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ON SEMILLATICE-ORDERED SEMIGROUPS. A
CONSTRUCTIVE POINT OF VIEW

DANIEL A. ROMANO

Abstract. Semilattice-ordered semigroup is an important algebraic
structure. It is ordered semigroup under anti-order. Some basic prop-
erties of semillatice-ordered semigroups with apartness are given by
constructive point of view. Let I and K be compatible an ideal and an
anti-ideal of semilattice-ordered semigroup S. Constructions of com-
patible congruence F(I) and anti-congruence Q(K) on S, generated
by I and K respectively, are given. Besides, we construct compati-
ble order <r and anti-order 61 on factor-semigroup S/(E(1), Q(K)).
Some basic properties of such constructed semigroups are given.

1. INTRODUCTION AND PRELIMINARIES

Our setting is Bishop’s constructive mathematics ([1], [2], [4], [7]),
mathematics developed with Constructive logic (or Intuitionistic logic)
- logic without 'Low of Excluded Middle’” P vV =P. We have to note
that ’the crazy axiom’ =P = (P = (@) is included in the Construc-
tive logic. Precisely, in Constructive logic the 'Double Negation Law’
P <= ——P does not hold but the following implication P =—> ——P
holds even in Minimal logic. In Constructive logic 'the Weak Law of
Excluded Middle” =P V == P does not holds, too. It is interesting, in
Constructive logic the following deduction principle AV B,—~A - B
holds, but this is impossible to prove without ’the crazy axiom’.
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with apartness, semilattice-ordered semigroup, order and antiorder
relations, ideal and anti-ideal, congruence and anti-congruence.
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The paper deals with semillatice-ordered semigroups which are ex-
amined within the restrictive framework of Bishop-style constructive
mathematics. This investigation is in Bishop’s constructive algebra in
sense of papers [10]-[13] and books [7] and [14] (Chapter 8: Algebra).
Let (S,=,#) be a constructive set. The diversity relation # ([7]) is a
binary relation on .S, which satisfies the following properties:

“(r#ar),rFy=—=yFr,xFtyNy=z=—=uac#z.

If it satisfies the following condition
(Vz,z€S)(x # 2= (WeS)(zFy VyFz)),

it is called apartness (A. Heyting). For a subset X of A we say that
it is a strongly extensional subset of A if and only if v € X — (Vy €
S)(x #yVye X). Following Bridges and Vita (for example, see [5]),
for subsets X and Y of A we say that set X is set-set apart from Y,
and it is denoted by X 1Y, if and only if (Va € X)(Vy € Y)(z # v).
We set x 1 Y instead of {z} > Y, and, of course, x # y instead of
{2} > {y}. With S = {x € X : 2 > S} we denote the apartness
complement of S. So, < is a relation between pairs of subsets of A. It
is easy to see that the following hold:
(0) (X b3 X);
D) X=Y ==(X=0AY =0);
2) X <Y =XNY=0;
B XY ANZCY = X xZ;
B)X=x(YUZ)«<—= XxY AN XxZ;
(4) X <Y =Y < X.
Let Y be a subset of (S, =,#). We say that it is detachable if and only
if (Vx)(zr € S=2z€Y VaxY). Fora function f : (5,=,#) —
(T, =,#) we say that it is a strongly extensional function if and only
if (Va,b e S)(f(a) # f(b) = a # ).

For undefined notions and notations of semigroup items we referred
to book [3] and articles [6] and [7] and items of Constructive Alge-
bra we referred to books [1], [2], [4], [7] and [14] and to the author’s
papers [10]-[13]. Semilattice-ordered semigroups are important alge-
braic structures. They where studied by Martin Kuril and Libor Polka
([6], [9]). J van Plato studied in his article [8] semilattice in Con-
structive Algebra. In this article, in Section 2, we give a definition of
anti-order relation on semilattice-ordered semigroup S (with apartness
and strongly extensional internal operation) and construct one on S
in a natural way. In Section 3 we show some examples of semilattice-
ordered semigroups with diversity relation (Example 3.1, Example 3.2
and Example 3.3) and with apartness (Example 3.4). Let I and K be
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compatible an ideal and an anti-ideal of semilattice-ordered semigroup
S. Constructions of compatible congruence E(I) and anti-congruence
Q(K) on S, generated by I and K respectively, are given in section 4.
Finishing this investigation with Section 5 we give some basic proper-
ties of semilattice-ordered semigroups with diversity.

2. ORDER AND ANTI-ORDER ON SEMILATTICE-ORDERED
SEMIGROUP

Following the classical definition in [6] and [9], for algebraic struc-
ture (A,=,#,-,®) is called a (strong) semilattice-ordered semigroup

if :
(i) (A,=,#,) is a semigroup, where the semigroup operation is
strongly extensional in the following way (Va,b,c € A)((ac # beV ca #
cb) = a # b);
(i) (A, =, #, ®) is a semilattice, i.e. (A, ®) is a commutative semigroup
with
(Ve € A)(z®@x = ),

where the semigroup operation is strongly extensional:

(Va,b,c e A)((a®@c#bRcV cR®a#cRb) = a #b);
(iii) (Va,b,c € A)((a(b®c) =ab® ac) A ((a ® b)c = ac ® be)).

For a function f : (S,=,#,-,®) — (T, =, #,0,¢) we say that it is
a homomorphism of semilattice-ordered semigroups if and only if hold
f(ab) = f(a) o f(b) and f(a®b) = f(a) o f(b) for all a and b of S.

A structure (A, =, # ,<) is called an ordered semigroup ([3], [9]) if
(i) (A,=,#,-) is a semigroup, where the operation - is strongly
extensional,

(i) (A, <) is a (partially) ordered set,
(ili) (Va,b,c € A)(a < b= (ca < cb A ac < be)).

The following lemma shows significance of semilattice-ordered semi-
group:

Lemma 2.1. If (A,=,# -, ®) is a semilattice-ordered semigroup and
we define, for any a, b of A, a < b if and only if a®b = b, it is known
that the structure (A,=,# -, <) is an ordered semigroup.

Proof: See, for example, [3]. O
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Since in Constructive logic the 'Law of Excluded Middle” is not
valid, in Bishop’s constructive algebra the following relation is also
interesting: a relation symmetric to ordered relation <. A relation ¢
on S is anti-order ([10]) on S if and only if

o C#
(Va,y,2 € S)((z,2) € 0 = ((z,y) €0 V (y,2) €0)),

(Vz,y € S)(z £y = ((x,y) €0 V ( x) €46)), (hnearity) and
(Vz,y,z € S)(((xz,y2) € 6 = (x,y) € 9) ((zz, 2zy) € 0 = (z,y) €
0)).

System (A, =, #,-,0) is ordered semigroup under anti-order if (A, =
,#,+) is a semigroup where the semigroup operation is strongly ex-
tensional, and relation € is an anti-order relation on (A,=,#,-). In
the following lemma we show that semilattice-ordered semigroup is
relevant once more. This suggests that there exists interest for inves-

tigation of ordered semigroup under anti-order.

Lemma 2.2. If (A,=,# -,®) is a semilattice-ordered semigroup and
we define, for any a, b of A,
alb <= a @b # a,

then the structure (A,=,# -,0) is an ordered semigroup under anti-
order .

Proof: (i) Suppose that afb, i.e. let a ® b # a. Then a® b # a ® a,
and thus a # b. So, the relation 6 is consistent.
(i) Let a, b, ¢ be arbitrary elements of A such that afe, i.e. such that
a® c# a. Then
aRc#a= ((a®@c#b®a)V (b®a # a)).
If b®a # a, then afb. Suppose that a®c # bRa. Then a®c # a@bRc
or a ®b®c+# b® a holds. In the first case, we conclude:
ARc#aRbRXc=—=a#aRbV c#c
= abb .
In the second case, we have
ARbRc#bRa=—=bRc#b
= blc .
Therefore, the relation 6 is cotransitive.
(iii) Let a and b be arbitrary elements of A such that a # b. Thus
aF#a®bora®b#0b So, we have a # b = abfb V bba. So, the
relation 6 is linear.
(iv) Let a,b be arbitrary elements of semigroup (A,=,# -, ®) such
that acfbc. Then ac ® be # ac = ac ® ac implies ac # ac V bc # ac
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(because the operation ® is strongly extensional). So, we have a # b.
Analogously, we conclude the implication cafcb = a # .
Finally, the relation # is an anti-order relation on semigroup (A, =, #, -)

and the structure (A,=,# -,0) is a semigroup ordered under anti-
order. [

Corollary 2.1. If (A,=,# -,®) is a semilattice-ordered semigroup
and we define, for any a, b of A,

aB®b <= a®b#Db,

then the structure (A,=,# -,0) is an ordered semigroup under anti-
order 0. Except that © = 0~ holds.

The following lemma shows what kind of connection is the relation

6.

Lemma 2.3. Let 0 be an anti-order on semigroup (S,=,#,-). Then
6¢ is an order on (S,— #,#,-).

The result is known, even in more general form. The logical
complement of an anti-order, which coincides in this case with the
complement, is a partial order relation. (See, for instance, van Plato’s
paper [8].) If the ordered set is endowed with an algebraic structures,
then the compability of the algebraic operations with the partial
order follows from compability with the anti-order.

The following two corollaries show what kind of connection exists
between relation < and 6.

Corollary 2.2. If (A,=,#,-,®) is a semilattice-ordered semigroup
and we define, for any a,b of A,
a<b<=a®@b=>band ablb<= a®b # a,
then
a<bA blc= abc.
Proof: Let a < b A bfc. Then bla V afc, i.e. then b ® a # b and

afc. Thus, we have aflc because a ® b = b and b ® a # b is impossible.
O

Corollary 2.3. If (A,=,#,-,®) is a semilattice-ordered semigroup
and if we define
a<b<=a®b=>band bla <= bR a #b, (for any a,b of A)
then
—(a <b A bba).
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3. SOME EXAMPLES OF SEMILATTICE-ORDERED SEMIGROUPS

Example 3.1. Let S be a semigroup. We put for any X € o(95)
and Y € p(S) XY ={zylr € X ANy € Y}. Then (P(5),-,U) is
a semilattice-ordered semigroup. Here, as usual, U denotes the set-
theoretical union.

Let us note that, even though the set S is supplied by apartness,
relation #; on p(.5), defined in a natural way:

X#Y <= FreX)(zxY)V (yeY)(yx~X)
is a diversity relation on p(.S) but it is not apartness in general.

For the second example we give a construction of free semigroup
with apartness generated by set (X, =, #).

Example 3.2. Let (X,=,#) be a set with apartness. We form the
following class X of all strictly finite sequences of elements of X

e Xt <= (n, e N)3f)(fo: {1,2,...,n,} —> 2™)
with
(Vie{1,2,...,n.})(f:(2) € X).
As usual the concatenation of z+ and y* is denoted by 2t o y*. If

rt = (fx(l)a ) fx(nx)) and y+ = (fy(1>7 OS] fy(ny))a

then
Ngy = Nz + Ny and
ie{Ll,2,...,n,} = fu, (4) = fu(3),
1="Ng+] (] € {1727 ""ny}) - fwy(z) - fy(])7
ie.

zt oyt = (fo(1), ..., fu(ng), f(1), ...y fy(ny))-

On the class Xt we define

T =yt <= (ny, =ny A fo = f,) and

et Fryt = (2 =mny) V fu # fy).
It is obvious that the relation =; is an equality relation on the class
X*. Tt is clear that the relation #; is consistent —(z% #; z7) and
symmetric (z% #; y© = yT #; 7). We have to prove that the
relation #; is compatible with the equality =; and cotransitive.
2t =1yt ANyt # 2t =
(@ =1y (= (na = ny A fo = f)) ANy #1 27 (= —(ny =
nz) A fy # f2))
= _‘(nw :nz) \ faﬁ 7é fz
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= at # 2t

Let t, 2% be arbitrary elements of X such that ™ #; 2™, and let
y* be an arbitrary element of X*. Then there exist natural numbers
ng , Ny, n, and functions f,, f,, f. such that =(n, = n,) VvV f, # f..
Thus,

_'<nac - ny) V _‘(ny - nz) V fa: 7é fy \ fy 7é fz
Therefore, x7 #; y* V y* #; 2T holds.
The mapping o : X* x X+ 3 (zF,27) »—>:c+oz+ € Xt x XTis
an internal binary operation on the set (X, = ,#1). Indeed: Let
(xt,27) and (at,b") be two pairs of elements of X and let z+ =; a™
and y© =; b*. Then z* = a¥ <= (n, = n, A fo = f.) and
yt =1 b7 <= (ny, =np A fY = fp). We have
Ng + Ny = Ng + Ny
and

oy*
(01)... ,fx( A1) ) =
(FalD)s s Fula): Fo(1), o Folis)
=ato bJr
Let 2t oy™ #1 a™ o b™, 1e. let =(ngy = nap) V foy # fab-
Thus:
(i) If = (ngy = ny+ny = ng+np = ngp), then =(n, = ny) V-(n, =ny).
(ii) If
(fr(1)7 ) fw(TLw)v fy<1)7 ) fy(ny)) 7£1
(fa(1)7 X3 ftl(nr>7 fb(1)7 ey fb(ny))7
then there exists the natural number i € {1, ..., n,, } such that f,, (i) #
fa(). If i e {1,...,n,}, then f,(4) = fo, (i) # fa(i) = fu(i); if
S {n:erla ---anzy}v then ¢ = j+n, and fy(]) = fxy(z) # fab(i) = fb(])
So, from the both cases, we conclude that xt #; at or y* #; b*.
Therefore the operation 70" is strongly extensional.
Finally the structure (X, =1,#1,0) is a semigroup with apartness.
Collection (F(X™1),=,#,-,U), where F(S) is the set of all inhabited
finite detachable subsets of S with the natural multiplication and joint
(as in the Example 3.1.), is a semilattice-ordered semigroup with di-
versity.

Example 3.3. Let (A,=,#) be a set with apartness. Then the set
Rel(A) of all binary relations on A with the composition ”o” and union
U, with equality =5 and diversity #, defined in the usual way:

a = f <= (Vo,y € A)((2,y) € a < (z,y) € P),

a #q f =
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(Bﬂ)xy € A)((z,y) € a A (z,y) > B)V(Iz,y € A)((z,y) <A (z,y) €
is a semilattice ordered semigroup. Let us note again that the relation
#9 is a diversity but it is not apartness in general case. The composi-
tion "o” of relations is a strongly extensional operation. Indeed: Let
a,d, B, 0" € Rel(A) such that foa #5 ' od’. For simplicity, suppose
that (a,c¢) € foa and (a,c) < ' o @’. Then, there exists element
b of A such that (a,b) € « and (b,¢) € 8 and for any = of A holds
(a,z) >=1a’ or (x,c) > (. Finally, we have

(Fbe A)((a,b) € a A (bye) € B A ((a,b) e Vv (b,c) > ).

Thus, if (3b € A)((a,b) € a A (a,b) > &), then a #9 o5 if (Fb €
A)((b,c) € B A (b,c) > (), then B #9 5. So, the operation ”o” is
strongly extensional.

Let o, o/, 8,5 € Rel(A) such that a U 5 #53 o/ U . So, there exists
an element (a,b) of A x A such that (a,b) € aUp and (a,b) x o/ U,
or ... From (a,b) € a U we conclude (a,b) € a or (a,b) € 5. From
(a,b) > o/ U B we have (a,b) > o’ and (a,b) > . Thus, o #9 o’ or
B #4 . So, the operation U is strongly extensional also.

As second we present certain basic and natural examples of
semilattice-ordered semigroups.

Example 3.4. Let (A, =4,#4,®) be a semilattice with strongly ex-
tensional operation ®. We mark with End.(A,®) the set of all
strongly extensional endomorphisms of semilattice (A4, ®) with joint
and operation of composition as in Example 3.3. The inclusion
End4(A,®) C End(A,®) holds. Equality = and apartness # on
End4(A, ®) we define in the usual way:

a=f < (Vo € A)(a(r) =4 f(z)),

o # 8= (Bz € A)(alz) £4 Al)).
The first, composition ”0” is strongly extensional. Indeed: Let «a, o/,
B, B’ be endomorphisms such that f o« # B o «a’. It means that
there exist element a of A with (8o a)(a) =4 (8 o )(a), i.e. with
Bla(a)) #4 B'(d/(a)). Then, § # B and a # o'. The second, joint
operation "¢” is strongly extensional also. Indeed: Let aof # o/ ©p7,
i.e. let be there exists element a of A such that (aof)(a) #4 (a/of")(a).
Then a(a) ® fa) #4 o(a) ® f'(a). Thus, a(a) #4 o/(a) or B(a) #a
f'(a), because the operation ® is strongly extensional. Last means
that o # o/ or B # f'. So, set (End.(A,=4,#4,®),=,7#,0,0) is a
(strong) semilattice ordered semigroup with apartness.
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4. IDEALS AND ANTI-IDEALS OF SEMILATTICE-ORDERED
SEMIGROUP

Let (S,=,#,-,®) be a semilattice-ordered semigroup. A subset .J
of S is its ideal if
)aeJANbeESANb<La=be J,
)acJ NbeJ=a®be J.

Example 4.1. (1) If a € 5, then the set (a]| = {x € S : x < a} is an
ideal of S' called a principal ideal generated by a.

(2) If J is an ideal of S and a € S, then subsets (a : J) = {x € S :
ar € J} and (J:a) ={x € S:xza € J} are ideals of S called left and
right quotient of ideal J by element a.

Lemma 4.1. An ideal J of a semilattice-ordered semigroup S defines
a relation E(J) on the set S by

(a,b) € E(J) < (Vz,y € S*)(zay € J < zby € J).
This relation E(J) is a congruence of (S,=,#,-,®).

Proof immediately follows from definitions. [

Let (S,=,#,-,®) be a semilattice-ordered semigroup. A subset K
of S is its anti-ideal if and only if
(lH)a®kbe K=—=ac K VbeK,
(2)be K= abb V a€ K.

Remark 4.1. A. Any anti-ideal of semilattice ordered semigroup is a
strongly extensional subset of S. Let us note if K is an anti-ideal of
S, then K is strongly extensional. Indeed: If b € K then by (2) of
definition, af#b V a € K. Since the relation 6 is consistent, then follows
a#boraé€e K. So, the set K is a strongly extensional subset of .S.
B. If K is an anti-ideal of a semilattice-ordered semigroup S, then
(Va,be S)ae K = a®be K) and Va,be S)lae K Na<b=
b€ K). Let a € K and b be an arbitrary element of S. Then, by
(2) of definition of anti-ideal, we have (a ® b)fa or a ® b € K. Since
—((a®b)®a# a®b), we have to a ® b € K. The second implication
immediately follows from the first.

Example 4.2. (1) If a € 9, then the set B(a) = {z € S : afz} is an
anti-ideal of S. Indeed. Let z ® y € B(a), i.e. let af(x ® y). Then
a®(xr®vy)#a. Thus, from (a@2)R (a@y)=a® (rQy)#aRa
follows a ® © # a or a ® y # a. Therefore, x € B(a) or y € B(a). If
x € B(a), i,e, if abz, then aby or yhx. Thus ybx V y € B(a).



126 D.A. ROMANO

(2) If K is an anti-ideal of S and a € S, then subsets [a : K] = {y €
S:ay€ K} and [K :a] ={y € S:ya € K} are anti-ideals of S. We
give proof for set [a:K]:
ry€la: K|« alz®y) e K
= ar®ay € K yela: Kl<=aye K
== ar € KVay e K —> zabyaVza € K
< ze€fa:K|Vy€a: K|l= (28y V z € [a: K]).
Proof for set [K : a] is analogous.

In the following proposition we show what kind of connection exists
between ideals and anti-ideals:

Proposition 4.1. Let K be an anti-ideal of semilattice-ordered semi-
group (S,=,#,-,®). Then sets =K and K¢ are ideals of S and
-K = K¢ holds.

Proof: (i) Let a« € =K and b < a. Suppose that b € K. Then,
by part (2) of definition of anti-ideal, we have afb V a € K. It is
impossible by hypothesis and by Corollary 2.3. So, b € =K.

Let a« € =K and b € =K Then from a ® b € K we conclude that
a € K or b € K. Since it is impossible, we have a ® b € K.

(ii) Since =K 2 K¢ holds we have to prove only the inclusion
—-K C K¢ Let a be an element of =K and let b be an arbitrary
element of K. From (2)of the definition of anti-ideal, we have afb
or a € K. So, we have afb, i.e. a ® b # a = a ® a by hypothesis
—(a € K). Since the operation '®’ is a strongly extensional function,
we have b # a. Thus, a > K. Therefore, =K = K¢. [

Note. Another proof that K¢ is an ideal of S is the following: Let
a € K¢ and b < a, and let ¢ be an arbitrary element of K. Then
t#borbe K. Since, from b € K follows a € K, by Remark B. It is
a contradiction. So, we have b K.
Let a € K¢ and b € K© and let ¢t be an arbitrary element of K.
Thent #a®bora®bée K. Since the second case is impossible, we
conclude that a ® b € K¢.

For an ideal J of S and an anti-ideal K of S we say that they are
compatible if and only if J C =K. For example, if ideal I and anti-
ideal K are compatible, then ideal (a : I) and anti-ideal [a : K| are
compatible also. Indeed. If x € (a : I), i.e. if ax € I, then —(azx € K).
Thus —(z € [a: K]).
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Proposition 4.2. Let K be an anti-ideal of a semilattice-ordered semi-
group (S,=,#,-,®). Then the relation Q(K), defined by
(a,0) € Q(K) <= (Fz,y € SY)((ray € K A zby > K) V (zby €
K A zay = K)),

s anti-congruence on S. If ideal I and anti-ideal K are compatible,
then E(I) and Q(K) are compatible too.

Proof: (i) If (a,b) € Q(K), then there exist elements z,y € S*) such
that (zay € K A xby < K) or such that (zby € K A zay < K). If
zay € K A xzby < K, we have xay # xby and a # b. Analogously we
conclude the implication (zby € K A zay < K) = a # b. So, the
relation Q(K) is consistent.

(ii) It is clear that the relation Q(K) is symmetric.

(iii) Let a,b,c be arbitrary elements of S such that (a,c) € Q(K).
Suppose that (3z,y € SY)((ray € K A zcy < K). Let u be an
arbitrary element of K. Then, by strongly extensionality of K, we
conclude: u # zby V zby € K. If u # xby and zay € K, then
(a,b) € Q(K). If by € K and xcy < K, then (b,¢) € Q(K).

(iv) Let a,b,c be arbitrary elements of S such that (ac,bc) € Q(K).
Suppose that (3z,y € S*)((xracy € K A zbey <1 K). Then (Jz,cy €
SH(za(cy) € K A xb(cy) < K). So, (a,b) € Q(K). Similarly, we
prove the implication (ca,cb) € Q(K) = (a,b) € Q(K) Therefore,
the relation Q(K) is a coequality relation on S compatible with the
operation ”-”.

(v) Suppose that a, b, c are arbitrary elements of S such that (a ®
c,b®c) € Q(K). Then there exist elements z,y € S!' such that
(x(a®c)y € K ANx(bc)y < K) or (x(a®c)y <t K A z(b®c)y € K)). If
rla®c)y € K AN z(b®c)y < K), then (zay @ xcy € K N xby ® xcy
K) and (zay € K V zcy € K) A (zby >t K A xey < K). Thus,
(xay € K A xby < K) because the following (zcy € K A zcy =<1 K) is
impossible. Therefore, (a,b) € Q(K).

(vi) Suppose that (a,b) € E(I) and (b,c¢) € Q(K). Then there exists
elements z,y € S!' such that (zay € I <= xby € I) and there
exist elements u,v € S! such that (ubv € K A ucv 1 K) or (ucv €
K A ubv <t K). Thus (Ju,v € SY)((ucv € K A uav <4 K)) because
I C =K. Therefore, (a,c¢) € Q(K). O

5. MAIN PROPERTIES

In this section we show some properties of semillatice-ordered semi-
groups with apartness. In Theorem 5.1 we describe factor-semigroup
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S/(E(]), Q(K)) = {aE(J]) : a € 5},

where aE(J) = {x € S : (a,z) € E(I)}. In Proposition 5.1 and
Proposition 5.2 we give another description of relations <7 and O
on semigroup S/(E(J),Q(K)). Let ¢ : S — T be a epimorphism of
semilattice-ordered semigroups and let J and L be compatible an ideal
and an anti-ideal in 7. Then I = ¢~ !(J) is an ideal and K = p!(L) is
an anti-ideal of S. In case of surjective ¢, there exists a homomorphism
v T/(E(J]),Q(L)) — S/(E(I),Q(K)) such that mg =¥ o 0 .

Theorem 5.1. Let J and K be compatible an ideal and an anti-ideal
of a semilattice-ordered semigroup (S,=,#,-,®). Then the factor-
structure

S/(E(]), Q(K)) = {aE(J]) : a € 5}
with equality and coequality defined by
aFB(J) =1 bE(J) < (a,b) € E(J),
aB(J) 1 bE(J) <= (a,b) € Q(K),
and internal operations by
aE(J)obE(J) =abE(J), aE(J)obE(J) = (a®b)E(J)
1s a semilattice-ordered semigroup. Besides, the mapping
ms:S2ar—aE(J) e S/(E(J]),Q(K))

15 a strongly extensional surjective homomorphism.

Proof: (1) The function ”o” is well-defined and strongly extensional.
Indeed.
(aB(J) = 2E(J) A BE(J) =y yE(J)) <= (0,2) € E(J) A (by) €
E(J)
= (ab,zb) € E(J) A (xb,zy) €
E(J)
= (ab,zz) € E(J)
= abE(J) =1 xyE(J);
abE(J) 1 wyB(J) <= (ab,zy) € Q(K)
= ((ab, zb) € Q(K) V (xb,2y) € Q(K))
= ((a,7) € Q(K) V (b,y) € Q(K))
= (aB(J) #1 zE(J) V bE(J) #1 yE(J)).
(2) The function "¢” is well-defined and strongly extensional. Indeed.
(aBE(J) =1 zE(J) N bE(J) =1 yE(J)) < ((a,z) € E(J) A (b,y) €
E(J))
— (Vu,v € SY)(uav € J <= uxv € J) A (Vu,v € S*)(ubv € J <
uyv € J)
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= (Vu,v € SY)(u(a@b)v € J <= u(zr @ y)v € J)
— (a®bx®y) € E(J)
= (a®b)E(J) =1 (z®@y)E(J)
< aE(J)obE(J) =1 zE(J) oyE(J).
aBE(J) o bE(J) #1 2E(J) oy E(J) <= (a ® D)E(J) #1 (z @ y)E(J)
= (a®bz®y) € Q(K)
< (Ju,v € SH)((u(a@b)v € K A u(x @ y)v) 1 K)V
(u(a@b)jvxt K A u(z @ y)v € K))
= (Ju,v € SY)((uav € K V ubv € K) A (uzv it K A uyv <1 K))V
((wav < K) A (ubv < K) A (uzv € K A uyv € K))
— (a,2) € Q(K) V (b,y) € Q(K)
<= aE(J) #1 zE(J) V bE(J) # yE(J) .
(3) Tt is clear that the operation "¢” on S/(E(J), Q(K)) is commuta~
tive because the operation ”®” is commutative and aE(J) caE(J) =,
(a®a)E(J) =1 aE(J) holds.
(4) It is clear that mg is a surjective function. Let a, b be elements
of S such that wg(a) #1 ms(b), i.e. such that aE(J) #; bE(J). Then
(a,b) € Q(K). Thus, a # b. So, the mapping mg is strongly exten-
sional. U

Proposition 5.1. Let I be an ideal of a semilattice-ordered semigroup
S. Then

aE(I) <7 bE(I) <= (Vz,y € S*)(zby € I = zay € I).

Proof: (1) Let aE(I) <r bE(I), i.e. let aE(I) o bE(I) =1 bE(D).

Then (a ® b)E(I) =, bE(I), i.e. then (Vz,y € SY)(xz(ab)y € [ —
xby € I). Since zay @ zby € I and zay < zay & by, follows zay € I.
So, we have (Vz,y € S')(vay € I <= xby € I).
(2) Let (Vz,y € SY)(way € I <= xby € I) holds and, of course,
(Va,y € SY)(zay @ by € I <= xby € I). Opposite, the implication
ray @ xby € I = xby € I (x,y € S') holds by definition of ideal.
So, we have (Vz,y € S*)(zay @ xby € I < xby € I). So, aE(I) <1
VE(I) <= (Vz,y € SY(xby € = way € ). O

Proposition 5.2. Let I and K be compatible an ideal and anti-ideal
of a semilattice-ordered semigroup S. Then

aE(I)OrbE(I) <= (Fz,y € S")(aby € K A zay < K).

Proof:
aBE(I)obE(I) #r aE(I) < ((a®b)E(I),aE(I)) € Q(K)
< (Fu,v € SH((u(a®b)v € K A uav <t K)V (uav € K A u(ab)v <
K))
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< (Ju,v € SY)(uaveubv € K Auav < K)V(uav € K A uav@ubv
K))
= (Ju,v € SY)(((uav € K V ubv € K) A uav <1 K)V
(uav € K N uav <t K A ubv <t K))
= (Fu,v € SY)(ubv € K A uav = K)
= aE(1)OrbE(I).
Opposite, let aE(I)O7bE(I). Then (Ju,v € SY)(ubv € Kuav A
K). Thus

(Fu,v € SY)((uav @ ubv)ubv V uav @ ubv € K) A uav < K),
le.
(Fu,v € SY)((uav @ ubv) @ ubv # (uav @ ubv) V uav ® ubv €
K) A uav < K).

Therefore (Ju,v € S)(uav @ ubv € K A uav <t K) because
(uav ® ubv) @ ubv # (uav @ ubv)

is impossible. So, we have (Ju,v € S')(u(a @ b)v € K A uav < K).
This means that ((a« ® b)E(I),aE(I)) € Q(K), i.e. that aE(I) ¢
bE(I) %1 aB(I). O

Lemma 5.1. Let f : S — T be a strongly extensional ho-
momorphism of semilattice-ordered semigroups. Then Kerf and
Antikerf = {(z,y) € S xS : f(z) # f(y)} are compatible con-
gruence and anti-congruence on S and there exists homomorphism
g:S/(Kerf, Antikerf) — T such that f = gomg, where g : S —
S/(Kerf, Antiker f) the canonical strongly extensional epimorphism.

Proof: Compound of this assertion is well-known. [

Theorem 5.2. Let (I, K) and (J, L) be compatible pairs of ideal and
anti-ideal of a semilattice-ordered semigroup S. Then:

(1) EANJ)DEI)NE(]) and QU KUL) CQIK)UQ(L).

(2) There a homomorphism S/(E(INJ),Q(K UL)) — S/E(I) x
S/E(J).

(3) B((a: 1)) 2 B(I) and Q(la : K]) € Q(K), and

(4) There a homomorphism S/(E((a : I)),Q([a : K])) —
SI(E(D), QUK)).

Proof: (1) The inclusion E(I NJ) D E(I)N E(J) follows from the
definitions of E([), E(J) and E(IJ) and the inclusion Q(K U L) C
Q(K)UQ(L) follows from definitions of Q(K), K (L) and Q(K U L).
(2) If we define f : S — S/E(I)xS/E(J) by f(x) = (zE(I),zE(J)),
then Kerf = E(I)N E(J) and Antiker f = Q(K)UQ(L). Therefore,
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by Lemma 5.1, there exists homomorphism g : S/(E(I)NE(J), Q(K)U
Q(L)) — S/E(I) x S/E(J). Since E(INJ) 2 E(I)N E(J) and
Q(KUL) CQ(K)UQ(L), there exists homomorphism h : S/(E(I N
J),Q(KUL)) — S/E(I) x S/E(J).
(3) Let (z,y) be an arbitrary element of F([), i.e. let
(Vu,v € SY)(uzv € I <= uyv € I).

Thus,

(Vu,v € SY(auzv € I < auyv € I).
So,

(Vu,v € SY(uzv € (a: I) < uyv € (a: 1)),
ie. (z,y) € E((a:1I)). Therefore, E(I) C E((a: I)).
Let (z,y) be an arbitrary element of Q([a : K]), i.e. let
(Fu,v € SYH((uxv € [a: K] A uyv Ala: K]) V (uzv < [a: K] Auyv €
la: K])).

Then
(Fu,v € SY((aurv € Kuyv < [a : K])V (uzv i< [a : K|A auyv € K)).
For simplicity, suppose that auzv € K A uyv X [a : K| and let ¢
be an arbitrary element of K. Then t # auzv or auzv € K. Since
the second case auzv € K(<= uzv € [a : K]) is impossible, we

have to auzv <1 K. Thus, there exists elements au,v € S! such
that (au)zv € K A (au)zv > K. So, (z,y) € Q(K). Therefore
Q([a - K]) € Q(K).

It is clear that there exists homomorphism g : S/(E((a : I)),Q([a :
K])) — S/(E(I),Q(K)). O

Theorem 5.3. Let ¢ : S — T be a homomorphism of semilattice-
ordered semigroups and let J and L be compatible an ideal and an
anti-ideal in T'. Then

(1) I =o' (J) is an ideal and K = ¢~ (L) is an anti-ideal of S;

(ii) In case of surjective @, there exists a homomorphism
T/(E(J),Q(L)) — S/(E(I),Q(K)) such that mg = 1) o mp o .

Proof: (1) It is easy to see that ¢ ~!(J) and ¢~ !(L) are compatible
an ideal and an anti-ideal of S.
(2) Define ¢ : bE(J) — aFE(I) where p(a) =b, a € S, b € T. This
assignment is really a mapping. Let ¢(a) = b and ¢(a’) = b'. Then:
bE(J) = VE(J) < (bV) € E(J)(< (Vz,y € T")(xby € J
by € J))
= |z = p(u),y = p(v),b = p(a),b = p(d)
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= (Vu,v € §Y)(p(u)p(a)p(v) € J = p(u)p(a’)p(v) € J)
< (Yu,v € SY)(uav € ¢1(J) < ua'v € p'(J))
< (a,d') € E(I)
< ab(l) =, dE).
Let aE(I), ' E(I) be arbitrary elements of S/(FE(I),Q(K) such that
E(I) #, d'E(I). Then there exist elements u,v € S' such that
(wav € K AN ubv < K) or (uav >t K A ubv € K). Suppose
that p(a) = b, p(a’) =V, p(u) = x and p(v) = y and sup-
pose (Fu,v € SYH((uav € ¢ (L) A ua'v > ¢ '(L)). Then there
exists element r = @(u) and y = ¢(v) of imp = T such that
o(u)p(a)p(v) € L. Let t be an arbitrary element of L. Then
t # p(ua'v) or p(u)p(a’)e(v) € L. In the second case we should have
ua'v € ¢~ !(L) which is impossible. So, p(u)p(a’)p(v) > L. There-
fore, there exist elements z = ¢(u) and y = ¢(v) such that zby € L
and xb'y > L. Thus (b, ') € Q(L). Finally, the mapping ¢ is strongly
extensional.
Let bE(J) and b'E(J) be arbitrary elements of T'/(E(J), Q(L)). Then
there exist elements a and o' of S such that ¢ : bE(J) — aFE(I)
and ¢ : VE(J) — d'E(I). Since ¢(ad’) = p(a)p(a’) = bb' and
(a®d) = ¢la) ®pa)=>bxl we conclude that ¢ is a homomor-
phism.
(3) The equality mg = 1 o mr o ¢ immediately follows from defini-
tions of homomorphisms 7g : S — S/(E(I),Q(K)), ¥, mp : T —
T/(E(J),Q(L) and p. D
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