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ON THE STATISTICAL APPROXIMATION PROPERTIES OF Q-

SCHURER OPERATORS 
 

 CARMEN VIOLETA MURARU AND VALER NIMINEŢ 
 

Abstract.   The results from q-Calculus theory occurs in many applications 
from physics, quantum theory, number theory, etc. The aim of this paper is to 
study some convergence properties of q-Schurer operators, in terms of 
statistical approximation.   

 
1. PRELIMINARIES 

 
We mention in the following some important achievements in this field of q-

Calculus. 

Lupaş introduced in 1987 a q-type of the Bernstein operators and in 1997 

another generalization of the classical Bernstein polynomials based on q- 

integers were introduced by Phillips [9]. He has obtained the rate of 

convergence and Voronovskaja type asymptotic formula for the new Bernstein 

operators based on q−integers. After this, some authors studied new classes of 

q- generalized operators and gave approximations properties of them. In [3] O. 

Doğru and A. Aral constructed q- type generalization of Bleimann, Butzer and 

Hahn operators. 
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 T. Trif investigated Meyer-König and Zeller operators based on q-integers 

([11]). O.Doğru and O. Duman introduced also a new generalization of Meyer-

Kőnig and Zeller operators and studied some statistical approximation 

properties in [6]. A generalization of Balazs-Szabados operators based on q- 

integers was introduced and a Stancu type generalization of these operators is 

also constructed in a paper of O. Doğru.  

We remind also that uniform approximating polynomial operators in two and 

several variables were constructed by Stancu in 1972 ( [12]). 

In [4] Barbosu introduced a Stancu type generalization of two dimensional 

Bernstein operators based on q-integers and  in a joint paper , O.  Doğru and 

Gupta constructed a q-type generalization of Meyer-König and Zeller operators 

in bivariate case. ([6]) A new q-generalization of Meyer-König and Zeller type 

operators was constructed by Doğru and Muraru in order to improve the rate of 

convergence [7]. Recently were studied generalization of Durmeyer and 

Kantorovich operators based on q-integers by Gupta and Radu [9]. 

 We remind that  q- Bernstein polynomial has the following form (Philips 1996 

[13]). 
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The q-analogue of nax )( −  is the polynomial  
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As usual, we note with ]),([ baC , the space of all real valued continuous 

functions defined on [a,b]. The space is endowed with usual norm  ⋅  given by                    
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for 10 << x   and 10 << q  forms a normalized totally positive basis, called q-

Bernstein basis. 

Let Np∈  be fixed.  In 1962  Schurer introduced and studied the Schurer 

operators  ])1,0([])1,0([:,

~
CpCB pm →+  defined for any  Nm∈  and any 

function ])1,0([ +∈ pCf as follows  
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   One observes that for 0, ,0 mBp =  are the operators of Bernstein mB . 

 

2. APPROXIMATION PROPERTIES OF Q-SCHURER OPERATORS 

In a recent paper, ([12]) we introduced the sequence of q-Schurer linear 

operators and gave some approximation properties of them, including an 

estimation of rate of convergence in the terms of first modulus of continuity . 

For any Nm∈  , ])1,0([ +∈ pCf  , p  be fixed we construct the class of 

generalized q-Bernstein -Schurer operators  and any ]1,0[∈x , as follows: 
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Lemma 2.1 The operator defined by (2.1 ) is linear. 

Lemma 2.2 ([12]) The polynomials defined above satisfy the following 

properties: 
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where we denote by 2,1,0 ,)( == jxxe j
j , the test functions. 

Theorem 2.3([12]) 

Let mqq = satisfy 10 << mq , 1lim =
∞→ mm

q and 1,lim <=
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aaq m
mm

 .Then for any 

])1,0([ +∈ pCf  the next result holds 
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For estimation of  convergence we obtain the next result in terms of first 

modulus of continuity . 

Theorem 2.4  ([12]) 

If ])1,0([ pCf +∈  then we obtain  
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3. KOROVKIN TYPE STATISTICAL APPROXIMATION 

PROPERTIES 

 The concept of statistical convergence  was introduced by Fast in [8] and 

Steinhauss [15] and recently has became an important area in approximation 

theory .  

 A sequence )( kxx = is said to be statistically convergent to a number L if for 

every 0>ε  

                 0}:{ =≥−∈ εδ LxNk k , 

where )(Kδ  is the natural density of the set NK ⊆ . The density of subset K is 

defined by 

                  }, {1lim)( Kknk
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K
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whenever the limit exists. 

We denote this limit by .lim Lxst nn
=−

∞→
 

Clearly finite subsets have natural density 0. 

We denote by ].[ baCM  the space of all functions f which are continuous in 

[a,b] and bounded on the all positive axis. The next theorem of Bohman-

Korovkin type due to  Gadjev and  Orhan contains the criterion to prove 

statistical convergence for a sequence of linear and positive operators.  

Theorem A ([10]) If the sequence of positive linear operators 

                  ],[],[: baCbaCA Mn →  

satisfies the conditions  
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then for any function ],[ baCf M∈  we have 
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Taking into account the result from Lemma 2.2  we are ready to obtain the 

following  first main result for the operators pmB ,
~

.  

Theorem B 

 Let )( nq  be a sequence that satisfies  

                               1lim =− p
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Then for all ]1,0[MCf ∈  we have  

                               0),,(lim
]1,0[, =−⋅−

Cnpmn
fqfBst  

Proof 

It is necessary to prove that  

             0),,(lim
],[. =−⋅−

baCimipmn
eqeBst  for i=0,1,2. 

and the proof follows from Theorem A. 

From the Lemma 2.2. is clear that  

              0),,(lim
]1,0[00. =−⋅−

Cmpmn
eqeBst  

For the second relation we have  

 
][
][11

][
][1

][
][),,( 11, m

pq
m
pq

m
pmexqeB p

m
p
mmpm +−=−+=−

+
=−  

)1,0(),1,0( ∈∈ p
mm qq    1lim =− p

mn
qst . 

We consider 

{ }ε≥−⋅∈= 11, ),,(: eqeBNmA mpm  

⎭
⎬
⎫

⎩
⎨
⎧ ≥−∈=

2
1:1

εp
mqNmA  



STATISTICAL APPROXIMATION PROPERTIES OF q-SCHURER OPERATORS  

 

173 

⎭
⎬
⎫

⎩
⎨
⎧

≥−=∈=
2

1
][
][:2

εp
mq

m
pNmA  

21 AAA ∪⊆  

εεε
=+≤−⋅

22
),,( 11, eqeB mpm  0)()()( 21 =+≤⇒ AAA δδδ  

So 

0),,(lim 11, =−⋅− eqeBst mpmn
 

22

2

222

2

222

2

]1,0[22,

][
][21

][
][

][
][

][
][1

][
][

][
][1

][
][

][
][),,(

m
pm

m
pm

m
pm

m
pm

m
pm

m
pm

m
pm

m
pmeqeB

Cmpm

+
+−

+
=

+
+

+
+−

+
≤

≤
+

+−
+

−
+

≤−⋅

 

We use in the above inequality that Ryxyxyxyx ∈∀+≤+≤− ,, . 

We set 
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