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Abstract: In some cases SPH method is more suitable than Finite Element Method (FEM) 
and this is more and more used also in applied mechanics. In structure numerical analysis 
some parameters essentially influence the results, among these the constants of the material 
models and some specific parameters of the method have a maximum importance. It is 
about the most used material models like plastic-kinematic material model, isotropic-
elastic-failure material model, Johnson-Cook material model and others, which take into 
account the strain rate.  This paper comes with some results of our experience in using of 
the material models together with SPH (Smoothed Particle Hydrodynamics) method. The 
influence of the smoothing length, distance between particles, the number of these are also 
numerical investigated. Our established conclusions, supported by graphics and quantitative 
appreciations could be useful for the researchers working in numerical analysis field. 
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1. INTRODUCTION 
 
SPH (Smoothed Particle Hydrodynamics) method is a griddles Lagrangian technique which comes from 
astrophysics (Lucy, 1977). The method was extended to fluid simulation, especially with free-surface 
(Monaghan, 1992), nowadays SPH method being also used in many scientific fields. Applied mechanics domain 
is perhaps the last one, but it is intensively researched and significant advances have also been made. 
 
As the impact problems are concerned, we could emphasis the numerical analysis ability to simulate such 
problems, which involve large deformations and the enhancement made by using of the erosion algorithm. We 
could say that SPH offers an alternative Lagrangian method for approaching of large deformations, like impact 
problems, being an attractive method since the lack of a grid allows some calculus facilities, including the 
contact modeling and material erosion simulation. 
 
Among others aspects, the material models, its appropriate constants, the specific parameters of the SPH method 
have a maximum importance for acceptable results having a good concordance with the experiments. This paper 
answers to the most important questions which appear for a user of the SPH method. 
 
 
 

                                            
* Corresponding author, email: vnastasescu@yahoo.com 
© 2011 Alma Mater Publishing House 



 
Journal of Engineering Studies and Research – Volume 17 (2011) No. 3                                       57 
 
 

Our numerical investigation is made upon an experimental problem represented by Taylor test. Our conclusions 
and observations are useful in many other problems of the applied mechanics or fluid flow field.  
 
The numerical simulations made by us are based on the using of Ansys/Ls-Dyna program and Autodyne 
program, in which SPH method is implemented and which have a large material library. 
 
 
2. THEORETICAL FUNDAMENTALS OF SPH METHOD 
 
The SPH method belongs to the meshless methods, so the investigated domain is represented by a number of 
nodes, representing the particles of this domain, having their material and mechanical (mass, position, velocity 
etc.) characteristics. Each particle represents an interpolation point on which the material properties are known 
[1-3]. 
 
The boundary conditions have to be imposed to some of particles, according to the problem analyzed, like in the 
case of finite element method. The problem solution is given by the computed results, on all the particles, using 
an interpolation function. We can say that the fundamentals of SPH theory consist in interpolation theory; all the 
behavior laws are transformed into integral equations.  
 

The kernel function, or smoothing function, often called smoothing kernel function, or simply kernel,  gives a 
weighted approximation of the field variable (function) in a point (particle). Integral representation of a function 

, used in the SPH method starts from the following identity (1):  
 

∫
Ω

′′−′= xdxxxfxf )()()( δ      (1) 

 
where f  is a function of a position vector x , which can be an one-, two- or three-dimensional one; )xx( ′−δ  
is a Dirac function, having the properties (2): 
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In equation (1), Ω  is the function domain, which can be a volume, that contains the x , and where )x(f  is 
defined and continuous. By replacing the Dirac function with a smoothing function )h,xx(W ′−  the integral 
representation of )x(f  becomes (3): 

 

∫
Ω

′′−′= xdhxxWxfxf ),()()(      (3) 

 
where W is the smoothing kernel function, or smoothing function, or kernel function. The parameter h , of the 
smoothing function W , is the smoothing length, by which the influence area of the smoothing function W  is 
defined (Figure 1a and 1b). 
 
As long as Dirac delta function is used, the integral representation, described by equation (1), is an exact 
(rigorous) one, but using the smoothing function W  instead of Dirac function, the integral representation can 
only be an approximation. This is the reason for the name of kernel approximation. Using the angle bracket, this 
aspect is underlined and the equation (3) can be rewritten as (4): 
 

∫
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a)                                                                            b) 
Fig. 1. Support domain of kernel function; graphical representation of 2D-Kernel function. 

 
 
The smoothing function  W  is usually chosen to be an even one, which has to satisfy some conditions. The first 
condition, named normalization condition or unity condition is (5): 

 

∫
Ω

=′′− 1),( xdhxxW      (5) 

 
The second condition is the Delta function property and it occures when the smoothing length approaches zero 
(6):  
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The third condition is the compact condition, expressed by (7):  

 
0),( =′− hxxW  when khxx >′−     (7) 

                                        
where k  is a constant related to the smoothing function for point at x , defining the effective non-zero area of 
the smoothing function, as the Figure 2 shows. 
 

 

Fig. 2  Smoothing length. 

 
As the particle approximation is concerned, the continuous integral aproximation (4) can be converted to a 
summation of discretized forms, over all particles belonging to the support domain.  Changing the infinitesimal 
volume xd ′  with the finite volume of  the particle jVΔ , the mass of the particles 

jm  can be written (8): 
 

jjj Vm ρΔ=       (8)  
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and finally, relation (3) becomes (9): 
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The particle approximation of a parameter, described by a function, for particle i , can be expressed by (10): 
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where, 
 

    ),( hxxWW jiij −= ,                       (11) 
 
being the kernel function. The most important requirements of a kernel function are presented below: 

• the smoothing function has to be normalized over its support (12): 
 

∫
Ω

=′′− 1),( xdhxxW               (12) 

 
• the smoothing function has to be compactly supported (13): 

 
0),( =′− hxxW  for khxx >′−                (13) 

 
• the smoothing function has to be positive for any point at x′  within the support domain (14): 

 
0),( ≥′− hxxW                          (14) 

 
• the smoothing function value has to be monotonically decreasing with the increase of the distance 

away from the particle. 
 

• the smoothing function value has to satisfy the Dirac delta function condition as the smoothing 
length approaches to zero: 
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• the smoothing function value has to be an even function (symetric). 

 
The literature presents different smoothing function (also called smoothing kernel function, smoothing kernel, or 
kernel). Theoretically, any function having the properties presented above, can be employed as SPH smoothing 
function. First time, Lucy (1977) used the following bell-shaped function as the smoothing function (16): 
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where α  is 
4
5 , 

π
5  or 

π16
105 , n  is a number representing the space dimension, 
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distance between two points (particles). The graphical representation of this smoothing function and its 
derivatives (first and second) can be seen in the Figure 3. Monaghan in 1992 and Gingold and Monaghan in 
1977 assumed the smoothing function to be a Gaussian (Figure 4), expressed by the relation (17). 
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Many notations used in relation (17) are the same, used in previous type of kernel. The notation α  has the 

following expression: 
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in function of the space dimension (1D, 2D or 3D).   

  

           
    Fig. 3. Smoothing function and its derivates,             Fig. 4. Smoothing function and its derivates,  

used by Lucy in 1977.             used in 1977 and 1992 (Ginglod and Monaghan). 
 

In 1996, Johnson et al. used a quadratic smoothing function to simulate the high velocity impact problem.  
 
The graphical representation of this smoothing function and its derivatives (first and second) can be seen in the 
Figure 5. The expression of the Johnson smoothing function, for s  being between zero and two, is (20): 
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            Fig. 5  Quadratic spline smoothing function                      Fig. 6  The cubic B-spline kernel function  

      and its derivates.                used by Ls-Dyna. 
 
The Ls-Dyna program uses a cubic B-spline kernel function, in the form given by relation (21), where s = r/h, n 
is the number representing the spatial dimension and α  is a constant which has the value: 2/3, 10/7, depending 
on the space dimension (21). 
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The graphical representation of this smoothing function and its derivatives (first and second) can be seen in the 
Figure 6. 
 
A smoothing length too small (not enough particles in the support domain) influence on the calculus efficiency 
and also the accuracy, this going down. A smoothing length too large all the particle properties may be smoothed 
out and finally the accuracy will be a low one.  The best way seems to be a variable smoothing length according 
to calculus and accuracy efficiency. So, many ways already exist for a dinamically evolving of h, for geting a 
suitable number of the neighboring particle, which to remain relatively constant. 
 
The simplest approaching is that the smoothing length to depend on the average density. From this point of view, 
the literature proposed the following relation (22): 
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where h0 and ρ0 are the initial smoothing length and density respectively; d is the number representing the space  
dimension (1D, 2D or 3D, or simply 1, 2, or 3). In 1989, Benz proposed another method, by taking into account 
the time derivative of the smoothing function, in terms of the continuity equation (23): 
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3. SPH PARAMETERS IN ANSYS/LS-DYNA PROGRAM 
 
The user can make a choosing regarding to the the particle approximation, having the following options, by 
FORM parameter (CONTROL_SPH): default formulation (0), renormalization approximation (1), symmetric 
formulation (2), symmetric renormalized approximation (3), tensor formulation (4), fluid particle approximation 
(5), or fluid particle with renormalization approximation (6).  
 
The renormalized, symmetric or symetric renormalized approximation is reffering to the specific forms of the 
momentum equations, for to reduce the errors coming from the particle inconsistency problem. Which of the 
options is the best depends on the problem characteristics, so the right choosing is the user’s task. 
 
In conection with this subject, with the dynamic fluid flows, with SPH formulation for hydrodynamics with 
material strength are also many papers published and this aspect is over the target of this work.  Others options 
can be made regarding to the computation or not of the particle approximation between two different SPH parts 
and regarding to the time integration type for the smoothing length h : 
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The smoothing length h , can be calculated by the program, just the calculus begining, if this is permited to be 
variable during computing simulation, or can has a defined values, established by the user (using parameters 
CSLH, HMIN and HMAX, of SECTION_SPH). There were some posibilities for smoothing length calculus, but 
the last researching lead to a formulation that considers the neighbour particles of a given particle, the particles 
that are included in a sphere centered in xi having a radius of h(xi ) . 
 
Owing to Ls-Dyna conception for implementing of  SPH method, almost all the actual features of LS-DYNA can 
be used with this method, with its classical keywords.  
 
The nodal displacements, forces between the particles, pressure, energy, stresses and others are calculated by the 
program (using the particle approximations of the equations of  mass, momentum, energy conservation) and 
these outcomes can be post-processed. 
 
A connection between particles and finite elements  are possible in a numerical analysis of a structure and also 
the contact between particles and brick and shell elements can be realised by the classical procedures.  
 
 
4. NUMERICAL SIMULATION OF TAYLOR TEST    
 
During World War II, Taylor and later Whiffen conducted tests (the Taylor test) to characterize the dynamic 
compressive yield strength of a variety of metals. They shot metal rods against "rigid" anvils and then measured 
the change in length of the rods to determine a minimum value of the dynamic compressive yield strength [4, 5, 
6]. 
  
For studying the influence of characteristics parameters and material model constants, the authors used 
numerical simulation of Taylor test. A solid cylinder with radius of 5 mm and the length of 50 mm, made of 
1018 steel was considered. Two numerical models were used for studying the impact between this metal rod 
with a rigid wall: FEM and SPH models. 
 
Numerical models were built using two model types; in a first version (FEM1), the cylinder was meshed with 
2993 nodes and 2560 elements (element size being 1.250x1.077x1.077 mm); in the second version (FEM2), the 
cylinder was meshed with 24705 nodes and 23040 elements (element size being 0.625x0.975x0.975 mm). Figure 
7 presents first mesh version.  SPH model consisted in 4000 particles (equal distance between particles 1.00 
mm). Figure 8 (a and b) presents the SPH model. 

 
Fig. 7. First finite element model. 

 

 
a)                                                                       b) 

Fig. 8. SPH model of the bar. 
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For both models, the fundamental measure units were: for length millimeter [mm], for time second [s] and for 
force Newton [N]. So, the mass measure unit will be [Ns2/mm]. Analysis time was established at 0.003 seconds, 
for the stress and displacement field analysis, in a period after the impact, when the velocity changed its sign. 
 
The study of material behavior was based on plastic-kinematic material model. In the Figure 9, deformed shape 
and UX-displacement field are presented, for FE and SPH modeling, for the time of  6e-5 s.  
 
Table 1 presents some of the results for the default values of SPH using. In the Table 2, the same results are 
presented for different values of the parameter FORM. 
 

      
                                                             Fig. 9. UX-displacement field. 
        
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Another researched aspect was the influence of the ratio h/d upon results, especially in the contact zone. The 
quantitative results can be watched looking at Table 3. The best results are obtained for automatic calculus of the 
smoothing length (by the program), or for a ratio h/d = 1 established by the user. 
 

Table 3. The Influence of ratio h/d upon results. 
Bar Head 

UXmax VXmax Models Ratio 
h/d mm mm/s 

FEM2 - 43.390 26557 
automatic 43.475 27295 
h/d = 1.50 51.825 25310 
h/d = 1.25 41.166 23.444 

h/d = 1.00 43.585 
Er. 0.45% 

27535 
Er. 3.68% 

h/d = 0.75 43.182 27936 
h/d = 0.50 25.333 18885 

SPH1 

h/d = 0.25 0.000 0.000 
 
The results of the numerical simulation are strongly determined by the material coefficients used by the material 
model. One of the most used material model, adopted for dynamic analysis, is the Elastic Plastic with Kinematic 

Table 1. Impact effects upon the bar. 
Bar Head Bar Tail 

UXmax VXmax UXmax VXmax Models 
mm mm/s mm mm/s 

FEM 43.390 26557 38.404 28720 

43.475 27295 38.172 26891 
SPH Er. 

0,2% 
Er. 

2,77% 
Er.      

-0.6% 
Er.      -
6,4% 

 

Table 2. The influence of the kernel type. 
Bar Head Bar Tail 

UXmax VXmax UXmax VXmax 
FORM 

parameter mm mm/s mm mm/s 
FORM=1 42.592 25176 37.866 27575 
Er. [%] -1.84 -5.20 -1.40 -3.98 
FORM=2 43.556 25371 38.245 27010 
Er. [%] 0.38 -4.46 -0.41 -5.95 
FORM=3 42.055 24571 37.302 26559 
Er. [%] -3.10 -7.47 -2.87 -7.52 
FORM=5 43.545 25384 38.235 26997 
Er. [%] 0.36 -4.41 -0.44 -5.99 
FORM=6 42.272 25055 37.546 27687 
Er. [%] -2.57 -5.65 -2.23 -3.59 
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Hardening Model, being strain rate dependent plasticity for isotropic materials.  
 
The strain rate is taken into account by Cowper-Symonds model using the coefficients C and P, having the same 
name. The yield function yσ is: 
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where 0σ is the initial yield stress, ef
pε is the effective plastic strain, pE is the plastic hardening modulus which 

is given by: 
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where β  is the hardening parameter that can vary between 0 and 1 depending on plasticity type (0 for kinematic 
and 1 for isotropic, respectively) and ET is the tangent modulus.  For this model, the user has to specify the 
failure strain, for which, elements will be eliminated.  
 
The results of our numerical simulation are strongly determined by the material coefficients used by the material 
model. The Figures 10…15 show such a dependence, when each coefficient, alternatively, was kept constant, 
around its common value, in the case of SPH1 model. 
 

                                      
 Fig. 10. UXmax  versus  C coefficient.                        Fig. 11. UYmax  versus  C coefficient  

                                     
     Fig. 12. UXmax  versus  P coefficient                                        Fig. 13. UYmax  versus  P coefficient  
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    Fig. 14. VXmax versus C coefficient.             Fig. 15. VXmax versus P coefficient.  

 
 
 
7. CONCLUSIONS 
 
For problems like high velocity impact, impact with special materials (ceramics, glass etc), direct interaction 
between solid-fluid and others, the SPH method is a powerful numerical tool. 
 
The best appropriate method, for studying of debris cloud developing and their effects, is only the smoothed 
particle hydrodynamics. There are many aspects when the SPH method is better than FEM and conversely. 
 
Many problems belonging to applied mechanics field, especially those involving large deformations, can be 
solved by SPH method.  
 
Next to the aspects presented in this paper, saving the computer time has to be added. In the SPH modeling, a 
condition, very important for good results, is that the distance between particles to be uniform one. This 
condition seems to be more important than the distance length. 
 
The ratio h/d  has the greatest important; this ratio, for some values, can lead to wrong (unexpected, unrealistic) 
results. For a right choosing of the ratio h/d, the most suitable way is the using of special criterions for it, or to 
use the facilities offered by the program.  
 
Our research shows that a value around 1 (0.9…1.1) for h/d  ratio, could be a right choosing. When a problem 
involves the using of the material models, the model constants have a maximum importance. The results a deeply 
affected by the material constants (like Cowper-Symonds, but all the constants used by different material 
models). 
 
The curves presented in Figures 10…15 show us that these parameters are strongly influenced and surely, the 
errors would be unacceptable. For 1018 steel, the right values for C and P constants are 40 and 5, respectively. 
 
The research of the influence of different parameters upon SPH models used in applied mechanics has to be 
continued. Many others parameters could be studied from this point of view.  
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