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Abstract: A method of broad applicability is presented which can be used to obtain 
solutions to problems involving a phase change. The solution in one of the phases is 
specified as a known single-phase solution; an inverse analysis then determines the 
solution for the other phase. Two problems are studied: The first yields the similarity 
solution for the planar geometry and the second gives the exact solution to a more general 
problem. Convergence is shown and error bounds are given. The method can accommodate 
convection, heat generation, variable properties, nonplanar, and multidimensional systems. 
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1.  INTRODUCTION 
 
Transient heat conduction problems with freezing or solidification arise in many important technical 
applications. Although the equations governing such problems are often easily derived, the solution of these 
equations has proved to be difficult even for simple problems. These difficulties arise primarily because of the 
unknown location of the solid-liquid interface that renders the governing equations nonlinear. 
 
The method presented here proceeds by choosing a single-phase problem with a known exact solution Ts(x, t). 
This solution yields a constant temperature TF along a trajectory xF(t) i.e., Ts(xF, t) = TF. We now utilize this 
solution to construct a solution to an "equivalent" phase-change problem. Specifically, the phase-change problem 
would be defined by a known fusion temperature TF that occurs on the trajectory xF(t) as given above and a 
known temperature profile in one of the phases; the single-phase solution Ts(x, t) is assumed to equal the 
solution for the phase-change problem T(x, t) in the region x ≥ xF(t). This is consistent with the required 
condition 
 

T(xF (t), t) = Ts(xF(t), t) = TF 

 
The temperature distribution in the region 0 ≤ x ≤ xF(t) for the phase-change problem is unknown and is obtained 
by an inverse conduction analysis. When this solution is obtained, the phase-change problem is solved. 
The first problem that is solved illustrates the method and yields Neumann's solution. In the second section, the 
method is used to solve a more general problem. Convergence criteria and error bounds of this solution are also 
presented. 
 
 
2.  ANALYSIS 
 
Consider a solid, 0 ≤ x ≤ H, that is initially uniform at the temperature Ti. The temperature of the wall, at x = 0, 
is specified and exceeds the fusion temperature Tf. Therefore, melting occurs at an unknown position given by   
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x = xF( t) (see Fig. 1), with a liquid region 0 ≤ x ≤ xF(t), and a solid region xF(t) ≤ x ≤ H. The problem 
formulation is 
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Fig. 1 Phase-change problem 
 
 

We write the solution for the solid region as 
 

T(x, t) = Ts(x, t)       xF(t) ≤ x ≤ H    (2) 
 

Here Ts may be viewed as the known solution to an appropriate single-phase problem, one that obeys the same 
condition at x = H; i.e., T(H, t) = TH(t) and T(x, 0) = Ti. The trajectory xF(t) is determined from Ts(xF(t), t) = TF. 
The task is to determine the temperature distribution in the liquid region, 0 ≤ x ≤ xf (t). 
 
The solution for the liquid region that will be compatible with a temperature distribution Ts(x, t) in the solid 
region is obtained from a solution of the problem comprised of equations (1a), (1e), and (1f). This is an inverse 
conduction problem and the solution is  
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where the Gn are functions only of XF (t). 
This result is valid for all constant property phase-change problems for the one-dimensional Cartesian geometry. 
Similar results can be derived for other geometries. 
 
To evaluate the Gn in equation (3) the trajectory xF(t) is needed. As stated above, this is obtained from the 
solution for the solid region at x = xF(t); i.e., Ts(xF,t) = TF yields the trajectory xF (t). We now illustrate the 
method. 
 
2.1. Single-Phase Problem: Tws = Const, Semi-Infinite Region 
 
Consider a semi-infinite solid, x ≥ 0, that is initially uniform at the temperature Ti. The temperature of the wall, 
at x = 0, is instantaneously raised to a constant value Tws, the single-phase wall temperature. The single-phase 
solution to this problem is given by [1] 
 

ηerf)(),( iwswss TTTtxT −−=      (4) 
 

where 
 
     tx αη 2/=       (5) 
 
2.2. Application of the Single-Phase Solution to a Phase-Change Problem 
 
The location of the phase-change inter-face is obtained from 
 

          ηerf)(),( iwswsFFs TTTTtxT −−==     (6) 
 

where 
 
     λα =txF 2/       (7) 
 
Since TF, Tws and Ti are known constants, λ is known and must also be a constant. 
The relation above can be rearranged. Equation (6) yields 
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which, when substituted into equation (4) yields 
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The subscript s on Ts(x,t) has been dropped because the relation is also applicable to the phase-change problem, 
i..e, equation (9) does not contain Tws. 
To obtain the solution in the region 0 ≤ x ≤ xF(t), equation (3) is used. Substituting the trajectory xF(t) from 
equation (7) into equation (3) and summing the series gives 
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where Ts is the single-phase solution given by equation (4). At the wall 
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Recall that Ts(0,t) = Tws is a constant. Thus the solution to the phase-change problem that has been solved is for 
the constant wall temperature boundary condition, Tw = constant. Equation (10) may be written in a more 
familiar form by using equation (4) for Ts(x,t) and then using equation (6). The result is 
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Now, using equations (9) and (12) and the boundary condition equation (1f) yields the following relation for 
determining λ 
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Equations (9), (12), and (13) constitute the solution to this phase-change problem. The solution to this problem 
was given by Neumann [1], and the present results are identical to his solution. 
 
2.3.  More General Problem: xF = btm 
 
We now consider a more general phase-change problem governed by equations (1a-g), with an interface 
trajectory: xF = btm  with T(x,0) = TF, T(H,t) = TF. The solution is given by 
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for n odd: 
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Direct substitution into the governing equations (1a-g) confirms the above solution. Note that m = 1/2 gives  
Neumann's solution and m = 1 gives Stefan's solution [2, 3]. 
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2.4. Convergence: m > 1/2 
 
The convergence and error bounds for this solution are now considered for m > 1/2. We first determine the 
convergence of Hn for n even. Define 
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For the series to converge, Ri,n < 1 as I →∞ for fixed values of n. Ci,n may be written as 
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where Γ is the gamma function. Using x
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Thus, as i → ∞, Ri,n → 0 showing convergence of equation (16a). Analysis of Hn, n odd, also yields rapid 
convergence as i → ∞. To determine the convergence of the series given in equation (15) the quantity Si,n is 
defined according to 
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For convergence, Si,n < 1 as n → ∞ for fixed values of i. Equation (18) gives 
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 for fixed i. Identical results are obtained for odd values of n. 

 
2.5. Error Bound for Wall Temperature, m > 1/2 
 
The error bound for the wall temperature is related directly to the error bound on Ho. From our definitions we 
have that 
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The estimate for Ho is given by 
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We define Rp,0 = Cp,0/Cp-1,0) and assume that Rp,0 decreases monotonically as p increases. The error is then given  
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Also note that for m > 1 /2 all Ci,0 ≥ 0. Thus 
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using five terms in the series oH~  for p = 0 gives upper and lower bounds for Ho for several values of τ and m. 
Wall temperature converge ratio, Ri,0 for m = 1, 2, 4 and 10 show that Rp,0 decreases monotonically as p 
increases, thus showing the foregoing analysis to be valid over a broad range of values of rand m. 
 
2.6. Solution for m = 1/3 
 
For the case m = 1/3, 0 < τ < 0.8, Chow and Woo [4] give approximate results for the dimensionless wall tem-
perature and heat flux.  Their results correspond to the quantities H0(τ) and H1(τ). The maximum difference 
between the results of [4] and the present results is 0.1 percent. 
 
 
4. CONCLUSIONS 
 
A method has been presented witch solves phase-change problems. The solution in one of the phases is specified 
as a known single-phase solution. An inverse analysis then determines a power-series solution for the other 
phase. The method can accommodate planar, cylindrical, and spherical geometries and convection, heat 
generation, and differing liquid and solid properties. With more difficulty, the method can include thermal 
varying properties and multidimensional systems, and can be implemented numerically. 
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