Sasaki type and determine a normal versor field
to the indicatrix bundle as a submanifold of the Riemannian manifold
E '\ 0 .The notations and terminology are those from [3], [4] and [5]

1. FINSLER VECTOR BUNDLES

Let £ = (E,p, M), p: E— M, be a vector bundle of rank m. Here
M is a smooth i.e. € manifold of dimension n. The type fibre is R™
and FE is a smooth manifold of dimension n 4+ m. The projection p is a
smooth submersion. Let (U, (z')) be a local chart on M and let &,(x),
x € U, be a field of local sections of £ over U. Then every section A
of & over U takes the form A = A%x)e,(z), x € U, and an element
u € p~!(z) := E, can be written as u = y%,(z), (y*) € R™. The
indices 1, j, k, ... will range over {1,2,...,n} and the indices a,b,c, ...
will take their values in {1,2,...;m}. The convention on summation
over repeated indices of the same kind will be used.

The local coordinates on p~(U) will be (z,y*) and a change of

coordinates (27, y%) — (F,7*) on UNU # 0 has the form
T =7z, ..., 2"), rank <8$> =n,

7" = Ma(z)y?, rank(Mg(z)) =m, YVeeUNU.

(1.1)

On E we have the vertical distribution v — V, F = Ker p, ,,, where p,
denotes the differential of p. This consists of vectors which are tangent

0

to fibres and it is locally spanned by <(9a = 8_> . We shall regard
ya

also the vertical distribution as a vector subbundle V E := U V. —

uerR
E of TE — E. Its sections will be called vertical vector fields of F.

The tensorial algebra 7(VE) = @7P(VE), p,q € IN of this subbundle

will be used. Its elements will be indicated by the word ”vertical”.
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Definition 1.1. A nonlinear connection N on F is a distribution
N :u— N,E, u e E, on E, which is supplementary to the vertical
distribution on E.

We take the distribution N as being locally spanned by §, =
. 0

Ok — N (2,9)0,, for O := pe By a change of coordinates (1.1),
x

0; is equivalent with

Dk
(1.2) N;OWE = My () Ny (2, y) — Ou(My' (2))y"

It is important to notice that from (1.2) it follows that the set of
functions F (x,y) = O, N2 (z,y) behaves under a change of coordinates

(1.1) as the local coefficients of a linear connection in the vertical
bundle over &, that is

the condition d; =

(1.3)
~a -~ -~ a A rd i~ axl C a axl C
Fiy (@), 3l )) = M ()M (@) 55 Filary) = (M (@) 5 v

here (22) is the i of (22 and (3T¢) d h
where ok 1s the inverse matrix o I and (Mf) denotes the

inverse matrix of (M?).

We should like to construct a linear connection D in the vertical
bundle VE — E. In order to do this it suffices to provide Ds, 0, and
Dy 0y. Using (1.3) we have the possibility
(1.4) D5, 00 = Fly(2,4)0b, D00 = Vit(,y)0u,°

where necessarily (V%(z,y)) behave like the components of a vertical
tensor field of type (1,2).
In particular, we may take V,% = 0 and introduce

Definition 1.2. The linear connection D in the vertical bundle VE —
E given by

(1.4’) ng(’?a = F(fk(x,y)ab, Daﬁb = 0,

is called the Berwald connection associated to N.

We notice that , if € is endowed with a linear connection of local
coefficients F3 (), then the functions

(1.5) Ni(z,y) = Fi(z,9)y",

define by setting d; = 9; — N (=, y)@a a nonlinear connection on FE.
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We remark that the nonlinear connection (1.5) is positively homo-
geneous of degree 1 in y = (y*).

Definition 1.3. A smooth function F': £ := F\ 0 — IR, (z,y) —
F(z,y) is called a Finsler function if

() F(z,y) >0,

(ii) F(x,\y) = AF(z,y), VA >0,

(iii) the matrix with the entries gq(z,y) = % D,0,F2 is positive

definite (gup(z,y)C¢* > 0 for (¢*) # 0).

When ¢ is endowed with a Finsler function I’ we call it a vector Finsler
bundle.

The pairs (E,, F,) are called Minkowski spaces and F is called a
Minkowski norm on FE,. The reason is that F),, besides the conditions
(i)—(iii) from Definition 1.3 satisfies also (see [3] p.6; (iv) Fi(y) > 0
whenever y # 05 (V) Fo(y1 + y2) < Fo(y1) + Fi(y2).

Let &€ = 7oy = (T'M, 7, M) be the tangent bundle of M. If 7, is
endowed with a Finsler function F', the pair (M, F') is called a Finsler
manifold. For the geometry of these manifolds we refer to [3], [5].

_ The Finsler function F' induces the Cartan nonlinear connection

Nj-(%y) = _’Yﬁ'o - C;W%m where 273% = gih<ajgkh + Okgin — Ongik);
205, = 9" Ohgi, Yoo = ’y;kyk and v, = ’y}k(x,y)yjyk. Of course,
9ik =5 8]8kF ? denotes the Finsler metric. This nonlinear connection

is p~homogeneous of degree 1 in y.

2. ON THE GEOMETRY OF INDICATRIX OF F

Let ¢ be a Finsler vector bundle. This means that it is endowed
with a Finsler function F': E — IR that is positively homogeneous of
degree 1 in y.

The indicatrix I, = {(z,y) € E, | F(z,y) =1} in a fixed z in M is
a submanifold of codimension 1 in the Riemannian manifold (E,, g.),
where g, in the basis % has the components g.(x,y).

As in what follows z is fixed we shall omit it. Let V be the Levi-
Civita connection of g. Its Christoffel symbols are % g“d(aag—;f + %g_;; —

%;’Jb;) = (. and the Riemannian curvature can be put in the form

(2.1) S = CeeCap — CanCoas

C

and verifies

(22) Sabcdya = Sabcdyb = ... = Oa
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where Sabcd = gaeSbecd-
The indicatrix is also described by the equations F?(x,y) = 1 or
gapy®y® = 1. It can be parameterized in the form

a

(2.3)  y* =y (u), mnk’(ay

5 J=m-—1, a=12...,m—1
ua
It follows that the vectors B, = aau%a%a provide a local basis of the

tangent bundle over I. We look for a vector field normal to I. By
deriving with respect to u® the identity F?(x,y*(u®)) = 1 we get

2 a 2 a
%% =0,a=1,2,...,m—1. But gga = 2g,y°. Hence gabgu%yb =0.
This means that the vector field C' = y*(u®) aga is normal on B, for
every a = 1,2,...,m — 1. Moreover, it is an unitary vector field since

Japy®(u®)y®(u®) = 1. This is nothing but the restriction to I of the
Liouville vector field C' = y“%.

It satisfies

Lemma 2.1. VxC = X for every vector field X tangent to E,.

Proof. Let be X = Xb(y)aiyb. We have VxC =
vaaa? (yaaga) =X (6%1, + yaC'jbazc> = X, because of C5y* = 0,
q.e.d.

Let U, V,W, Z, ... be vector field that are tangent to I. The Wein-
garten formula Vi;C' = — AU, where A is the Weingarten operator and
Lemma 2.1 give us A = —I (identity) and so the Gauss and Weigarten
formulae for I take the form

(2.4) VoV =VyV —g(U,V)C,VyC = —U.

Here V denotes the Levi-Civita connection induced by V on the
indicatrix 1.

Therefore, we have

Theorem 2.1. The indicatriz I, in (E,, g.) is totally umbilical and
of mean curvature H = —1.

Let S, R be the curvature tensor field of V and V, respectively.
With the notations R(W, Z,U, V) = g(R(U,V)Z,W), S(W, Z, U, V) =
g(S(U,V)Z, W) the Gauss equation for I looks as follows:

(2.5)
SW,Z,U,V)=RW,Z,UV)+ g(U,Z)g(V,W) — g(V, Z)g(U, W).

It takes the equivalent form
(2.57) S(UVZ =RUV)Z +g(Z,U)V —g(Z,V)U,

which says that the normal component of S(U,V)Z vanishes. As
S(U,V)C = 0, we have no other integrability conditions. We write
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the Gauss equation (2.5%) for V' = B,, take the inner product of both
members by Bg and sum up over o, 3 =1,2,...,m — 1. We get

(2.6) Ric(U, Z) = Ric(U, Z) — (n — 2)g(U, Z),

where Ric is the Ricci tensor of V and Ric is the Ricci tensor of V.
From (2.6) it immediately follows

(2.7) Sc=Sc—(n—1)(n—2),

where Sc and Sc is the scalar curvature of V and V., respectively.

Coming back to the Gauss equation, R(W,Z UV) =
SW,Zz,Uv) + g(V,2)g(UW) — g(UZ)g(V,W) taking
W =U = X, Z =V =Y and dividing the both members by
g(X, X)g(Y,Y) — ¢*(X,Y) one obtains

(2.8) K(X,Y)=K(X,Y)+1,

where K and K mean respectively sectional curvatures of 2-plan
(X,Y). We have

Theorem 2.2. The indicatriz I is of constant sectional curvature
1 if and only if S vanishes.

Proof. If K =1, we get K = 0. It is well known that K
determines S in such a way that K = 0 implies S = 0. The converse
is obvious.

3. NORMAL OF THE INDICATRIX BUNDLE

The set IB = (z,y) € E\ 0, F(z,y) =1 is a (2n — 1)-dimensional
submanifold of £\ 0. We call it the indicatrix bundle of the vector
bundle &, extending a term used in Finsler geometry.

We assume that the base M is a Riemannian manifold with the
Riemannian metric of local coefficients h;;. Then we may consider a
Riemannian metric of Sasaki type on E \ 0 defined in the adapted
basis as follows : G = hydz'dz? + g.,0y*dy°. Moreover, we assume
that £ is endowed with a nonlinear connection that is compatible with
F'i.e. the condition §;F = 0, holds. We are interested to find the unit
normal vector field to I B.

Let be

(3.1) =1 (u),y =y (u*),a=1,2,...2n — 1
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0
a parametrization of the submanifold IB. The local vector fields —
that form a basis of the tangent space to I B can be put in the form

(3.2) 0 _ a—xé‘ <8y + Nz(x,y)gi> 0;.
/u/Oé

oue  u ou® J

If one derives the identity F'(z(u®),y(u®)) = 1 with respect to u®, one
obtains

oxt . Yy’ L0z
(3.3) (&Fb%;+(@F)(&ﬁ+JW8wJ::0

On using (3.2) and (3.3) we see that the vector field C' is normal to
I B since

B4) Gl ) = ) (G + Ny ol o) ) =

for every a =1,2,...,2n — 1.
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