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DENSE SUBCLASSES IN ABSTRACT SOBOLEV
SPACES ON METRIC MEASURE SPACES

MARCELINA MOCANU

Abstract. Given a metric measure space (X,d,u) and a Ba-
nach function space B over X that has absolutely continuous norm,
we prove two results regarding the density in the Newtonian space
N1B(X) of the subclasses consisting of bounded functions, respec-
tively of bounded functions supported in closed balls. We do not
assume that p is a doubling measure. If B is rearrangement invariant,
(X,d) is proper and the measure p is nonatomic, it turns out that
the class of bounded compactly supported functions from NVB(X) is
dense in NVB(X).

1. INTRODUCTION AND PRELIMINARIES

It is of great importance for the theory and applications of Sobolev
spaces on R” that smooth functions are dense in the respective Sobolev
spaces. In the framework of metric measure spaces the role of smooth
functions is played by Lipschitz continuous functions. The den-
sity of Lipschitz functions in Newtonian spaces N'? (X) has been
proved in doubling metric measure spaces (X, d, yt) supporting a weak
(1,p) —Poincaré inequality [16]. Corresponding density results have
been proved for Orlicz-Sobolev spaces [17], [1] and Sobolev-Lorentz
spaces [6]. These density results rely on some preparatory lemmas,
that reduce the proof in the general case to the proof in the special
case where the approximated function is bounded and has the support
contained in a closed ball.
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The purpose of this paper is to extend the above mentioned lemmas
to the case of more general Newtonian spaces, using Banach function
spaces as an unifying framework for Orlicz spaces and Lorentz spaces.

Let (X,3, ) be a complete and o—finite measure space and let
M™(X) be the collection of all y—measurable functions f : X —
[0, 00].

Definition 1. [2] A function N : M (X) — [0, 00] is called a Banach
function norm if, for all f, g, fo (n > 1) in M*(X), for all constants
a > 0 and for all measurable sets E C X, the following properties
hold:

(P1) i) N(f) =0 if and only if f =0 p—a.e.; it) N(af) = aN(f);
iii) N(f +g9) < N(f) + N(g).

(P2) If 0 < g < f u—a.e., then N(g) < N(f).

(P3) IF0 < fu 1 f p—a.e., then N(f.) + N(f).

(P4) If W(E) < oo, then N(xg) < oo.

(P5) If W(E) < oo, then [ f du < CgN(f), for some constant

E

Cg € (0,00) depending only on E and p.

Let B be the collection of the p—measurable functions f : X —
[—00, 00] for which N(|f]) < co.For f € B define

1115 = N 7D

Then (B, ||-||z) is a seminormed space. As usual we identify two
functions that coincide y—a.e. and denote by ~ the relation of equality
p—a.e. Let f,g: X — R such that f € B and f = g u—a.e. Then ¢
is p—measurable and N (|g]) = N (|f]) < oo, hence g € B. Moreover,
by Definition 1 (P5) and the o—finiteness of u it follows that every
function in B is finite y—a.e. Then f — g = 0 p—a.e. and therefore
|f —gllg = 0. Consider the quotient vector space B =B/ ~ and

define ||-||g by HfH = ||fllg. Then (B, ||-||g) is a normed space, that
B
is complete by [2, Theorem 1.1.6]

Definition 2. A function f € B is said to have absolutely contin-
uous (AC) norm in B if and only if ||fxe.|g — 0 for every se-
quence (Ey)g>1 of measurable sets satisfying Ey, — @ p—a.e. (i.e.

w | limsup Ey | =0). The space B is said to have absolutely continu-

k—o00
ous norm if every f € B has AC norm .



DENSE SUBCLASSES IN ABSTRACT SOBOLEV SPACES 73

Note that an Orlicz space LY (X) has absolutely continuous norm if
the Young function ¥ is doubling. The (p, ¢) —norm of a Lorentz space
LP7(X) with 1 < p < oo and 1 < g < oo is absolutely continuous (see
the discussion following Definition 2.1 from [6]).

Let f : X — R be a u—measurable function. The distribution
function of f is defined by dy (t) = p({z € X : |f (z)| > t}) for t > 0.
The nonincreasing rearrangement of f is defined by

ff(t)=inf{s>0:df(s) <t},t>0.

Definition 3. A Banach function space (B, |-||g) is said to be re-
arrangement invariant if f* = g* implies ||f|lg = ||l9/lg-

Lebesgue spaces and some of their generalizations, namely Orlicz
spaces and Lorentz spaces are well-known examples of rearrangement
invariant Banach function spaces.

Definition 4. The fundamental function of a B rearrangement in-
variant space over (X, p) is g : [0,00) — [0,00) defined by Pp (t) =
IxEellg, where E C X is a p—measurable set with p (E) = t.

The above definition is unambiguous, since the characteristic func-
tions of two sets with equal measures have the same distribution func-
tion.

Lemma 1. |2, Corollary II. 5.3]Let B be a rearrangement invariant
Banach function space over a resonant measure space (X, ). Then the
fundamental function ®g satisfies: g is increasing, vanishes only at
the origin, is continuous (except perhaps at the origin) and t — £2:10]

t
1S decreasing.

It is known that if p is o—finite and nonatomic, then (X, pu) is
resonant. If p is doubling and X has no isolated points, then g is
nonatomic.

In the following, the triple (X, d, 1) denotes a metric measure space,
which is a metric space (X, d) equipped with a Borel regular measure
1, that is finite and positive on balls. It is known that under the above
assumptions p is regular, i.e. inner regular and outer regular [10, p.
3]. Obviously, u is o—finite.

Denote by B(z,r) = {y € X : d(y,r) <r} and B(z,7) = {y € X :
d(y,z) < r} the open, respectively the closed balls in X.

The measure p on the metric space (X, d) is said to be doubling if
there is a constant Cy > 1 such that for every ball B(x,r) C X,

(1.1) u(B(z,2r)) < Cap(B(x, 7).
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A metric space is called proper if every closed ball of the space is
compact. A metric space equipped with a doubling measure is proper
if and only if it is complete.

Remark 1. Let (X, 7) be a normal topological space and (X, 3, u)
15 a measure space, such that 7 C X and the measure p s reqular.
Then every p—measurable function f : X — R that is finite p—a.e.
coincides p—a.e. with a Borel measurable function g : X — R, that
belongs to one of the Baire classes By, B1, By. Moreover, if f > 0,
then we may choose g > 0 [15],[4], [14].

If (X,d, 1) is a metric measure space, then the above assumptions
hold, where T is the topology induced by d and ¥ is the family of all
pu—measurable subsets of X. Let B be a Banach function space over
(X, ). Then every function f € B, being u—measurable and finite
p—a.e., coincides p—a.e. with a Borel function.

We will denote by I',.. the family of all non-constant rectifiable
compact curves in X. We will consider in the following, as we may,
that every compact rectifiable curve ~ is parameterized by arc-length,

ie. v :1[0,l(y)] - X and l<7][07t]> =t for all t € [0,1(y)]. For

i)
g : X — [0,00] we may define [ gds = [ (go~)(t)dt for all curves
¥ 0
v € I'yee for which goy : [0,1(y)] — [0, 00| is Lebesgue measurable. If
g : X — [0,00] is Borel measurable, then g o~ : I — [0,00] is Borel
measurable for every continuous function v : I — X, where I C R is
an interval.

Definition 5. A Borel measurable function g : X — [0,00] is said to
be an upper gradient of a function u : X — R if for every rectifiable
curve v : [0,1 ()] = X the following inequality holds

(1.2) [u(1(0)) = (L (1))] < / gds.

v

The B—modulus of a family T' of curves in X is defined by
Modg(I') = inf ||p||g ,where the infimum is taken over all Borel func-
tions p : X — [0, 00] satisfying [ pds > 1 for all locally rectifiable

N
curves 7 in X. The B—modulus of the family of curves that are not
rectifiable is zero.

A B—weak upper gradient of a function v : X — R is a Borel
measurable function g : X — [0,00] such that (1.2) holds for all
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rectifiable curves v : [0,1(y)] — X except for a curve family with zero
B—modulus.

We will weaken the assumption that g is Borel measurable in the
definition of a B—weak upper gradient, saying that g : X — [0, o]
is a generalized B—weak upper gradient of a function v : X — R if
there exists a curve family I'y C Ty with Modg(I'g) = 0 such that for
every 7 € I'yee \ I'g the function g o~ : [0,1(y)] — [0, 0] is Lebesgue
measurable and (1.2) holds. Clearly, a generalized B—weak upper
gradient of a function u : X — R is a B—weak upper gradient of
this function if and only if it is Borel measurable. We will discuss the
connections between these two notions in Section 3.

For every function u : X — R we will denote by G, p the family
of all B—weak upper gradients g € B of u in X. Consider the set
N1B(X) formed from the real-valued functions u € B for which G,
is non-empty. The functional [|ul|, g := [lullg +inf {[|gllg : 9 € GuB}

is a seminorm on N LB(X). The Sobolev space of Newtonian type

NLB(X) is defined as the quotient normed space of N'B(X) with
respect to the equivalence relation defined by: u ~ v if [|u — v[[; g = 0.

The norm on N*B(X) corresponding to the seminorm ||-[|, g is denoted
by ||l ximxy [12]-

For B= [”(X), 1 < p < oo, the space NVB(X) = NP (X)) was the
first extension, based on upper gradients, of Sobolev spaces to met-
ric measure spaces, introduced and studied by Shanmugalingam [16].
The case B = L™ (X) has been studied by Durand-Cartagena and
Jaramillo [7]. The theory of Newtonian spaces N7 (X) was further
generalized by Tuominen [17] and Aissaoui [1], who studied the case
where B = LY(X) is an Orlicz space, and very recently by Costea
and Miranda [6], who developed the theory for the case where B =
LP1(X) is a Lorentz space. Note that for B = LP7(X) the functions in
NUB(X) are assumed to extended real-valued, unlike for B = L? (X)
and B = LY(X), the definition of an upper gradient being more gen-
eral than Definition 5, that is taken from [16], following [11].

Remark 2. [t was proved in [12, Proposition 2] that for every B—weak

upper gradient g € B of a function uw : X — R there is a decreasing

sequence (g;);», of upper gradients of u such that lim ||g; — g||g = 0.
- 1—00

Then G, B 1s non-empty if and only if w has an upper gradient in B.
For all uw € NYB(X) we have

[l = |Ju|lg + inf {||g|lg : ¢ € B is an upper gradient of u} .

NLB(x)
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2. APPROXIMATION BY BOUNDED FUNCTIONS IN NEWTONIAN
SPACES

The following lattice property of N»B(X) is well-known in the cases
where B is an Orlicz space [17, Lemma 6.14] or a Lorentz space [6,
Lemma 3.15, Lemma 3.16].

Lemma 2. If g; € B is a B-weak upper gradient of u; : X — R,
for i = 1,2, then u := max{u;,us} and v := min{uy, us} have the
B—weak upper gradient g = max{gi, g2} and g € B. Moreover, with
the above notations, if g; € B is a generalized B—weak upper gradient
of u; : X = R, fori = 1,2, then g is a generalized B—weak upper
gradient of u and v.

Proof. If g;, i = 1,2 are Borel measurable, then ¢ is Borel measurable.
More general, if g; oy : [0,1(y)] — [0,00], i@ = 1,2 are Lebesgue
measurable for some v € T',.., then go~y : [0,1(y)] — [0, 0] is Lebesgue
measurable.

For i € {1,2}, let T'; C ;. be the family of curves vy : [0,1(y)] = X
for which the inequality the function g; o v : [0,1(y)] — [0,00] is
not Lebesgue measurable or |u;(7(0)) — u;(v(1 (v)))] < [ gids does not

v

hold. Then Modg(I';) =0, =1,2.
If g;, i = 1,2 are Borel measurable, then [ g;ds < [ gds for every v €

v o
[yee, therefore |u;(7(0)) — u;(v(1(7)))] < fgds forall y € T\, i =
1,2. In the general case, fgzds < fgds for every v € [yee \ (I UT),

hence |u;(7(0)) — w;(~y(1 ( N < fgds for all v € Tyee \ ([ UTY),
Y
i=12.

But [u(z) —u(y)] < max{[u (z) —u (y)], |uz (x) —uz (y)[} for
all z,y € X. Then |u(y(0)) —u(y(l(y ) )| < [gds for all v €

v
Lree \ (I UTy) and Modg (I'y UTy) = 0, hence g is a (generalized)
B-weak upper gradient of w.

Since v := min{uy, us} = — max{—uy, —us} and (—u;) has a (gener-
alized) B-weak upper gradient ¢;, i = 1,2, it follows by the preceding
proof that g is also a (generalized) B-weak upper gradient of v.

Obviously, 0 < g < g; + go, hence g € B by Definition 1 (P1) iii)
and (P2). O

We need the following counterpart of Lemma 3.16 from [6].
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Lemma 3. If g € B is a (generalized) B-weak upper gradient of u :
X — [0,00), then for every k € [0, 00) the function g is a (generalized)
B-weak upper gradient of uy := min{u, k}. Moreover, if u € B, then
u, € B, with ||ug||g < ||ullg, for every k € [0, 00).

Proof. Let k € [0,00). Since |ug () —ug (y)| < |u(x) —u(y)| for all
x,y € X, it is obvious that each (generalized) B-weak upper gradient
of u is also a (generalized) B-weak upper gradient of wuy.

Since 0 < u, < w on X, we have N (ug) < N (u) by Definition 1
(P2), hence u € B implies uy € B. O

A function u : X — R is said to be absolutely continuous (AC) on
a compact rectifiable curve y parameterized by arc-length if w oy :
[0,1(7)] — R is absolutely continuous. The function wu is said to
be AC on B—almost every curve if there exists a family I'y C T,
with Mg (I'g) = 0, such that u is absolutely continuous on each curve
v € Tree \ To. We will denote by ACCg (X)) the family of all functions
u : X — R that are AC on B—almost every curve. It is known that
every function v : X — R that has a B—weak upper gradient g € B
in X belongs to ACCg (X), in particular NB (X) c ACCg (X) [13],
[12].

Lemma 4. [13] Assume that F' C X is a Borel set and that the func-
tion u € ACCg (X) is constant p—a.e. on F. If u has a B—weak
upper gradient g in X, then gxx\r is also a B—weak upper gradient
of u in X.

We will say that B has property (C) if klirn w(Eg) = 0 for every

—00
sequence Fy C X, k > 1 of measurable sets such that klim IxEllg = 0.
—00

The following lemma provides an example of class of Banach func-

tion spaces that have property (C).

Lemma 5. FEvery rearrangement invariant Banach function space
over a resonant measure space has property (C).

Proof. Let B a rearrangement invariant Banach function space over
a resonant measure space. Let E, C X, k > 1 be a sequence of

measurable sets such that klim IxE.llg = 0. Denoting t, := pu(Ex),
— 00
k > 1, this means that klim ®p (t;) = 0. Let ¢t := limsupt,. Then
—o0 k—00
t > 0 and there exists a subsequence (tkj) _, such that ¢ = limt,,.
7>1 j—00 J

If t > 0, we see for t < oo that lim &g (tkj) =®g(t) >0 for t < oo

J]—00
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and for ¢ = co that lim ®g (t),) = lim ®p (7) (see Lemma 1). We get
j—oo T—00
a contradiction, that proves that ¢ = 0, hence there exists klirn ty =
—00

0. UJ

Proposition 1. Let B be a Banach function space over X that has
absolutely continuous norm and has property (C). Let u € N¥B(X) be
nonnegative. For each integer k > 0 we define uy, := min {u, k}. Then
ur, € B for each k > 0 and the sequence (uy),~, converges to u in the

norm of N¥B(X).

Proof. Let g € B be a B—weak upper gradient of u. By Lemma 3, for
each k > 0, ur € B and g is a B—weak upper gradient of u;. Then 2g
is a B—weak upper gradient of u; — u.

For each integer k > 0, let Ej := {x € X : u(z) > k}. Since the
set Fj is measurable and the measure p is Borel regular and outer
regular, there exists an open set O, C X such that E, C O, and
1(0g) < i (By) + 27"

Having Ey.qy C Ej for each £ > 0, we may choose the sequence
(Ok) 1> such that Oy C Oy for each k > 0. Since u > kypg, on X,
lullg > [lkxz,|lg, for each k& > 0. Then ,}LHOIOHXEICHB = 0. Since B

has property (C), it follows that klim p(Eyx) = 0. Then klim u(Or) =0
—00 —00
and, since Og,1 C Oy for each k£ > 0 and there exists kg such that
i (Ok,) < 00, we have u (limsup Ok) =L (ﬂ Ok) = klimu(Ok) =
k=1 — 00

k—o0
Let k > 0 be an integer. Since uy —u = 0 on the closed set X \ Oy
and 2g is a B—weak upper gradient of w; — u, by Lemma 4 2gxo,
is also a B—weak upper gradient of uy — u in X. For z € Ej we
have |ug(z) —u(z)| = u(x) — k < w(x), while for x € Oy \ Ej we
have |ug(z) —u(z)] = 0 < u(x), therefore |ux —u| < uyp,. Since
itk =l ) <l = llg + 120X0, e we have

lur =l yis(x) < lluxolls + 2 llgxo.lls -

Since p (lim sup Ok> = 0, by the absolute continuity of the norm

k—00

on B and the fact that u,g € B, we get klim |luxo,llg = 0 and
—00

klim lgxo,llg = 0. The claim follows using the last inequality. O
—00
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Corollary 1. Let (X,d, ) and B be as in Proposition 1. For each
u € NYB(X) and every e > 0 there is a bounded function v € N'B(X)
such that ||u —v|[yie(x) <€

Proof. Let u € N"B(X) and ¢ > 0. Define u™ = max{u,0} and

u” = max{—u,0}. Then u", u= € N'B(X) are nonnegative and
u = u" —u~. By Proposition 1, the sequences u; := min{u", k}
and u, := min{u ,k}, & > 1, converge , respectively, to u*

and u~ in the norm of NVB(X). There exists a positive integer
N = N (e) so that Hui —ufHleB(X) < § for every k > N, hence
[u— (ux —uy) HNLB(X) <& U
Remark 3. Proposition 1 and Corollary 1 extend, respectively, Propo-
sition 6.5 from [6] and Proposition 6.16 from [17].

3. APPROXIMATION BY COMPACTLY SUPPORTED FUNCTIONS IN
NEWTONIAN SPACES

We investigate some natural connections between the notions of
B—weak upper gradient and generalized B—weak upper gradient.

Lemma 6. Let u: X — R.

1) If g is a generalized B—weak upper gradient of u and h = g
u—almost everywhere in X, then h is a generalized B—weak upper
gradient of u.

2) For every generalized B—weak upper gradient gi of u that is finite
p—a.e. there exists a B—weak upper gradient hy of uw such that hy = ¢,
p—almost everywhere in X .

Proof. 1) Assume that g : X — [0, 00] is a generalized B—weak upper
gradient of u. There exists a exists a curve family I'y C T',.. with
Modg(Ty) = 0 such that for every v € I, \ T'g the function g oy :
0,1 ()] = [0, 00] is Lebesgue measurable and (1.2) holds.

Assume that h = ¢ p—a. e. in X. Let E; =
{r € X :g(x) # h(x)}. Then F; is measurable and p (E;) = 0. Since
1 is Borel regular, there exists a Borel set £ C X such that £} C E
and p(E) = p(Ep). Let 'y be the family of all curves for which
L' (v"1(E)) > 0. The Borel function pg := co - xg is an admissible
function for I'y and ||pg||g = 0, hence Modg (I'1) = 0. For every
v € Tyee \T'1 we have L (v~ (E)) =0, but v~ (E;) C v~ (E), hence
v~ (E;) is £'-measurable and L' (y~! (E})) = 0.

Let v € Thee \ (T UTY), with v : [0,1(y)] — X parameterized by
arc-length. Then (ho ) (t) = (go~) (t) for L'—a.e. x €[0,1(v)] and
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go~y :[0,l(y)] = [0,00] is Lebesgue measurable, therefore h o~y :
[0,1 ()] — [0, 00] is also Lebesgue measurable and

/ howyds = / goyds > [u((0)) — u(v(I (1))

v v

Since Modg (I'y UT';) = 0, it follows that h is a generalized B—weak
upper gradient of .

2) Let g1 be a generalized B—weak upper gradient of u that is finite
p—a.e. By Remark 1, there exists a Borel function hy : X — [0, o0]
such that hy = ¢g; p—a.e. The preceding argument shows that h,
is a generalized B—weak upper gradient of u, therefore, being Borel
measurable, h; is a B—weak upper gradient of u. 0

Corollary 2. A function u € B belongs to N¥B(X) if and only if
there exists in B a generalized B—weak upper gradient of u. For every
u € NYB(X) we have ||u||N1B(X) = |lullg + inf{||h]lg : b € B is a

generalized B—weak upper gradient of u}.

The following counterpart of the product rule extends Lemma 6.7
from [6] in the case of real-valued functions and slightly generalizes
Theorem 2 from [13], where u; and uy were assumed to be bounded
Borel measurable functions.

Lemma 7. Assume that up : X — R is a p—measurable function
which has a B—weak upper gradient g, € B in X, for k € {1,2}.
Then the function g := |u1| go + |uz| g1 is a generalized B—weak upper
gradient of u := ujus in X . Moreover, if uy and us are bounded, then
g € B.

Proof. Let Ty be the family of all v € T, for which [ (g1 + g2) ds =
vy
00. Since g1 + g2 € B, we have Modg (I'y) = 0 by [12, Proposition

1 (b)]. Let I'y, & € {1,2} be the family of all v € T',.. for which
lug (7 (0)) —ug (v (L (7)))] < f gr ds does not hold. Then Modg (I'y) =
B¢

0, since gy is a B—weak upper gradient of u,. Let I's C I',.. be the
family of curvesthat have a subcurve in I'; U T'5.

Assume that v € T'ee \ I's. Then uy, 0 v is absolutely continuous on
0,1 ()] for k = 1,2, hence goy : [0,1 ()] — [0, 00| is Borel measurable.
As in the proof of [13, Theorem 2], using a method from [5, Lemma
1.7] it follows that |u (v (0)) —u (v (1)) < [ [Ju1] g2 + |uz| 1] ds.

0l
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Since Modg (I'yUT'3) = 0, it follows that g := |uy| g2 + |uz| g1 is a
generalized B—weak upper gradient of u := uyus.
If uy and ug are bounded, let My := sup |ug(x)|, kK = 1,2. Since g is

zeX
pu—measurable, 0 < g < Mygy + Myg, and Migs + Mog, € B, we get
g € B. 0

Fix a point xy € X. Asin [17, Lemma 6.15] and [6, Lemma 6.8] we
define a sequence of cut-off functions, as follows:

1, if d (z0,2) < k — 1
op () =< k—d(zo,x),if bk —1<d(zo,x) <k ,k>1.
0,if d (zg,z) > k

Note that for each £ > 1 the function ¢, is 1—Lipschitz.

Proposition 2. Assume that (X, d, 1) is a metric measure space and
B is Banach function space over (X, u) that has absolutely continu-
ous norm. If u € NYB(X) is bounded, then the function upy is in
NYB(X), for each k > 1, and the sequence (upy),~, converges to u in
the norm of N'B(X).

Proof. Let k > 1. Denote vy, := uyy The function ;. is Borel measur-
able, hence vy is p—measurable. Since 0 < |vg| < |uf, and u € B, it
follows that v, € B.

Since ¢y, is 1—Lipschitz, the constant function 1 is an upper gradient
of ¢). Moreover, since gy, is constant on the closed sets B (g, k — 1)
and X \ B(zo, k), applying twice Lemma 4 we get that the characteris-
tic function of B (x, k) \ B (xg, k — 1) is a B— weak upper gradient of
¢r. The same remark applies to 1—pg. Denote by hy the characteristic
function of B (zg, k) \ B (zo, k — 1).

We have u — v = u (1 — ¢g). It follows by the product rule from
Lemma 7 that |u|hy + g (1 — @) is a generalized B— weak upper
gradient of vg. But

(3.1) g = (|ul + 9) Xx\Bao,p—1) = |ul b + g (1 — )

on X.

Since u € ACCg, we find a curve family I' such that u o vy is abso-
lutely continuous on [0, (7)], in particular Borel measurable, for all
v € Tee \I'. Consequently, gy o7y is Borel measurable on [0, ()] for all
v € Thee \I'. By inequality (3.1) it follows that gy is a generalized B—
weak upper gradient of vy. Moreover, g, € B by Definition 1 (P2).



82 MARCELINA MOCANU

Then [Ju — vg| yie(x) < lu — villg + [|gkl| g, therefore
(3.2)

e = vkl < ||y

B + H(|U| + 9) XX\ B(aok—1) -
Since the sequence of sets (X \ B (zo,k — 1))k>1
the empty set p—a.e. and u, |u| + g € B, it follows that
HUXX\E(xo,k—n B — 0 and H(’u‘ +9) XX\B(z0,k—1)
by the absolute continuity of the norm of B.
By (3.2) we obtain |[u — vk y15(x) — 0 as k — oc. O

converges to

— 0 as k — oo,
B

Corollary 3. Let B be a Banach function space over X that has ab-
solutely continuous norm and has property (C). For each u € NVB(X)
and every € > 0 there is a bounded function w € NVB(X) supported
in a closed ball, such that |[u — wl|y18x) <€

Proof. Let u € N¥B(X) and e > 0. By Corollary 1, there is a bounded
function v € NVB(X) such that [[u — v||yi1x) < 5-
By Proposition 2 applied to the bounded function v € NVB(X),

there is an integer & > 1 such that w := vipy satisfies [[v — w|[y18(x) <
5- Then [lu — wl| y1,8(x)- The function w € NLB(X) is bounded, since
lw| < |v|, and w is supported in the closed ball B (zg, k). O

Corollary 4. Assume that (X, d, i) is a proper metric measure space,
with u nonatomic. Let B be a rearrangement invariant Banach func-
tion space over (X, u) that has absolutely continuous norm. For each
u € NYB(X) and every e > 0 there is a bounded compactly supported
function w € NYB(X) such that ||u — W i) <€

Proof. Let u € N"B(X) and ¢ > 0. Since B is rearrangement in-
variant, it has property (C), by Lemma 5. By Corollary 3, there
is a bounded function w € N'B(X) supported in some closed ball
B (0, k), where k > 1 is an integer, such that lu—w| yisx) < e

Since X is proper, B (zg, k) is compact. O
Remark 4. Proposition 2 extends Lemma 6.15 from [17] and Lemma

6.8 from [6] to the setting of Newtonian spaces based on Banach func-
tion spaces.
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