Journal of Engineering Studies and Research — Volume 17 (2011) No. 3 56

UPON THE INFLUENCE OF SOME PARAMETERS, IN
NUMERICAL ANALYSIS BY SPH

NASTASESCU VASILE", ILIESCU NICOLAE?

!dssoc. Prof. Military Technical Academy, Bucharest, Romania, Bd. George Cosbuc 81-83,
Sectorul 5, cod 050141

Assoc. Prof. “Politehnica” University of Bucharest, Romania, Str. Splaiul Independentei
313, Sector 6, cod 060042

Abstract: In some cases SPH method is more suitable than Finite Element Method (FEM)
and this is more and more used also in applied mechanics. In structure numerical analysis
some parameters essentially influence the results, among these the constants of the material
models and some specific parameters of the method have a maximum importance. It is
about the most used material models like plastic-kinematic material model, isotropic-
elastic-failure material model, Johnson-Cook material model and others, which take into
account the strain rate. This paper comes with some results of our experience in using of
the material models together with SPH (Smoothed Particle Hydrodynamics) method. The
influence of the smoothing length, distance between particles, the number of these are also
numerical investigated. Our established conclusions, supported by graphics and quantitative
appreciations could be useful for the researchers working in numerical analysis field.
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1. INTRODUCTION

SPH (Smoothed Particle Hydrodynamics) method is a griddles Lagrangian technique which comes from
astrophysics (Lucy, 1977). The method was extended to fluid simulation, especially with free-surface
(Monaghan, 1992), nowadays SPH method being also used in many scientific fields. Applied mechanics domain
is perhaps the last one, but it is intensively researched and significant advances have also been made.

As the impact problems are concerned, we could emphasis the numerical analysis ability to simulate such
problems, which involve large deformations and the enhancement made by using of the erosion algorithm. We
could say that SPH offers an alternative Lagrangian method for approaching of large deformations, like impact
problems, being an attractive method since the lack of a grid allows some calculus facilities, including the
contact modeling and material erosion simulation.

Among others aspects, the material models, its appropriate constants, the specific parameters of the SPH method
have a maximum importance for acceptable results having a good concordance with the experiments. This paper
answers to the most important questions which appear for a user of the SPH method.
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Our numerical investigation is made upon an experimental problem represented by Taylor test. Our conclusions
and observations are useful in many other problems of the applied mechanics or fluid flow field.

The numerical simulations made by us are based on the using of Ansys/Ls-Dyna program and Autodyne
program, in which SPH method is implemented and which have a large material library.

2. THEORETICAL FUNDAMENTALS OF SPH METHOD

The SPH method belongs to the meshless methods, so the investigated domain is represented by a number of
nodes, representing the particles of this domain, having their material and mechanical (mass, position, velocity
etc.) characteristics. Each particle represents an interpolation point on which the material properties are known
[1-3].

The boundary conditions have to be imposed to some of particles, according to the problem analyzed, like in the
case of finite element method. The problem solution is given by the computed results, on all the particles, using
an interpolation function. We can say that the fundamentals of SPH theory consist in interpolation theory; all the
behavior laws are transformed into integral equations.

The kernel function, or smoothing function, often called smoothing kernel function, or simply kernel, gives a
weighted approximation of the field variable (function) in a point (particle). Integral representation of a function

fx), used in the SPH method starts from the following identity (1):

FG) = [ F()8(x = x)ax’ &)

where £ is a function of a position vector x , which can be an one-, two- or three-dimensional one; &(x — x')
is a Dirac function, having the properties (2):

lox=x

o(x—x") :{ 2

0> x=x

In equation (1), £2 is the function domain, which can be a volume, that contains the X, and where 7(x) is
defined and continuous. By replacing the Dirac function with a smoothing function W (x—x', k) the integral
representation of f(x) becomes (3):

) =[£G (x=x', h)dx’ (3)
Q

where  is the smoothing kernel function, or smoothing function, or kernel function. The parameter /%, of the

smoothing function W, is the smoothing length, by which the influence area of the smoothing function W is
defined (Figure 1a and 1b).

As long as Dirac delta function is used, the integral representation, described by equation (1), is an exact
(rigorous) one, but using the smoothing function w instead of Dirac function, the integral representation can
only be an approximation. This is the reason for the name of kernel approximation. Using the angle bracket, this
aspect is underlined and the equation (3) can be rewritten as (4):

()= [ /(W (x = x', h)dx’ @
Q
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Fig. 1. Support domain of kernel function; graphical representation of 2D-Kernel function.

The smoothing function W is usually chosen to be an even one, which has to satisfy some conditions. The first
condition, named normalization condition or unity condition is (5):

[W(x—x" h)dx'=1 (5)
Q

The second condition is the Delta function property and it occures when the smoothing length approaches zero

(6):
}!imOW(x—x',h) =0(x—x") (6)

The third condition is the compact condition, expressed by (7):

W(x—x',h) =0 when |x —x'

> kh (7

where k is a constant related to the smoothing function for point at X, defining the effective non-zero area of
the smoothing function, as the Figure 2 shows.
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Fig. 2 Smoothing length.

As the particle approximation is concerned, the continuous integral aproximation (4) can be converted to a
summation of discretized forms, over all particles belonging to the support domain. Changing the infinitesimal
volume gx' with the finite volume of the particle AV, the mass of the particles m, can be written (8):

mj=AV;p; ©
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and finally, relation (3) becomes (9):

_Xmy
(f(x)=X L f(x)W(x—x;,h) 9)

j=1P;

The particle approximation of a parameter, described by a function, for particle i can be expressed by (10):

N mj
<f(xi> = 1217 S (x )W (10)
=1P
where,
Wy =W(x; —x;,h), (1)

being the kernel function. The most important requirements of a kernel function are presented below:

e the smoothing function has to be normalized over its support (12):

[W(x—x"h)dx' =1 (12)
Q

¢ the smoothing function has to be compactly supported (13):

W(x—x',h)=0 for |x — x'| > kh (13)

¢ the smoothing function has to be positive for any point at x" within the support domain (14):
W(x-x',h)>0 (14)

e the smoothing function value has to be monotonically decreasing with the increase of the distance
away from the particle.

e the smoothing function value has to satisfy the Dirac delta function condition as the smoothing
length approaches to zero:

lim W (x — x', k) = 5(x — x') (15)
h—0

¢ the smoothing function value has to be an even function (symetric).
The literature presents different smoothing function (also called smoothing kernel function, smoothing kernel, or

kernel). Theoretically, any function having the properties presented above, can be employed as SPH smoothing
function. First time, Lucy (1977) used the following bell-shaped function as the smoothing function (16):

a [(1+3s)1-s? ) s<1
(s =2 (LH3)L=s7) (16)
h" [0 s>1
where « is §, 2 or @, n is a number representing the space dimension, SZM, or ¢——", r being the
4 r 167 h

distance between two points (particles). The graphical representation of this smoothing function and its
derivatives (first and second) can be seen in the Figure 3. Monaghan in 1992 and Gingold and Monaghan in
1977 assumed the smoothing function to be a Gaussian (Figure 4), expressed by the relation (17).
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W(s,h)= }% e_s2 (17)

Many notations used in relation (17) are the same, used in previous type of kernel. The notation & has the

following expression: %5 , 1 or 1‘5 in function of the space dimension (1D, 2D or 3D).

/A T
15 H H H H H |
104 o i IR -
05 / N\ \ //,-“\
LA L\ s NN
00 i \ e
\ / =
05 \ AN /
L N2
104 LA Saul PR
P i ws)
15 W e
’ N/ —d
Y e
2,04 : i
T T T T -25 T T T T T T T T T T
-1.0 -0,5 0,0 s 05 1,0 -3 -2 -1 0 s 1 2 3
Fig. 3. Smoothing function and its derivates, Fig. 4. Smoothing function and its derivates,
used by Lucy in 1977. used in 1977 and 1992 (Ginglod and Monaghan).

In 1996, Johnson et al. used a quadratic smoothing function to simulate the high velocity impact problem.

The graphical representation of this smoothing function and its derivatives (first and second) can be seen in the
Figure 5. The expression of the Johnson smoothing function, for s being between zero and two, is (20):

W(s,h):}% isz—éeréj (20)
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Fig. 5 Quadratic spline smoothing function Fig. 6 The cubic B-spline kernel function
and its derivates. used by Ls-Dyna.

The Ls-Dyna program uses a cubic B-spline kernel function, in the form given by relation (21), where s = r/h, n
is the number representing the spatial dimension and « is a constant which has the value: 2/3, 10/7, depending
on the space dimension (21).
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The graphical representation of this smoothing function and its derivatives (first and second) can be seen in the
Figure 6.

A smoothing length too small (not enough particles in the support domain) influence on the calculus efficiency
and also the accuracy, this going down. A smoothing length too large all the particle properties may be smoothed
out and finally the accuracy will be a low one. The best way seems to be a variable smoothing length according
to calculus and accuracy efficiency. So, many ways already exist for a dinamically evolving of 4, for geting a
suitable number of the neighboring particle, which to remain relatively constant.

The simplest approaching is that the smoothing length to depend on the average density. From this point of view,
the literature proposed the following relation (22):

1

i)
p (22)

where &, and p, are the initial smoothing length and density respectively; d is the number representing the space
dimension (1D, 2D or 3D, or simply 1, 2, or 3). In 1989, Benz proposed another method, by taking into account
the time derivative of the smoothing function, in terms of the continuity equation (23):

dh  lhdp
dt d p dt (23)

3. SPH PARAMETERS IN ANSYS/LS-DYNA PROGRAM

The user can make a choosing regarding to the the particle approximation, having the following options, by
FORM parameter (CONTROL_SPH): default formulation (0), renormalization approximation (1), symmetric
formulation (2), symmetric renormalized approximation (3), tensor formulation (4), fluid particle approximation
(5), or fluid particle with renormalization approximation (6).

The renormalized, symmetric or symetric renormalized approximation is reffering to the specific forms of the
momentum equations, for to reduce the errors coming from the particle inconsistency problem. Which of the
options is the best depends on the problem characteristics, so the right choosing is the user’s task.

In conection with this subject, with the dynamic fluid flows, with SPH formulation for hydrodynamics with

material strength are also many papers published and this aspect is over the target of this work. Others options
can be made regarding to the computation or not of the particle approximation between two different SPH parts

and regarding to the time integration type for the smoothing length / :

L (10)=2h(diy). 24

or,
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L (10)= 2 ho ()} @)

The smoothing length /%, can be calculated by the program, just the calculus begining, if this is permited to be
variable during computing simulation, or can has a defined values, established by the user (using parameters
CSLH, HMIN and HMAX, of SECTION_SPH). There were some posibilities for smoothing length calculus, but
the last researching lead to a formulation that considers the neighbour particles of a given particle, the particles
that are included in a sphere centered in xi having a radius of A(xi ) .

Owing to Ls-Dyna conception for implementing of SPH method, almost all the actual features of LS-DYNA can
be used with this method, with its classical keywords.

The nodal displacements, forces between the particles, pressure, energy, stresses and others are calculated by the
program (using the particle approximations of the equations of mass, momentum, energy conservation) and
these outcomes can be post-processed.

A connection between particles and finite elements are possible in a numerical analysis of a structure and also
the contact between particles and brick and shell elements can be realised by the classical procedures.

4. NUMERICAL SIMULATION OF TAYLOR TEST

During World War Il, Taylor and later Whiffen conducted tests (the Taylor test) to characterize the dynamic
compressive yield strength of a variety of metals. They shot metal rods against "rigid" anvils and then measured
the change in length of the rods to determine a minimum value of the dynamic compressive yield strength [4, 5,
6].

For studying the influence of characteristics parameters and material model constants, the authors used
numerical simulation of Taylor test. A solid cylinder with radius of 5 mm and the length of 50 mm, made of
1018 steel was considered. Two numerical models were used for studying the impact between this metal rod
with a rigid wall: FEM and SPH models.

Numerical models were built using two model types; in a first version (FEM1), the cylinder was meshed with
2993 nodes and 2560 elements (element size being 1.250x1.077x1.077 mm); in the second version (FEM2), the
cylinder was meshed with 24705 nodes and 23040 elements (element size being 0.625x0.975x0.975 mm). Figure
7 presents first mesh version. SPH model consisted in 4000 particles (equal distance between particles 1.00
mm). Figure 8 (a« and b) presents the SPH model.

Fig. 7. First finite element model.
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Fig. 8. SPH model of the bar.
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For both models, the fundamental measure units were: for length millimeter [mm], for time second [s] and for

force Newton [N]. So, the mass measure unit will be [Ns*/mm]. Analysis time was established at 0.003 seconds,
for the stress and displacement field analysis, in a period after the impact, when the velocity changed its sign.

The study of material behavior was based on plastic-kinematic material model. In the Figure 9, deformed shape
and UX-displacement field are presented, for FE and SPH modeling, for the time of 6e-5s.

Table 1 presents some of the results for the default values of SPH using. In the Table 2, the same results are
presented for different values of the parameter FORM.

Table 1. Impact effects upon the bar.

Fig. 9. UX-displacement field.

Table 2. The influence of the kernel type.

Another researched aspect was the influence of the ratio #/d upon results, especially in the contact zone. The
guantitative results can be watched looking at Table 3. The best results are obtained for automatic calculus of the

Bar Head Bar Tail FORM Bar Head Bar Tail

Models | UXmax VX max UXmax VX max UXmax V Xmax UXmax V Xmax
parameter

mm mm/s mm mm/s mm mm/s mm mm/s

FEM 43.390 26557 38.404 28720 FORM=1 | 42.592 25176 37.866 27575

Er. [%] -1.84 -5.20 -1.40 -3.98

43.475 | 27295 | 38.172 | 26891 |"FORM=2 | 43.556 | 25371 | 38.245 | 27010

SPH Er. Er. Er. | Er. - |[Er %] 0.38 446 | 041 | -5.95

0,2% 2,77% -0.6% 6,4% FORM=3 | 42.055 24571 37.302 26559

Er. [%] | 310 | 747 | -2.87 | -7.52

FORM=5 | 43.545 25384 38.235 26997

Er. [%] 036 | 441 | 044 | -5.99

FORM=6 | 42.272 25055 37.546 27687

Er. [%] | 257 | -5.65 | -2.23 | -3.59

smoothing length (by the program), or for a ratio 4/d = 1 established by the user.

The results of the numerical simulation are strongly determined by the material coefficients used by the material
model. One of the most used material model, adopted for dynamic analysis, is the Elastic Plastic with Kinematic

Table 3. The Influence of ratio 4/d upon results.

Ratio Bar Head

Models h/d UX max V Xmax

mm mm/s

FEM2 | - 43.390 26557

automatic 43.475 27295

h/d = 1.50 51.825 25310

h/d =1.25 41.166 23.444

SPH1 _ 43.585 27535
h/d = 1.00 Er. 0.45% | Er. 3.68%

h/d =0.75 43.182 27936

h/d = 0.50 25.333 18885

h/d =0.25 0.000 0.000
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Hardening Model, being strain rate dependent plasticity for isotropic materials.
The strain rate is taken into account by Cowper-Symonds model using the coefficients C and P, having the same
name. The yield function c, is:

1

o, = 1+(%)P (0'0 +ﬂEpg;f) (24)

where o is the initial yield stress, 6‘;f is the effective plastic strain, Ep is the plastic hardening modulus which
is given by:
E-E
E,= —I— (25)
E-E;
where g is the hardening parameter that can vary between 0 and 1 depending on plasticity type (0 for kinematic

and 1 for isotropic, respectively) and E7 is the tangent modulus. For this model, the user has to specify the
failure strain, for which, elements will be eliminated.

The results of our numerical simulation are strongly determined by the material coefficients used by the material
model. The Figures 10...15 show such a dependence, when each coefficient, alternatively, was kept constant,
around its common value, in the case of SPH1 model.
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Fig. 12. UXax Versus P coefficient Fig. 13. UYa versus P coefficient
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7. CONCLUSIONS

For problems like high velocity impact, impact with special materials (ceramics, glass etc), direct interaction
between solid-fluid and others, the SPH method is a powerful numerical tool.

The best appropriate method, for studying of debris cloud developing and their effects, is only the smoothed
particle hydrodynamics. There are many aspects when the SPH method is better than FEM and conversely.

Many problems belonging to applied mechanics field, especially those involving large deformations, can be
solved by SPH method.

Next to the aspects presented in this paper, saving the computer time has to be added. In the SPH modeling, a
condition, very important for good results, is that the distance between particles to be uniform one. This
condition seems to be more important than the distance length.

The ratio 4/d has the greatest important; this ratio, for some values, can lead to wrong (unexpected, unrealistic)
results. For a right choosing of the ratio 4/d, the most suitable way is the using of special criterions for it, or to
use the facilities offered by the program.

Our research shows that a value around 1 (0.9...1.1) for 4/ ratio, could be a right choosing. When a problem
involves the using of the material models, the model constants have a maximum importance. The results a deeply
affected by the material constants (like Cowper-Symonds, but all the constants used by different material
models).

The curves presented in Figures 10...15 show us that these parameters are strongly influenced and surely, the
errors would be unacceptable. For 1018 steel, the right values for C and P constants are 40 and 5, respectively.

The research of the influence of different parameters upon SPH models used in applied mechanics has to be
continued. Many others parameters could be studied from this point of view.
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