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Abstract: This paper presents the contribution of the authors regarding the friction drag 
calculation of a ship’s hull using the quasi-plane model. The velocity calculation by a 
dimensional model helps to determine the friction tangential effort. Then, by integration, 
can be determined the friction drag of a rectangular plane panel. By extension over all the 
plane plates which compose the ship’s side, results the friction drag for entire ship’s side.  
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1. INTRODUCTION 
 
Let us consider T the draft ship full loaded. The careen is reported to a system Oxyz, ensuing that: 

• the longitudinal plane coincides with the plane xOz; 
• the plane xOy is the waterline plane full loaded; 
• the Oz axis is situated in the stem proximity, without crossing it (can be tangent to it, see Figure 1).  

 

 
Fig. 1. The careen reported to a system Oxyz: 

 T – draft; Lk, Lk-1 L0 – waterlines; P01 P02 P0,i-1 P0i – curve panels.  
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The waterline corresponding to the draft Tk; (T0 – T) is noted by Lk; (k = 0,.., m); the planes which contain this 
lines are defined by equation: 
 

( ) ( )TTTTzz kkk −=−−== ; (k=0,..., m)                                          (1) 
 

Through its marks on the plane xOy, the planes x = xi (i = 1, ..., n–1) has the characteristics below: 
• the plane x = x1 coincides with the plane yOz (so x1=0); 
• the plane x = xn–1 is tangent to the stern frame (without crossing it). 

 
The planes z = zk (k = 0,..,m), x = xi (i = 1,...,n–1), the stem and the stern frame establish on the side a succession 
of curve panels Pk,i–1Pk+1,i–1Pk+1,iPki , (k = 0,...m–1), (i=1,...n). Pki is the notation of the half waterline point kL , on 
the xi axes (Figure 2). From Figure 2 results that the point Pk0 belongs to the stem and the point Pkn belong to the 
stern frame.   
 

 
Fig. 2 Curve panels over a waterline. 

 
As regarding the curve panel Pk,i–1Pk+1,i–1Pk+1,iPki, it can be approximate in a rectangular plane panel defined by 
two consecutive sides: 

1) sides Pk,i–1Pki and Pk,i–1Pk+1,i–1;       
2) sides Pk,i–1Pki and PkiPk+1,i; 
3) sides Pk+1,i–1Pk+1,i and Pk+1,i–1Pk,i–1; 
4) sides Pk+1,i–1Pk+1,i and Pk+1,iPki. 

 
In the situations 1) and 2) the fluid moves on the vector direction and purpose-oriented kiik PP 1, −  (so, it is 

parallel by the respectively plane), of  constant velocity , 1

1
k i kiv p v

p
−

′+ ⋅

′+
, where 1, −ikv  and kiv  - the velocities 

corresponding to the points Pk,i-1 and Pki (results from the potential flow model), p′  - the weight which make 

possible the vectors parallelism kiik PP 1, −  and  '
1,

1 p

vpv kiik

+

⋅+− . 

 
Similar, in the situations 3) and 4) the fluid moves on the vector direction ikik PP ,11,1 +−+  (so, it is parallel by the 
respectively plane), of constant velocity [1]: 
 

p
vpv ikik

′′+

⋅′′+ +−+

1
,11,1                                                                       (2) 

 
where: 1,1 −+ ikv  and ikv ,1+  – the velocities corresponding to the points Pk,i-1 and Pki (results from the potential 

flow model), p ′′  – the weight which make possible the vectors parallelism kiPikP 1, −  and   
 

p
vpv kiik

′′+

⋅′′+−

1
1,                                                                           (3) 
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Be 1fF , 2fF , 3fF , 4fF  the friction forces developed by the fluid on the plane panels adequate to the situations 

1), 2), 3), 4) and 1fR , 2fR , 3fR , 4fR  the forces projections on the ship longitudinal plane. The ifR , i  = (1, 

2, 3, 4) projections arithmetic average, noted by 
kiPikPikPikPfR

,11,11, +−+−
, will approximate the ship friction drag 

component corresponding to the curve panel Pk,i-1Pk+1,i-1Pk+1,iPki. If  cfR  is the keel friction drag, the ship friction 
drag can be written as: 
 

ckiPikPikPikP f
m

k

n

i
ff RRR +⋅= ∑ ∑

−

= = +−+−

1

0 1 ,11,11,
2                                           (4) 

 
Double amount applies to all curve panels making up the port side or starboard side of the ship.    
 
 
2. THE CALCULATION OF THE FRICTION DRAG COMPONENTS 
 
Be an open polygonal segment knnkkikk PPPPP 1,10 ...... −  which approximates the half waterline kL  from Figure 

3. If this open polygonal contour is put on the straight line, it is obtained the segment PknkP 0  situated on the 
half axe kOξ  from Figure 3, of the origin O superimposed over a 0kP  point. 
 
 

 
 

Fig. 3. Open polygonal segment. 
 
 Notations will be used below: 

 

p
vpv

v kiik
PP kiik ′+

⋅′+
= −

− 1
1,

1,                                                                       (5) 

 

p
vpv

v kiik
PP ikik ′′+

⋅′′+
= −

+−+ 1
1,

,11,1                                                                   (6) 

 
As regarding the friction tangential effort, it corresponds to the turbulent flow (characteristic to fluid flow around 
the ship side), defined by equation [2]: 
 

0,251,75
2

0 0
0

0.028
1t

n
v

n v
υ

τ ρ
δ

= ⋅
+

⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

                                                       (7) 

 
where: ρ – fluid density; υ – kinematics viscosity of the fluid; v0 – velocity module from relations (5) and (6); δ –
boundary layer local thickness developed over the plane panel properly to one of the situations 1), 2), 3), 4) 
mentioned in the first paragraph; n – value from the lot (7), (9), (10) chosen depending by the size of the 
Reynolds number [1], defined by: 

υ
klv ⋅

=Re                                                                                    (8) 

 
where: v – ship rate speed; lk – polygonal contour length knnkkikk PPPPP 1,10 ...... − ; k = 0,…m. 
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In the fluid flow case of velocity kiik PPv 1, −  along the plane panel defined in situations 1) and 2), by integrating 

the Kármán equation [2] on the domain [ ]
kiik PPk ξξξ ,

1, −
∈ , it is obtained: 

 

( )
, 1

, 1

0.751.25

0.028 ( 2)
1.25 1 k i ki

k i ki

k
k P P

P P

nn C
n v

δ ξ υ ξ
−

−

⎛ ⎞⎛ ⎞ ⎜ ⎟= ⋅ + ⋅ +⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
                          (9)  

     [ ]
kiik PPk ξξξ ,1, −∈  

 
The integration constant kiik PPC

1, − is determined from condition: 1, −
=

ikki PP ξξ , 1, −
=

ikPδδ  (k = 0,...m–1;    

n = 1,..., n), and 00 =Pδ . 

 

In the fluid flow case of velocity ikik PPv ,11,1 +−+
 along the plane panel defined in situations 3) and 4), by 

integrating the Kármán equation [2] on the domain [ ]
ikik PPk ,11,1

,1 +−+
∈+ ξξξ , it is obtained: 

 

( )
1, 1 1,

1, 1 1,

0.751.25
1

10.028 ( 2)
1.25 1 k i k i

k i k i

k
k P P

P P
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ξ
+ − +

+ − +

+
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+

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
           (10) 

 [ ]
ikik PPk ,11,1

,1 +−+
∈+ ξξξ  

 
The integration constant ikik PPC

,11,1 +−+
is determined from condition: 

 
- for 1,1,1 −++

=
ikik PP ξξ , 1,1 −+

=
ikPδδ  (k = 0,...m–1; n = 1,..., n), and 0

0,1
=

+kPδ . 

 
Using relations (7), (9) and (10), the turbulent tangential effort developed over the plane panel along the 
segments Pk,i-1Pki (in situations 1) and 2)), respectively Pk+1,i–1Pk+1,i (in situations 3) and 4)), noted by kiik PP 1, −

τ  

and ikik PP ,11,1 +−+
τ . 

 
The average values of the efforts kiik PP 1, −

τ and ikik PP ,11,1 +−+
τ  are obtained from relations: 

 

∫
−

−
−

−
⋅

−
=

kiP

ikP
kiik

ikki
kiik kPP

PP
PP d

ξ

ξ
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ξξ
τ

1,
1,

1,
1,

1*                                       (11) 

  

∫
+

−+
−+

−++
+−+ +⋅

−
=

ikP

ikP
kiik

ikik
ikik kPP

PP
PP d

,1

1,1
1,1

1,1,1
,11,1 1

* 1
ξ

ξ
ξτ

ξξ
τ                      (12) 

 
In the fluid flow case along a rectangular plane panel, of constant velocity parallel with one of the panel 
segments (for example MQ, Figure 4), the friction tangential effort along the segment MQ has the same 
distribution along any segment RS parallel to the segment MQ from the parallelogram. I.e. the average value of 
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the friction tangential effort calculated along the segment MQ (or NP) is the same with the average value of the 
same effort for entire parallelogram surface. 
 

 
 

Fig. 4. Rectangular plane plate MNPQ:  
l – plane plate length; b –  plane plate width; ldz – plane plate elementary surface; z – current surface height;  

v = const. – current velocity. 
 

If *τ  is the average value of the friction tangential effort along MQ and RS, then on an elementary surface the 
friction drag is developed (see the Fig. 4), 
 

lbldzdFF
b

A
ff

*

0

* ττ === ∫∫                                                           (13) 

 

where *τ  does not depend by z. 
 
The friction drag for the entire parallelogram MNPQ is obtained by integration: 
 

lbldzdFF
b

A
ff

*

0

* ττ === ∫∫                                                            (14) 

    
The average friction tangential effort τ ′  for entire parallelogram MNPQ surface can be writing as: 
 

 *ττ ===′
lb
F

A
F ff                                                                      (15) 

 
From these considerations, the friction forces developed by the fluid over the plane panel determined in the 
situations 1), 2), 3), 4) are: 
  

ikikkiikPPf PPPPF
kiik ,11,1,

*
1,1 +−− ×⋅=
−

τ                                                    (16) 

 

ikkikiikPPf PPPPF
kiik ,11,

*
1,2 +− ×⋅=
−

τ                                                        (17) 

 

1,1,1,11,1
*

,11,13 −−++−+ ×⋅=
+−+ ikikikikPPf PPPPF ikikτ                                          (18) 

 

kiikikikPPf PPPPF ikik ,1,11,1
*

,11,14 ++−+ ×⋅=
+−+

τ                                            (19) 

 
Be kiik PP 1, −

α  and ikik PP ,11,1 +−+
α the angles formed by the horizontal segments Pk,i-1Pki and Pk+1,i-1Pk+1,i with 

the  longitudinal plane, resulting that: 
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kiik

ii
PP PP

xx
kiik

1,

1
1,

cos
−

−−
=

−
α                                                                (20) 

 

ikik

ii
PP PP

xx
ikik

,11,1

1
,11,1

cos
+−+

−−
=

+−+
α                                                       (21) 

 
The forces projections ifF  (i = 1, 2, 3, 4) over the longitudinal plane can write as: 

 

kiik PPff FR
1,11

cos
−

⋅= α                                                             (22) 

 

kiik PPff FR
1,22

cos
−

⋅= α                                                            (23) 

 

ikik PPff FR
,11,133

cos
+−+

⋅= α                                                   (24) 

 

ikik PPff FR
,11,144

cos
+−+

⋅= α                                                   (25) 

 
The arithmetic average of the forces ifR  (i = 1, 2, 3, 4) represent the ship friction drag component 

corresponding to the curve panel Pk,i-1Pk+1,i-1Pk+1,iPki: 
 

4

4

1
,11,11,

∑
==

+−+−
i

f

f
i

kiPikPikPikP

R
R                                                 (26) 

 
As regarding the cfR  term from relation above it is calculated simply: is the plane plate case in a parallel 

current for constant velocity (the ship regime speed). 
 
 
3. CONCLUSIONS 
 
The model presented in this paper is a quasi-plane model, based over a velocity field with two scalar 
components, xv  and yv , defined by equation: 
 

( )
( )⎩

⎨
⎧

=
=

zyxvv
zyxvv

yy

xx

,,
,,

                                                             (27) 

 
It are obtained through the Kármán method of sources [3] arranged in the ship longitudinal plane of variable 
intensity z; The curve panel approximation of a side in rectangular plane plates (situations 1), 2), 3), 4) from 
paragraph 1), the consideration that the fluid flow is parallel to the velocities defined by relations (5) and (6) 
(dependents by z), and the forces average ifR  (i = 1, 2 , 3, 4) represents the deviation improve ways from  the 

curve side panels and from velocity variation on the z height. Obviously, the model precision will be better if the 
calculation is achieved with large number of side panels.  
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