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BIMETRIC SPACES, SPACE-TIME AND
MATHEMATICS. METHODOLOGICAL PROBLEMS

MITROFAN M. CIOBAN AND ION I. VALUŢĂ

Abstract. The development of the geometry is inseparably linked
with the history of the development of the mathematics which may
be divided into seven periods. The concept of a bimetric space is
introduced and studied. This notion is applied to construction of some
new models of the space-time.

1. Introduction

The Universe is the entirety of space and time, all forms of the
mater, energy and momentum, the physical laws that govern them.
The space-time is the arena in which all physical events take place. An
event is defined as a point in the space-time, a specific position in space
and a specific moment in time. The space-time is any mathematical
model that combines the space and the time into a single continuum.
Galileo Galilei stated that the Universe is a grand book written in the
language of the Mathematics. Hence the mathematical models of the
Universe state the Mathematical Universe as a part of the Universe of
Mathematics.

Mathematical modeling employs the tools of mathematical struc-
tures.

————————————–
Keywords and phrases: bimetric space, quasi-metric, distance,
Universe, space-time, black body.
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The practical spirit, reality, but also the world of ideas and judg-
ments represent the objective and effective reality, as well as the viabil-
ity of the Mathematical sciences, a fact confirmed by the great variety
of achievements in different domains of life and thought. It is impos-
sible to find a domain of the human activity that does not involve
Mathematics starting with the most simple problems up to the most
subtle theoretical constructions. It is very possible that Pythagoras
intuitively sensed this truth and affirmed that ”all is a number”.

The authors are grateful to the Academician Radu Miron for his
helpful comments and inspiration.

2. Mathematics and Reality

The development of the sciences and of the physics is inseparably
linked with the history of the development of the mathematics which
may be devided into seven periods:

- prehistoric or conceived period (the prehistoric times - until the
4th - 3rd millennium B.C);

- the period of the practical (algorithmic) mathematics (3rd millen-
nium - the end of the 7th century B.C.);

- the period of the theoretical mathematics (7th century B.C. - 14th
century A.D);

- the period of the origin of the mathematical languages (14th - 17th
centuries);

- the period of the variable quantities and of the formation of the
calculus (mathematical analysis) (18th century);

- the period of the mathematical structures (19th century – the
middle of the 20th century);

- the period of global theories of the complex mathematical struc-
tures (the middle of the 20th century - until present).

We link the term period not to the level reached in a certain region,
but to the new ideas, the methodological concepts and the mathemat-
ical apparatus elaborated during that time (see I.I. Valuţa’s Elements
of History of Mathematics [5]). The proposed division into periods
of the development of the mathematics develops the respective Kol-
mogorov’s concept [10].

The sixth period is the period of mathematical structures gener-
ated axiomatically, a period during which mathematical knowledge,
as a part of the cultural thesaurus, becomes a motive force of the
progress in all spheres of the human activity. The fifth period marks
the end of the era of great scientific efforts that lasted about 2500
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years. The most representative researches of this period are due to
the 17th century investigations, there were obtained important results
in the field of Differential Geometry, G. Monge’s ”Descriptive Geome-
try” was written and researches in the domain of Projective Geometry
were initiated. Surprising results were achieved in the problem of the
5th Postulate.

The dramatic aspect of the 5th Postulate problem consists in the
fact that mathematical world, in particular, and scientific world, in
common, were not ready, psychologically speaking, to accept a sur-
prising solution able to radically change the concept of a space. It
is easy to notice that the possibility to find such a solution was ex-
posed by Lambert and this chance existed even earlier due to Omar
Khayyam.

The explosion determined by the existence of the distinct geome-
tries gave birth to a huge wave of ideas that in less than a half cen-
tury contributed to the creation of the contemporary mathematics
fundamentals. During the years 1870 - 1910, the notion of mathemat-
ical structure was elaborated by means of axiomatic approaches, and
it was based on the notion of a set. However, almost immediately
there have appeared some pathological phenomena. The first has ap-
peared because the examples of one variable functions constructed by
B. Bolzano and K. Weierstrass which, being continuous, do not have
tangents in any of their points, i.e. they are non-derivable. This mat-
ter is impossible to be perceived in an intuitive way, a fact that made
the great French mathematician H. Poincaré to exclaim: ”How could
intuition mislead us to such degree?” Due to the investigations of B.
Bolzano, N. I. Lobacevskii, N. Abel, A. Cauchy there were elaborated
the notions of limit and continuous function. As a result S. Lie, F.
Ch. Klein and H. Poincaré managed to extend in their works the no-
tion of a group. Their investigations contributed to the development
of the Lie groups and algebras, as well as of analytical manifolds. If
until the 1860s Algebra was, according to J. A. Serret, ”the science
about analysis of the equations”, by the 1900s it became the science
of algebraic structures (group, ring, field, semigroup, universal alge-
bra). This dramatic change in Algebra perception occurred, to a great
extent, due to Geometry as, according to Klein’s Erlangen Program,
from an algebraic point of view Euclid’s and Lobacevskii-Bolyai’s ge-
ometries, as well as Riemann’s elliptic geometry may be represented as
a pair (S,G), where S is a space (a plane), and G is a group of trans-
formations of the set S. Geometry became a theory that shapes the
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theory of algebraic invariants, of bilinear forms, of bilinear symmetric
forms, of squared forms and of C. Hermite’s forms. The works of Rie-
mann and Poincaré develop the concept of ”analysis situs” exposed
by Leibniz. They are the initiators of a new mathematical domain -
topology (see [3, 5, 10, 12, 13, 15]).

N. I. Lobacevskii ends up his book ”Imaginary Geometry” in the
hope that this new Geometry would serve as a foundation for a new
physical theory, with new laws of dynamics. After 1870 new researches
dealing with mechanics construction and physics in non-Euclidean
spaces are initiated. The first attempts into this direction were made
by such scholars as A. Genocchi, W. R. Boll, W. C. Clifford, H.
Poincaré. By 1900 H. A. Lorentz studied a special group of trans-
formations of the space and time. These transformations are called
at present Lorentz’s transformations. In 1902 for his research in the
domain of Physics Lorentz was awarded the Nobel Prize. Another
great scholar from this period was H. Minkowski. He was the initia-
tor of numerous theories: the geometric theory of numbers, theory
of special nets, squared forms arithmetic, theory of convex polyhe-
drons. In 1909 he had published his ”Space and Time” in which the
4-dimensional Minkowski space was constructed with Lorentz’s trans-
formations group as isometries. These investigations formed the bases
of the special theory of relativity. The theory of relativity was elabo-
rated in 1905 by Albert Einstein and, independently, by H. Poincaré.
It is considered that Poincaré did not explain in an understandable
way the physical principles of this theory. Thus the creator of the-
ory of relativity is considered A. Einstein. However, Poincaré’s work
”About Electrons Movement” (1905) lays at the basis of this theory.
In 1905 Albert Einstein elaborated the special relativity theory and
later the quantum theory of light. During 1907 - 1916 Einstein had
elaborated the general theory of relativity. Of a special importance
in his research was the tensor theory. The non-Euclidean geometries,
and particularly the Minkowski’s geometry, played a crucial role in the
elaboration of the theory of relativity. A. Einstein formulates the prob-
lem of geometrization of Physics in his ”Geometry and Physics”. He
affirms that any geometry may serve as a basis for a Physical theory.
However, only in a geometry adequate to a specific Physical theory is
able to represent the formulas of this very theorys laws in an elegant
and simple way. Therefore the relativity theory is correlated with the
Minkowski’s geometry theory and Riemann’s geometries (see [6]). We
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note that the concrete versions of the Einstein’s problem were formu-
lated and investigated in the works of T. Levi-Civita, E. Cartan, Gh.
Vrănceanu, R. Miron and other mathematicians (see [11, 18]).

It is quite frequent that the following two questions occur:
1. Is Mathematics real?
2. Does the Mathematical knowledge reflect Reality?
Broadly speaking the answer to the first question is quite obvious:

everything that exists or ever existed is real! It does not depend
whether it was a form, a fact or a thought. The answer to the second
question is not simple even for those that are familiarized with Math-
ematics and Philosophy. Mathematics studies domains appeared and
developed due to different causes:

- There are domains that develop due to the fact that some practical
problems have been solved;

- There are domains that develop due to the inner necessities of
Mathematics;

- There are fields that investigate the way in which the mathematical
reasoning is constructed.

The first mathematical knowledge appeared due to some practical
needs (periods one and two), and Mathematics as a science emerged
due to a necessity to justify the conclusions of a mathematical char-
acter (period three). The PC is at present a reality and a practical
necessity. However, computer would not have exist as we know it to-
day, without the numbers theory and the numeric systems, Boole al-
gebras and universal algebras, and it also owes to modern Electronics.
Therefore different practical problems find solutions in the Mathemat-
ical domains. This allows us affirm that Mathematics reflect Reality.
Hand in hand with this we would like to mention that each Mathemat-
ical domain develops independently from the evolution of phenomena
noticed in Reality, though these very phenomena could serve as an
impulse for the initiation of a research in the field of Mathematics.
The place of the mathematics in the physical theories was excellent
determined by the P. Dirac in 1931: ”The most powerful method of
advance that can be suggested at present is to employ all the resources
of pure mathematics in attempts to perfect and generalize the mathe-
matical formalism that forms the existing basis of theoretical physics,
and after each success in this direction, to try to interpret the new
mathematical features in terms of physical entities.”

The Universe of the Mathematics include the following components:
R - the Reality, SM - Mathematical Structures, SF - Formal Systems,
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SSM - Mathematical Super-Structures, SC - Computation Systems,
AM - Applications of Mathematics. The relation between this com-
ponents can be represented by the next diagram:

The mathematical models of the real phenomena are formal systems
of some mathematical structures or mathematical super-structures.
The theorems from SF , SM and SSM describe concrete proper-
ties of the real phenomena. The formal systems describe the com-
putation systems, mathematical structures and super-structures. The
mathematical structures and super-structures are defined by using the
computation systems which are the special examples of mathematical
structures and super-structures and produce the theorems from formal
systems, mathematical structures and super-structures. There exist
various computation systems: numerical calculus, geometrical com-
putations, propositional calculus, propositional inference, etc. The
mathematical structures used in physics and other domains are de-
fined, as a rule, by computable functors, functions, relations, etc (see
Computable Universe Hypothesis [16, 17]).

3. Abstract Spaces and the Real Space

The outstanding contribution of the great scholars of the old Elade
to the development of the science, art and especially Mathematics is
well known. Beginning with the 6th century a great contribution to the
development of Mathematics was made by the Arabians. Euclidean
space where the matter was freely situated in all its possible forms
of existence. This was a static space geometry. The notions of the
transformation, movement (isommetry) and similarity, the differential
and integral calculus, the analytical geometry with its strong appara-
tus and methods of algebraic calculus did not manage to change the
old concepts about geometrical space and the principles laying at the
basis of Geometry. The emergence of the notions that led to the forma-
tion of the concept of abstract space began with the works of Gauss,
Lobacevskii, Bolyai, Riemann, Taurinus, Cayley, Grasmann, Klein,
Helmholtz, Frege, Pasch, Peano, Pieri and ends up with Hilberts work
published in 1899.
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One may question whether the notion of Euclidean space is a ab-
straction. It would be an absolutely appropriate question. Each word
or notion are abstractions with concrete functions and content. Any
notion is used according to specific characteristics, which, after a cer-
tain abstraction, may generate this very notion. For example, by the
word ”table” we understand an infinite totality of objects with an in-
finite diversity of forms. In a similar way by the word ”space” we
understand at present a infinity of different objects that differ in con-
tent and properties.

The Hilbert’s notion of the space is conceived as a multitude of el-
ements called ”points” where some subsets are called ”straight lines”,
some other subsets are called ”plane”, and these three notions sat-
isfy certain properties comprised by axioms. As a matter of fact, in
Hilberts terms ”point”, ”straight line” and ”plane” there are consid-
ered primary (indefinite) abstract elements connected by the relation
of incidence. Poincaré affirmed in 1902 that axioms represent an im-
plicit definition of the primary notions and he considered that a free
agreement in the choice of primary notions and postulates exists. This
is a conception that has to do with conventionality. The lack of suc-
cess of the systems of axioms proposed by Peano and Pieri proves that
sciences that emerged due to human practice necessities do not wit-
ness an arbitrary conventionalism and it is not made to the prejudice
of an authentic creation or commodity. The choice of the primary
notions, of the primary relations and axioms is made to the benefit of
transparency and keeping the applicative capacities of the theory.

The notion of a distance leads us to the concept of a metric space
and neighborhood and, finally, to the notion of topological space. The
Euclidean space, together with the differential calculus, lead us to the
notions of a manifold, a topological manifold and an analytical man-
ifold. The contemporary notion of space reflects the relations and
special figures that exist in the real world, in nature and, therefore the
axioms are chosen in such a way as to be supported by the argument
of practice. According the theory of relativity and the quantum me-
chanics, a space correlated to time is an objective and universal form
of existence of the matter and movement. The real space expresses
the objects and real world systems coexistence order, their position,
distance, size and extension. The matter, movement, the time and the
space are inseparable.

Helmholtz’s research was made from the point of view of physiolog-
ical optics, while Einstein’s research was made from the perspective
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of the theory of relativity. Therefore different relations that exist in
reality may be reflected or modeled by the same special relations.
Quantum mechanics proved that not all physical phenomena may be
appropriately modeled in dimensionally finite spaces. This fact leads
us to the conclusion that reality and real relations are very compli-
cated and the existent special theories describe in a quite complex
way only some of the aspects of real world. Therefore the principles
that lay at the basis of any special theory reflect only some of the
real space relations. The conventionalist aspects had appeared later.
At different stages of a theory development it may be concluded that
this theory may be exposed in a ”more comfortable” way if it is based
on some other primary notions and axioms. However, these changes,
seen against the general background of notions and theorems, do not
affect the real content of the theory. These changes that mathemati-
cians allow themselves do in a ”free” and ”easy” way provoke different
”philosophical” interpretations. Thus the system of axioms elaborated
by Hilbert, Peano, Pieri, Weyl essentially differ from each other, but
they allow us construct the same Euclid’s Geometry. The basic notions
of an axiomatic system define each other and the affirmations made by
the axioms in an axiomatic system may be demonstrated as theorems
in other axiomatic systems within the same theory. Thus, the choice
of an axiomatic system is conventional only from a formal point of
view. It is to be mentioned that our perception of a special structure,
distance, speed, object forms and phenomena under investigation is
not always precise. We quite often mix up the notions of the infinite,
the unlimited, or the limited Universe, etc. In his ”On the hypotheses
that lie at the foundation of geometry” (1854) B. Riemann elaborates
completely new principles that lay at the basis of Space Geometry.
Thus he affirms that the the real space is unlimited, with the meaning
that there is no border beyond which any space exits. Nevertheless, a
space may be unbounded (open) or bounded (closed). A space is also
infinite in content. All these notions may be analytically described
with the help of topological-geometrical methods. In order to deter-
mine whether a space is bounded or unbounded one must be aware of
a certain measure which would allow us establish the properties of the
space.

These being said, it becomes evident that the study of the notion of
a space is a problem common to Mathematics, Physics and Philosophy
(see [1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 14, 16]).
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4. On Formal Character of Mathematics

At present all scientific domains are in a process of dynamic de-
velopment getting more diversified and specialized. The science oper-
ates by means of definitions, affirmations and proofs (demonstrations).
The proof represents the calculus of the truth value of an affirmation.
The aim of affirmations consists in solving the different problems ap-
proached by a certain domain of science. Those problems that a cer-
tain science is concerned with form its object of research. Speaking
about those fields of science that Mathematics deals with, not any
notion may be defined and not any affirmation regarding mathemati-
cal notions may be demonstrated. The indefinable notions are called
primary notions, or basic, or fundamental, and those impossible to
demonstrate are called axioms, postulates. The axiomatic principle
began already with Thales and it was exposed in a complex way by
Aristotle in his remarkable Logic. By the end of the 19th century and
the beginning of the 20th century G. Frege, G. Peano, D. Hilbert, B.
A. W. Russel and A. N. Whitehead developed the ideas of Aristo-
tle and G. W. Leibnitz and laid the bases of the mathematical logic.
The last one perceives mathematical calculus as a system of signs
that lack signification and obey a set of specific rules of composition.
Therefore, formal science is characterized by the isolation of sentences
content and determination of the reasoning structure that form these
sentences. These ”conventional” representations of the indefinable no-
tions and of the non-demonstrable affirmations led to the formalization
of mathematical sciences. This fact gave birth to different Philosoph-
ical trends. Some of them point to formalization as an indicator of
a certain crisis of mathematical sciences. It goes without saying that
any mathematical, physical, chemical or biological process does not
represent the absolute reality, but only images of reality. However,
this model represents some relations established among the elements
that are copies of different real elements. More than that, these ab-
stract models may be applied to different types of real situations. The
formal systems have a special priority.

5. Spaces with the distances

By a space we understand a Tychonoff topological space. We use
the terminology from [7].

Let R be the space of reals, C be the space of complex numbers
z = x+ iy, where x, y ∈ R ⊆ C and |z| = (x2 + y2)1/2, I(α, β) = [α, β]
for any α, β ∈ R and α < β, R⋆ = R ∪ {∞}, C⋆ = C ∪ {∞}. If
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z = x + iy, w = u + ivC, then z < ∞ and w ≤ z provided u ≤ x and
v ≤ y. We consider that w ≪ z if u < x and v < y.

If S is a set, then S × S is the set of all ordered pairs (x, y) with
x, y ∈ S. By ∅ we denote the empty set.

A bidistance space or a space with the distances is a triplet (S, d, dv)
consisting of a non-empty set S and two functions d and dv defined on
the set S × S, assuming values from C⋆ and satisfying the following
conditions:

D1. dv(x, y) = 0 if and only if x = y.
D2. dv(x, y) = dv(y, x) ≤ d(x, y) for all x, y ∈ S.
D3. dv(x, y) + dv(y, z) ≥ dv(x, z) for all x, y, z ∈ S.
D4. If x, y, z ∈ S and dv(x, y), dv(y, z) ∈ R, then dv(x, z) ∈ R.
The set S is called a space, the elements of S are called points, the

function dv is called a virtual metric, the function d is called a quasi-
metric, the number d(x, y) is called the distance between x and y, the
number dv(x, y) is called the virtual or external distance between x
and y.

A bidistance space (S, d, dv) is a bimetric space if the following con-
ditions hold:

D5. d(x, y) ∈ R⋆ for all x, y ∈ X.
D6. d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ S.
D7. For each element x ∈ S and any ε > 0 there exists δ = δ(x, ε) >

0 such that {y ∈ S : dv(x, y) < δ} ⊆ {y ∈ S : d(x, y) < ε}.
If d = dv and (S, d, dv) is a bimetric space, then (S, d) = (S, d, dv)

is called a metric space. One can study the geometry of the bimetric
spaces as the the geometry of the metric spaces (see [4, 7, 11, 14]).

It is obvious that it may be d(x, y) = ∞, or d(x, y) ̸= d(y, x), or
dv(x, y) = ∞ for some x, y ∈ S.

From Conditions D1 - D3 immediately it follows:
D8. dv(x, y) ≥ 0 for all x, y ∈ S.
D9. d(x, y) ≥ 0 for all x, y ∈ S.
D10. d(x, y) = 0 if and only if x = y.
From Conditions D1 - D7 it follows:
D11. {y ∈ S : d(x, y) < r} ⊆ {y ∈ S : dv(x, y) < r} for any r ≫ 0.
Let (S, d, dv) be a bidistance space.
For every x ∈ S and r ≫ 0 the set B(x, r) = {y ∈ S : d(x, y) ≪ r}

is called the r-ball about x, the set Bv(x, r) = {y ∈ S : dv(x, y) ≪ r} is
called the virtual r-ball about x, the set S(x, r) = {y ∈ S : d(x, y) = r}
is called the r-sphere with the center x and the set S(x, r) = {y ∈ S :
dv(x, y) = r} is called the virtual r-sphere with the center x.
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A subset L ⊆ S is called open in S if for any point x ∈ L there
exists r > 0 such that B(x, r) ⊆ L. A set F ⊆ S is called closed in
the space S if its complement S \ F is open.

The family T (d) of all open subsets of S is the topology of the
bidistance space.

5.1. Remark. It is obvious that in a bimetric space the set L ⊆ S
is open in S if for any point x ∈ L there exists r > 0 such that
Bv(x, r) ⊆ L.

5.2. Remark. The restriction from D7 is very important. From
that condition immediately it follows that the topology T (d) coincides
with the topology of the metric space (S, dv), i.e. T (dv) = T (d).

In general, the topology generated by a quasi-metric may be not
metrizable.

5.3. Example. Let S be the space of reals, dv(x, y) = min{1, |x−
y|}, d(x, y) = y − x, if x ≤ y, and d(x, y) = 1, if y < x. Then (S, d)
is a non-metrizable quasi-metric space, the triplet (S, d, dv) satisfies
the conditions D1 - D4, T (dv) ̸= T (d) and T (dv) ⊆ T (d). The space
(S, T (d)) is the Sorgenfrey line [7].

The following example is similar with the Example 5.3.
5.4. Example. Let S be the space of reals, dv(x, y) = |x − y|,

d(x, y) = y − x, if x ≤ y, and d(x, y) = +∞, if y < x. Then (S, d)
is a non-metrizable quasi-metric space, the triplet (S, d, dv) satisfies
the conditions D1 - D5, T (dv) ̸= T (d) and T (dv) ⊆ T (d). The space
(S, T (d)) is the Sorgenfrey line [7].

For every point x ∈ S and every non-empty set F ⊆ S the number
d(x, F ) = inf{d(x, y) : y ∈ F} is called the distance from x to F
and the number dv(x, F ) = inf{dv(x, y) : y ∈ F} is called the virtual
distance from x to F . Let d(x, ∅) = dv(x, ∅) = ∞.

5.5. Remark. Let (S, d, dv) be a bimetric space. It is obvious
that dv(x, F ) ≤ d(x, F ) and d(x, F ) = dv(x, F ) = 0 if and only if x is
a point from the closure clF of the set F in S. In a bimetric space
d(x, F ) = 0 if and only if dv(x, F ) = 0.

The diameter and the virtual diameter of a non-empty set L ⊆ S
are the following numbers diam(L) = sup{d(x, y) : x, y ∈ L} and
diamv(L) = sup{dv(x, y) : x, y ∈ L}. We consider that diam(∅) =
diamv(∅) = 0.

A set L is said to be bounded (respectively, virtual bounded) if
diam(L) < ∞ (respectively, diamv(L) < ∞).

A sequence {xn : n ∈ N = {1, 2, ...}} of points of S is convergent to
a point x and we put x = limn→∞xn if limn→∞d(x, xn) = 0.
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A subset L ⊆ S is compact in S if every sequence {xn ∈ L : n ∈ N}
has a convergent subsequence in S. A compact closed subset is called
a compact subset. If L is a compact subset in S, then the its closure
clL is compact. Every compact subset is virtual bounded.

5.6. Definition. A subset H ⊆ S is called an external black body
(briefly, e-black body) of the bidistance space (S, d, dv) if there exist
a ∈ S and r ∈ R such that:

1. r > 0, clH \H ̸= ∅ and H = Bv(a, r).
2. There exists b ∈ B(a, r) such that d(b, y) < ∞ for any y ∈ H.
3. d(x, y) = ∞ for all x ∈ H and y ∈ S \H.
4. H is a compact subset in S.
5. If {xn ∈ H : n ∈ N} and lim xn ∈ S \H, then limn→∞d(x, xn) =

limn→∞d(xn, x) = +∞ for any x ∈ H.
If H is an e-black body, then the set H is virtual bounded,

diam(H) = +infty and the boundary Fr(H) = clH \H is non-empty.
Let α < β, I(α, β) = [α, β] ⊆ R and I = I(0, 1).
A curve γ with the origin a ∈ S and the end b ∈ S is a continuous

mapping γ : I(α, β) → S such that γ(α) = a, γ(β) = b and a ̸= γ(t) ̸=
γ(τ) ̸= b for α < t < τ < β. If a = b, then we say that γ is a closed
loop or an orbit. Let l(γ, d) = sup{Σ{|d(γ(ti), γ(ti+1)| : i ≤ n} : n ∈
N, α = t1 < ... < tn < tn+1 = β}. Then l(γ, d) is the length and
l(γ, dv) is the virtual length of the curve γ. If l(γ, d) < +∞, then the
curve is called rectifiable. The rectifiable curve is a trajectory of some
spacial object. We consider that in the moment t the object is situated
in the point γ(t) and the length l(γt, d) of the curve γt : I(α, t) → S,
where γt(τ) = γ(τ) for any τ ∈ [α, t], is the distance covered at the
moment t. The limit limτ→0τ

−1(l(γt+τ , d) − l(γt, d)) is the speed of
the object at the moment t. The trajectory γ is real if d(x, y)R for all
x, y ∈ γ.

For every curve γ : I(α, β) → S we define the inverse curve γ−1 :
I(α, β) → S, where γ−1(t) = γ(β − t + α). Since dv is a metric,
l(γ, dv) = l(γ−1, dv). In general, l(γ, d) ̸= l(γ−1, d).

5.7. Remark. Let γ1, γ2 : I(α, β) → S be two curves for which
γ1(α) = γ2(α), γ1(β) = γ2(β) ̸= γ1(α) and {γ1(t) : t ∈ I(α, β)} =
{γ2(t); t ∈ I(α, β)}. Then l(γ1, d) = l(γ2, d) and l(γ1, dv) = l(γ2, dv).

5.8. Remark. Let γ1 : I(α, β) → S and γ2 : I(λ, θ) → S be two
curves. If α ≤ λ < θ ≤ β and γ1(t) = γ2(t) for any t ∈ I(λ, θ), then
γ2 is called a subcurve of γ1 and l(γ1, d) ≤ l(γ2, d). If θ − λ < β − α,
then γ2 is called a proper subcurve of γ1 and l(γ1, d) < l(γ2, d).
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5.9. Lemma. Let H be an e-black body of the bimetric space
(S, d, dv), γ : I(α, β) → S be a curve of S, γ(α) ∈ H and γ(β) ∈ S\H.
Then l(γ, d) = l(γ−1, d) = +∞.

Proof. There exist λ = min{t : γ(t) ∈ S \ H} and a sequence
{tn : n∈N} such that λ − tn < 2−n and α < tn < tn+1 < λ. Let
a = γ(α) and an = γ(tn). Then l(γ, d) ≥ d(a, γ(β)) = +∞ and
l(γ−1, d) ≥ limn→∞d(an, a) = +∞. The proof is complete.

The notion of the ”absolutely black body” is possible under some
additional restrictions.

Let (S, d, dv) be a finite-dimensional differential manifold with the
distances. The family T (d) of open subsets of S generates the algebra
B(S) of Borel subsets of the space S with the properties:

- T (d) ⊆ B(S);
- if H ∈ B(S), then S \H ∈ B(S);
- if Hn ∈ B(S), then ∪{Hn : n ∈ N} ∈ B(S).
Assume that it is defined a non-negative function v : B(S) → R⋆

with the properties:
- v(U) > 0 for any non-empty open subset U ⊆ S;
- if {Hn : n ∈ N} and Hn ∩Hm = ∅ for n < m, then v(∪{Hn : n ∈

N}) = Σ{v(Hn) : n ∈ N};
- if H ∈ B(S) and diam(H) < +∞, then v(H) < +∞.
Let p : S → R be a non-negative function with the properties:
- {x ∈ S : p(x) < λ} ∈ B(S) for any λ ∈ R;
The Lebesgue’s integral m(U) =

∫
U
p(x)dv > 0 for any non-empty

open subset U ⊆ S.
We consider that p(x) is the density of the matter of the Universe S

at the point x ∈ S, v(H) is the volume of the domain H and m(H) =∫
H
p(x)dv is the mass of the matter from the portion H ∈ B(S).
In the first, we consider that in the Universe S there exist distinct

”solid bodies” which are in continuous movement. The state of an
orbiting body at any given time is defined by the orbiting body’s
position and velocity with the respect to the more massive central
body.

We consider the following restrictions:
R1. The limitation of the speed of the light relative to the quasi-

metric d by some constant c.
R2. The limitation of the speed for some ”type of the matter”.
R3. For any body F with a mass m and a finite diameter it is

determined the ”center of the mass”.
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R4. There exist a ”gravitational constant” G > 0 and a constant
k > 1 such that:

- the orbital speed for the circular orbit with the radius r is v0 =
(M2G/r(m+M))1/2, whereM is the mass of the central body, m is the
mass of the orbiting body and r is the distance d(o1, o2) between the
centers o1 and o2 of the mass of the central body and of the orbiting
body;

- the escape velocity is ve = k · v0.
We say that ω is a circular orbit with the radius r and the center

f ∈ S if there exists a curve γ : I → S such that γ(0) = γ(1),
ω = {γ(t) : t ∈ I} and d(f, x) = r for any x ∈ ω.

Suppose that Φ is a massive body with the center of the mass f ∈ S,
the finite diameter δ = diam(Φ) and the mass M > c2 · d/G. It is
obvious that d(f, x) ≤ δ for any x ∈ Φ. Then for any body F with
the mass m < M we have v0 > c for r < δ. In this case Φ is a ”black
body” and it absorbs all light that falls on it. If some mass falls on Φ,
then in the result of the collapsing process the body Φ ”radiate” the
black-body radiation.

6. Methods of construction of bidistance spaces

Now we shall give the methods of construction of bidistance spaces
with e-black bodies.

Let (S, d, dv) be an m-dimensional differential manifold with the
distances and m ≥ 2.

Method 1. Let Γ be a non-empty set, A = {aµ : µ ∈ Γ} be a subset
of S, {rµ : µ ∈ Γ} be a subset of positive reals from R, d(x, y) < +∞
for all x, y ∈ B(aµ, rµ) and µ ∈ Γ, B̄v(aµ, rµ) = {x ∈ S : dv(aµ, x) ≤
rµ} be a compact subset of S for any µ ∈ Γ, B̄v(aµ, rµ)\Bv(aµ, rµ) ̸= ∅
for any µ ∈ Γ and dv(aµ, aν) > rµ+rν for all distinct µ, ν ∈ Γ. Suppose
that for any µ ∈ Γ there exists bµ ∈ Bv(aµ, rµ) such that d(bµ, x) < +∞
for any x ∈ Bv(aµ, rµ).

Let ρ(x, y) be the euclidean distance for x, y ∈ Em and µ(H) be the
Lebesgue measure of the subset H ⊆ Em.

We consider that the open set Hµ = B(aµ, rµ) is homeomorphic to
the Euclidean space Em and hµ : Hµ → Em is a homeomorphism of
Hµ onto Em. Let H ′ = ∪{Hµ : µ ∈ Γ}. Now we shall construct a new
quasi-metric d′ on S by the rules:

- if µ ∈ Γ and x, y ∈ Hµ, then d′(x, y) = d(x, y) + ρ(hµ(x), hµ(y));
- if µ ∈ Γ, x ∈ Hµ and y ̸∈ Hµ, then d′(x, y) = ∞;
- if x ∈ S \H ′ and y ∈ S, then d′(x, y) = d(x, y);
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- if p(x) is the initial density of the matter of the Univers S, then
p′(x) = p(x) for x ∈ S \H ′ and p′(x) = max{1, p(x)} for x ∈ H ′;

- if v(H) is the initial volume in S, then v′(L) = v(L \ H ′) +
Σ{µ(hµ(L ∩Hµ) : µ ∈ Γ}.

6.1. Property. (S, d′, dv) is a bidistance space. Moreover, if
(S, d, dv) is a bimetric space, then (S, d′, dv) is a bimetric space too.

Proof. It is obvious that (S, d′, dv) satisfies the conditions D1 -
D4. Fix now a ∈ S and ε > 0. In this case there exists δ1 > 0
such that {y ∈ S : dv(a, y) < δ1} ⊆ {y ∈ S : d(a, y) < 2−1ε}. If
a ∈ S \ H ′, then δ = δ1. Let µ ∈ Γ and a ∈ Hµ. Since hµ is a
homeomorphism, there exists δ > 0 such that δ < δ1, Bv(a, δ) ⊆ Hµ

and ρ(hµ(a), hµ(x)) < 2−1ε for any x ∈ Bv(a, δ). By construction, we
have {y ∈ S : dv(a, y) < δ} ⊆ {y ∈ S : d′(a, y) < ε}. The proof is
complete.

6.2. Property. For any µ ∈ Γ the domain Hµ is an e-black body
of the bidistance space (S, d′, dv).

Proof. It is obvious that the domain Hµ satisfies the condi-
tions 1 - 4 from the Definition 5.6. Let {xn ∈ Hµ : n ∈ N} and
limn→∞xn ∈ S \ Hµ. Then limn→∞d′(x, xn) = limn→∞d′(xn, x) ≥
limn→∞ρ(hµ(x), hµ(xn)) = +∞ for any x ∈ Hµ. The proof is com-
plete.

6.3. Remark. If H is an e-black body of the bidistance space
(S, d, dv), then H is an e-black body of the bidistance space (S, d′, dv)
too. The family {Hµ : µ ∈ Γ} of e-black bodies of the bidistance space
(S, d′, dv) is discrete.

6.4. Remark. IfH is a black body of the bidistance space (S, d, dv)
and H ⊆ S \H ′ or clH ⊆ Hµ for some µ ∈ Γ, then H is a black body
of the bidistance space (S, d′, dv) too.

6.5. Remark. Let H be an e-black body of the bidistance
space (S, d, dv), the speed of the light relative to the quasi-metric d is
bounded by the constant c > 2. Let γ : I → S be a curve with the
origin a ∈ H, the end b ∈ S \H and γ(t) ∈ H for any t < 1. If ve(t) is
the speed of the light relative to the metric dv in the point γ(t), then
limt→1ve(t) = 0.

Method 2. Let Γ be a non-empty set, {Γn : n ∈ N} be a sequence
of non-empty subsets of Γ, An = {anµ : µ ∈ Γ} and Bn = {bnµ : µ ∈ Γ}
be subsets of S, {rnµ : n ∈ N, µ ∈ Γ} be a subset of positive reals from
R with the next properties:

- Γ = Γ1 and Γn+1 ⊆ Γn for any n ∈ N;
- ∩{Γn : n ∈ N} = ∅;
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- if 1 ≤ k ≤ n and µ ∈ Γn, then bkµ ∈ Bv(akµ, rkµ) \Bv(anµ, rnµ);
- d(bnµ, x) < +∞ for all n ∈ N, µ ∈ Γn and x ∈ Bv(anµ, rnµ);
- B̄v(a1µ, r1µ) = {x ∈ S : dv(aµ, x) ≤ r1µ} is a compact subset of S;
- dv(a1µ, a1ν) > r1µ + r1ν for all distinct µ, ν ∈ Γ;
- for all n ∈ N and µ ∈ Γn there exists a homeomorphism hnµ of

Bv(anµ, rnµ) onto the Euclidean space Em.
We put Hnµ = Bv(anµ, rnµ), if µ ∈ Γn, and Hnµ = ∅, if µ ∈ Γ \ Γn.
As in the Method 1 we construct:
- the quasi-metric d1 = d′, the density p1(x) = p′(x) and the volume

v1(L) = v′(L) for the bidistance space (S, d, dv) and n = 1;
- the quasi-metric d2 = d′1, the density p2(x) = p′1(x) and the volume

v2(L) = v′1(L) for the bidistance space (S, d1, dv) and n = 2;
- the quasi-metric dn = d′n−1, the density pn(x) = p′n−1(x) and the

volume vn(L) = v′n−1(L) for the bidistance space (S, dn−1, dv) and
n ≥ 3.

Now we put d′′(x, y) = limn→∞dn(x, y), p
′′(x) = limn→∞pn(x) and

v′′(L) = limn→∞vn(L) for all x, y ∈ S and L ⊆ S.
From the Properties 6.1 and 6.2 it follows.
6.6. Property. (S, d′′, dv) is a bidistance space.
6.7. Property. For all n ∈ N and µ ∈ Γ the domain Hnµ is an

e-black body of the bidistance space (S, d′′, dv).
6.8. Remark. IfH is a black body of the bidistance space (S, d, dv)

and H ⊆ S \ ∪{H1µ : µ ∈ Γ} or clH ⊆ Hnµ \H(n+1)µ for some µ ∈ Γ
and n ∈ N, then H is an black body of the bidistance space (S, d′′, dv)
too.

6.9. Remark. The construction from the Method 2 can be applied
in the conditions Γ′ = ∩{Γn : n ∈ N} ̸= ∅ and ∩{Bv(anµ, rnµ) : n ∈ N}
for any µ ∈ Γ′.

7. On discreteness and continuity

The following questions are still open:
1. Is the real space discrete or continuous?
2. What is the set (class) of all possible Universes?
3. Which mathematical structures are isomorphic to real Universe?
4. What is the dimension of the space-time?
The next example illustrate that the continuity and multi-

dimensionality of the space-time is an effect of the perpetual motion
of the matter in the time and the time is an one-dimensional ordered
continuum isomorphic to the space of real numbers.
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The next examples do to the concept of multiverse and parallel uni-
verses [13, 14]. Moreover, these examples are in close connection with
the wave-particle duality and the Heisenberg uncertainty principle.

7.1. Example. Let S ′ = S1 × T be the observable space-time,
where T is the space of the time, and P be some non-empty space.
Consider some mapping (as a rule continuous) π : S ′ → P . We identify
tne space S ′ with the subspace S = {(x, π(x)) : x ∈ S} of the set S×P .
Let S ′ ⊆ U ⊆ S × P and on U we admit some topology T for which
S is a subspace of (U, T ). In this case, U \ S is the unobservable
part of Universe U . It is possible that dimS > dimU . If p ∈ P and
π(S) = {p}, then U ∩ (S ′ × {q} are parallel worlds.

7.2. Example. Let δ > 0, S(δ) = {(x, y, z, t) : x, y, z, t are
real numbers, t is time, dv((x, y, z, t), (u, v, s, w)) = ((xu)2 + (yv)2 +
(zs)2 + (tw)2)1/2, d((x, y, z, t), (u, v, s, w)) = dv((x, y, t), (u, v, w)), if
(x, y, u, t) = (u, v, s, w) or t ̸= w, and d((x, y, z, t), (u, v, s, w)) = δ +
dv((x, y, z, t), (u, v, s, w)), if t = w and (x, y, u, t) ̸= (u, v, s, w).

By construction, (S(δ), d, dv) is a bidistance space. On S(δ) we con-
sider the topology generated by the distance d. This space is separable,
Hausdorff, non-regular and non-metrizable.

We put S(t) = {(x, y, z, t)} is the real space in the moment t. The
space-time S(δ) is not discrete, and the real space S(t) is discrete for
any moment t, and the space S(δ) is continuous in the time. The
influence between points of (S(t) are in the space S(δ) in time. For
any two distinct points p, q ∈ S(t) and any ϵ > 0 in S(δ) there exists a
curve γ with the endpoints p, q such that l(γ, dv) = l(γ, d) < dv(p, q)+
ε. We mention that l(γ, dv) = l(γ, d) for any curve γ of the space S(δ).
Therefore the length of trajectories is not influenced by the distance
d.

7.3. Example. Let (M,d′) be a metric space and for any two points
x, y ∈ M and each ϵ > 0 there exists a curve γ with the endpoints
x, y such that d′(x, y) ≤ l(γ, d′) < d′(x, y) + ϵ. One can consider that
M is a smouts manifold with the Riemann’s distance. Denote by R
the space of reals as the space of the time. We put S = M × R and
(dv((x, t), (y, τ)

2 = d(x, y)2 + (t − τ)2. Let δ > 0, S(δ) = S, S(t)
= S × {t} is the real space-time in the moment t, d((x, t), (y, w)) =
dv((x, t), (y, w)), if (x, t) = (y, w) or t ̸= w, and d((x, t), (y, w)) = δ
+ dv((x, t), (y, w)), if t = w and (x, t) ̸= (y, w). For any two distinct
points p, q ∈ S(t) and any ϵ > 0 in S(δ) there exists a curve γ with the
endpoints p, q such that l(γ, dv) = l(γ, d) < dv(p, q) + ε. We mention
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that l(γ, dv) = l(γ, d) for any curve γ of the space S(δ). Therefore the
length of trajectories is not influenced by the distance d.

7.4. Remark. If in Examples 7.2 and 7.3 δ is insignificant, then
the difference dv−d is insignificant too. If the real space-time is of the
that kind, then it is possible that there exists a distance effect which
permits to determine the existence of δ and of the distance d.

7.5. Remark. One can consider the bidistance spaces (S, d, dv),
where d and dv are distance functions with the properties D1 and D2.
In this case in Example 7.2 the distance function dv may to be the
Minkowski metric.

Different unusual and original examples were constructed by many
scholars (see [4, 6, 8, 9, 11, 16, 17, 7]). Still, who determines the
real space structure? The answer would be that it is determined by
the matter in all its forms. A space is not only a place where the
matter is situated. The big quantity of the matter comprised even
in a small spatial domains determines the geometrical properties of
the space. The black bodies appear as a result of accumulation of
enormous quantities of a substance in a certain bounded domain of
the space. The ”weight” of the substance situated in the close neigh-
borhood of the point makes the space to bend and in this way there
appear so-called the curvature of the space. The Lobacevskii-Bolyai’s
space curvature has a negative curvature. The Euclidean’s space cur-
vature is zero, and that of Riemann’s elliptic space is positive. If a
space is closed (compact), then its curvature is positive. The space
with a negative curvature is open. The matter is in an eternal process
of movement. Depending on the density variation p(x, t) the distance
d(x, y) varies in the time too. Therefore the geometrical-topological
structure of space is changing.
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