"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 21 (2011), No. 1, 167-174

ON THE STATISTICAL APPROXIMATION PROPERTIES OF Q-SCHURER OPERATORS

CARMEN VIOLETA MURARU AND VALER NIMINET

Abstract. The results from q-Calculus theory occurs in many applications from physics, quantum theory, number theory, etc. The aim of this paper is to study some convergence properties of q-Schurer operators, in terms of statistical approximation.

1. PRELIMINARIES

We mention in the following some important achievements in this field of q-Calculus

Lupaş introduced in 1987 a q-type of the Bernstein operators and in 1997 another generalization of the classical Bernstein polynomials based on q-integers were introduced by Phillips [9]. He has obtained the rate of convergence and Voronovskaja type asymptotic formula for the new Bernstein operators based on q-integers. After this, some authors studied new classes of q- generalized operators and gave approximations properties of them. In [3] O. Doğru and A. Aral constructed q- type generalization of Bleimann, Butzer and Hahn operators.

Keywords: linear and positive operators, q-Calculus, statistical convergence,

Bohman-Korovkin type theorem, q-Schurer

(2010) Mathematics Subject Classification: 41A36

T. Trif investigated Meyer-König and Zeller operators based on q-integers ([11]). O.Doğru and O. Duman introduced also a new generalization of Meyer-König and Zeller operators and studied some statistical approximation properties in [6]. A generalization of Balazs-Szabados operators based on q-integers was introduced and a Stancu type generalization of these operators is also constructed in a paper of O. Doğru.

We remind also that uniform approximating polynomial operators in two and several variables were constructed by Stancu in 1972 ([12]).

In [4] Barbosu introduced a Stancu type generalization of two dimensional Bernstein operators based on q-integers and in a joint paper, O. Doğru and Gupta constructed a q-type generalization of Meyer-König and Zeller operators in bivariate case. ([6]) A new q-generalization of Meyer-König and Zeller type operators was constructed by Doğru and Muraru in order to improve the rate of convergence [7]. Recently were studied generalization of Durmeyer and Kantorovich operators based on q-integers by Gupta and Radu [9].

We remind that q- Bernstein polynomial has the following form (Philips 1996 [13]).

(1.1)
$$B_n(f;q;x) = \sum_{k=0}^n f\left(\frac{[k]_q}{[n]_q}\right) \begin{bmatrix} n \\ k \end{bmatrix}_q x^k \prod_{s=0}^{n-k-1} (1-q^s x)$$

where $x \in [0,1]$, $f \in C([0,1])$, 0 < q < 1 and

$$[k]_q = \begin{cases} (1-q^k)/(1-q), & q \neq 1 \\ k, & q = 1 \end{cases}$$

$$[k]_q! = \begin{cases} [k][k-1]....[1], & k = 1,2,... \\ 1, & k = 0 \end{cases}$$

$$[n]_q = \frac{[n]_q!}{[k]_a![n-k]_a!} \quad (n \geq k \geq 0)$$

The q-analogue of $(x-a)^n$ is the polynomial

$$(x-a)_q^n = \begin{cases} 1 & \text{if } n=0\\ (x-a)(x-qa)....(x-q^{n-1}a) & \text{if } n \ge 1 \end{cases}$$

As usual, we note with C([a,b]), the space of all real valued continuous functions defined on [a,b]. The space is endowed with usual norm $\|\cdot\|$ given by $\|f\| = \sup_{x \in [a,b]} |f(x)|$.

The sequence
$$p_{n,k}(x,q) = \begin{bmatrix} n \\ k \end{bmatrix}_q x^k \prod_{s=0}^{n-k-1} (1-q^s x), k = 0,1,..,n$$

for 0 < x < 1 and 0 < q < 1 forms a normalized totally positive basis, called q-Bernstein basis.

Let $p \in N$ be fixed. In 1962 Schurer introduced and studied the Schurer operators $B_{m,p}: C([0,p+1]) \to C([0,1])$ defined for any $m \in N$ and any function $f \in C([0,p+1])$ as follows

$$\widetilde{B}_{m,p}(f;x) = \sum_{k=0}^{m+p} {m+p \choose k} x^k (1-x)^{m+p-k} f\left(\frac{k}{m}\right)$$

One observes that for p = 0, $B_{m,0}$ are the operators of Bernstein B_m .

2. APPROXIMATION PROPERTIES OF Q-SCHURER OPERATORS

In a recent paper, ([12]) we introduced the sequence of q-Schurer linear operators and gave some approximation properties of them, including an estimation of rate of convergence in the terms of first modulus of continuity. For any $m \in N$, $f \in C([0, p+1])$, p be fixed we construct the class of generalized q-Bernstein -Schurer operators and any $x \in [0,1]$, as follows:

(2.1)
$$\tilde{B}_{m,p}(f;q;x) = \sum_{k=0}^{m+p} {m+p \brack k}_q x^k \prod_{s=0}^{m+p-k-1} (1-q^s x) f\left(\frac{[k]_q}{[m]_q}\right)$$

Lemma 2.1 The operator defined by (2.1) is linear.

Lemma 2.2 ([12]) The polynomials defined above satisfy the following properties:

1.
$$B_{m,p}(e_0;q;x) = 1$$

2.
$$B_{m,p}(e_1;q;x) = \frac{x[m+p]_q}{[m]_q}$$

3.
$$B_{m,p}(e_2;q;x) = \frac{[m+p]_q}{[m]_q^2} ([m+p]_q x^2 + x(1-x))$$

where we denote by $e_j(x) = x^j$, j = 0,1,2, the test functions.

Theorem 2.3([12])

Let $q=q_m$ satisfy $0 < q_m < 1$, $\lim_{m \to \infty} q_m = 1$ and $\lim_{m \to \infty} q_m^m = a, a < 1$. Then for any $f \in C([0, p+1])$ the next result holds

$$\lim_{m\to\infty} \widetilde{B}_{m,p}(f;q_m) = f \quad \text{uniformly on [0,1]}$$

For estimation of convergence we obtain the next result in terms of first modulus of continuity .

Theorem 2.4 ([12])

If $f \in C([0,1+p])$ then we obtain

$$\left| \tilde{B}_{m,p}(f;q;x) - f(x) \right| \leq 2\omega_f(\delta_m),$$

where
$$\delta_m = \frac{1}{\sqrt{[m]_q}} \left(p + \frac{1}{2\sqrt{1-q^m}} \right)$$
 and $\lim_{n \to \infty} q_n = 1$, $0 < q < 1$.

3. KOROVKIN TYPE STATISTICAL APPROXIMATION PROPERTIES

The concept of statistical convergence was introduced by Fast in [8] and Steinhauss [15] and recently has became an important area in approximation theory.

A sequence $x = (x_k)$ is said to be statistically convergent to a number L if for every $\varepsilon > 0$

$$\delta\{k \in N : |x_k - L| \ge \varepsilon\} = 0,$$

where $\delta(K)$ is the natural density of the set $K \subseteq N$. The density of subset K is defined by

$$\delta(K) = \lim_{n \to \infty} \frac{1}{n} |\{k \le n, k \in K\}|$$

whenever the limit exists.

We denote this limit by $st - \lim_{n \to \infty} x_n = L$.

Clearly finite subsets have natural density 0.

We denote by $C_M[ab]$ the space of all functions f which are continuous in [a,b] and bounded on the all positive axis. The next theorem of Bohman-Korovkin type due to Gadjev and Orhan contains the criterion to prove statistical convergence for a sequence of linear and positive operators.

Theorem A ([10]) If the sequence of positive linear operators

$$A_n: C_M[a,b] \to C[a,b]$$

satisfies the conditions

$$st - \lim_{n \to \infty} ||A_n(e_i) - e_i||_{C[a,b]} = 0$$
 with $e_i(t) = t^i, i = 0,1,2$,

then for any function $f \in C_M[a,b]$ we have

$$st - \lim_{n \to \infty} ||A_n(f) - f||_{C[a,b]} = 0$$

Taking into account the result from Lemma 2.2 we are ready to obtain the following first main result for the operators $B_{m,p}$.

Theorem B

Let (q_n) be a sequence that satisfies

$$st - \lim_{n} q_n^p = 1$$
 and p a fixed natural number.

Then for all $f \in C_M[0,1]$ we have

$$st - \lim_{n} ||B_{m,p}(f,q_n,\cdot) - f||_{C[0,1]} = 0$$

Proof

It is necessary to prove that

$$st - \lim_{n} ||B_{m,p}(e_i, q_m, \cdot) - e_i||_{C[a,b]} = 0 \text{ for i=0,1,2.}$$

and the proof follows from Theorem A.

From the Lemma 2.2. is clear that

$$st - \lim_{n} \left\| B_{m,p}(e_0, q_m, \cdot) - e_0 \right\|_{C[0,1]} = 0$$

For the second relation we have

$$||B_{m,p}(e_1,q_m,x) - e_1|| = \left| \frac{[m+p]}{[m]} - 1 \right| = \left| q_m^p + \frac{[p]}{[m]} - 1 \right| = \left| q_m^p - 1 \right| + \frac{[p]}{[m]}$$

$$q_m \in (0,1), q_m^p \in (0,1)$$
 $st - \lim_n q_m^p = 1$.

We consider

$$A = \left\{ m \in \mathbb{N} : \left\| B_{m,p}(e_1, q_m, \cdot) - e_1 \right\| \ge \varepsilon \right\}$$

$$A_{1} = \left\{ m \in N : \left| q_{m}^{p} - 1 \right| \ge \frac{\varepsilon}{2} \right\}$$

$$A_2 = \left\{ m \in N : \frac{[p]}{[m]} = 1 - q_m^p \ge \frac{\varepsilon}{2} \right\}$$

$$A \subset A_1 \cup A_2$$

$$\left\|B_{m,p}(e_1,q_m,\cdot)-e_1\right\| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \implies \delta(A) \leq \delta(A_1) + \delta(A_2) = 0$$

So

$$st - \lim_{n} \left\| B_{m,p}(e_1, q_m, \cdot) - e_1 \right\| = 0$$

$$\begin{split} &\left\|B_{m,p}\left(e_{2},q_{m},\cdot\right)-e_{2}\right\|_{C[0,1]}\leq\left|\frac{\left[m+p\right]^{2}}{\left[m\right]^{2}}-\frac{\left[m+p\right]}{\left[m\right]^{2}}-1\right|+\frac{\left[m+p\right]}{\left[m\right]^{2}}\leq\\ &\leq\left|\frac{\left[m+p\right]^{2}}{\left[m\right]^{2}}-1\right|+\frac{\left[m+p\right]}{\left[m\right]^{2}}+\frac{\left[m+p\right]}{\left[m\right]^{2}}=\left|\frac{\left[m+p\right]^{2}}{\left[m\right]^{2}}-1\right|+\frac{2\left[m+p\right]}{\left[m\right]^{2}} \end{split}$$

We use in the above inequality that $||x| - |y|| \le |x + y| \le |x| + |y|$, $\forall x, y \in R$.

We set

$$A' = \{ m \in N : ||B_{m,p}(e_2, q_m, \cdot) - e_2|| \ge \varepsilon \}$$

$$A'_{1} = \left\{ m \in N : \left| \frac{[m+p]^{2}}{[m]^{2}} - 1 \ge \frac{\varepsilon}{2} \right\} \right\}$$

$$A'_2 = \left\{ m \in N : \left| \frac{2[m+p]}{[m]^2} \ge \frac{\varepsilon}{2} \right\} \right\}$$

$$A' \subseteq A'_1 + A'_2 \Longrightarrow \delta(A') \le \delta(A'_1) + \delta(A'_2) = 0$$

$$st - \lim_{n} \left\| B_{m,p}(e_2, q_m, \cdot) - e_2 \right\|_{C[0,1]} = 0$$

REFERENCES

[1] Agratini O., On statistical approximation in spaces of continuous functions, Positivity, 13(2009), 735-743;

- [2] Altomare F., Campiti M., **Korovkin-type approximation theory and applications**, Berlin, Walter de Gruyter, 1994
- [3] A. Aral, O. Dogru, **Bleimann, Butzer, and Hahn Operators Based on the q-Integers**, Journal of Inequalities and Applications, vol. 2007,
- [4] Barbosu D., **Some generalized bivariate Bernstein operators**, Math. Notes (Miskolc) **1**,3-10 (2000)
- [5] Doğru O., Duman O., Statistical approximation of Meyer-Kőnig and Zeller operators based on q-integers, Publ. Math. Debrecen 68, 199-214 (2006)
- [6] Doğru O., Gupta V., Korovkin-type approximation properties of bivariate q-Meyer-Kőnig and Zeller operators, Calcolo 43, 51—63 (2006)
- [7] Doğru O., Muraru C.V., **Statistical approximations by a Stancu type bivariate generalization of Meyer-Konig and Zeller type operators**, Mathematical and Computer Modelling, vol. 48, issues 5-6, September 2008, 961-968
- [8] Fast, H., Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244.
- [9] Goodman T.N.T., Oruç H., Phillips G.M., Convexity and generalized Bernstein polynomials, Proc. Edinburgh Math. Soc. 42(2), 179-190 (1999)
- [10] Gadjiev, A.D., Orhan, C., Some approximation theorems via statistical convergence, Rocky Mountain J. Math., 32 (2002), 129-138.
- [11] Gupta V., Radu C., **Statistical approximation properties of q-Baskakov-Kantorovich operators**, Central European Journal of Mathematics, 7(4), 2009, 809-818
- [12] Muraru C.V., **Note on q-Bernstein-Schurer operators**, Studia UBB Mathematica, Vol. LVI (2), 2011, pp.1-11
- [13] Philips, G.M., **On generalized Bernstein polynomials**, in: D.F. Griffits, G.A. Watson (Eds.), 263-269 (1996)
- [14] Trif T., **Meyer-Kőnig and Zeller operators based on q-integers**, Rev. Anal. Numer. Theor. Approx., **29**, 221-229 (2000)
- [15] Stancu D.D., **A new class of uniform approximation polynomial operators in two and several variables**, In Alexits G., Stechkin S.B., (eds), Proceedings of the conference on constructive theoru of functions, Budapest, Akadémiai Kiadó, 443-455 (1972)
- [16] Steinhaus, H., Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74.

"Vasile Alecsandri" University of Bacău Department of Mathematics and Informatics Faculty of Sciences, Email: carmen 7419@yahoo.com