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DENSE SUBCLASSES IN ABSTRACT SOBOLEV
SPACES ON METRIC MEASURE SPACES

MARCELINA MOCANU

Abstract. Given a metric measure space (X, d, µ) and a Ba-
nach function space B over X that has absolutely continuous norm,
we prove two results regarding the density in the Newtonian space
N1,B(X) of the subclasses consisting of bounded functions, respec-
tively of bounded functions supported in closed balls. We do not
assume that µ is a doubling measure. If B is rearrangement invariant,
(X, d) is proper and the measure µ is nonatomic, it turns out that
the class of bounded compactly supported functions from N1,B(X) is
dense in N1,B(X).

1. Introduction and preliminaries

It is of great importance for the theory and applications of Sobolev
spaces on Rn that smooth functions are dense in the respective Sobolev
spaces. In the framework of metric measure spaces the role of smooth
functions is played by Lipschitz continuous functions. The den-
sity of Lipschitz functions in Newtonian spaces N1,p (X) has been
proved in doubling metric measure spaces (X, d, µ) supporting a weak
(1, p)−Poincaré inequality [16]. Corresponding density results have
been proved for Orlicz-Sobolev spaces [17], [1] and Sobolev-Lorentz
spaces [6]. These density results rely on some preparatory lemmas,
that reduce the proof in the general case to the proof in the special
case where the approximated function is bounded and has the support
contained in a closed ball.
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The purpose of this paper is to extend the above mentioned lemmas
to the case of more general Newtonian spaces, using Banach function
spaces as an unifying framework for Orlicz spaces and Lorentz spaces.

Let (X,Σ, µ) be a complete and σ−finite measure space and let
M+(X) be the collection of all µ−measurable functions f : X →
[0,∞].

Definition 1. [2] A function N : M+(X)→ [0,∞] is called a Banach
function norm if, for all f , g, fn (n ≥ 1) in M+(X), for all constants
a ≥ 0 and for all measurable sets E ⊂ X, the following properties
hold:

(P1) i) N(f) = 0 if and only if f = 0 µ−a.e.; ii) N(af) = aN(f);
iii) N(f + g) ≤ N(f) +N(g).

(P2) If 0 ≤ g ≤ f µ−a.e., then N(g) ≤ N(f).
(P3) If 0 ≤ fn ↑ f µ−a.e., then N(fn) ↑ N(f).
(P4) If µ(E) <∞, then N(χE) <∞.
(P5) If µ(E) < ∞, then

∫
E

f dµ ≤ CEN(f), for some constant

CE ∈ (0,∞) depending only on E and ρ.

Let B be the collection of the µ−measurable functions f : X →
[−∞,∞] for which N(|f |) <∞.For f ∈ B define

‖f‖B = N(|f |).

Then (B, ‖·‖B) is a seminormed space. As usual we identify two
functions that coincide µ−a.e. and denote by≈ the relation of equality
µ−a.e. Let f, g : X → R such that f ∈ B and f = g µ−a.e. Then g
is µ−measurable and N (|g|) = N (|f |) <∞, hence g ∈ B. Moreover,
by Definition 1 (P5) and the σ−finiteness of µ it follows that every
function in B is finite µ−a.e. Then f − g = 0 µ−a.e. and therefore
‖f − g‖B = 0. Consider the quotient vector space B =B/ ≈ and

define ‖·‖B by
∥∥∥f̂∥∥∥

B
= ‖f‖B. Then (B, ‖·‖B) is a normed space, that

is complete by [2, Theorem I.1.6]

Definition 2. A function f ∈ B is said to have absolutely contin-
uous (AC) norm in B if and only if ‖fχEk

‖B → 0 for every se-
quence (Ek)k≥1 of measurable sets satisfying Ek → ∅ µ−a.e. (i.e.

µ

(
lim supEk

k→∞

)
= 0). The space B is said to have absolutely continu-

ous norm if every f ∈ B has AC norm .
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Note that an Orlicz space LΨ (X) has absolutely continuous norm if
the Young function Ψ is doubling. The (p, q)−norm of a Lorentz space
Lp,q (X) with 1 < p <∞ and 1 ≤ q <∞ is absolutely continuous (see
the discussion following Definition 2.1 from [6]).

Let f : X → R be a µ−measurable function. The distribution
function of f is defined by df (t) = µ ({x ∈ X : |f (x)| > t}) for t ≥ 0.
The nonincreasing rearrangement of f is defined by

f ∗ (t) = inf {s ≥ 0 : df (s) ≤ t} , t ≥ 0.

Definition 3. A Banach function space (B, ‖·‖B) is said to be re-
arrangement invariant if f ∗ = g∗ implies ‖f‖B = ‖g‖B.

Lebesgue spaces and some of their generalizations, namely Orlicz
spaces and Lorentz spaces are well-known examples of rearrangement
invariant Banach function spaces.

Definition 4. The fundamental function of a B rearrangement in-
variant space over (X,µ) is ΦB : [0,∞)→ [0,∞) defined by ΦB (t) =
‖χE‖B, where E ⊂ X is a µ−measurable set with µ (E) = t.

The above definition is unambiguous, since the characteristic func-
tions of two sets with equal measures have the same distribution func-
tion.

Lemma 1. [2, Corollary II. 5.3]Let B be a rearrangement invariant
Banach function space over a resonant measure space (X,µ). Then the
fundamental function ΦB satisfies: ΦB is increasing, vanishes only at

the origin, is continuous (except perhaps at the origin) and t 7→ ΦB(t)
t

is decreasing.

It is known that if µ is σ−finite and nonatomic, then (X,µ) is
resonant. If µ is doubling and X has no isolated points, then µ is
nonatomic.

In the following, the triple (X, d, µ) denotes a metric measure space,
which is a metric space (X, d) equipped with a Borel regular measure
µ, that is finite and positive on balls. It is known that under the above
assumptions µ is regular, i.e. inner regular and outer regular [10, p.
3]. Obviously, µ is σ−finite.

Denote by B(x, r) = {y ∈ X : d(y, x) < r} and B(x, r) = {y ∈ X :
d(y, x) ≤ r} the open, respectively the closed balls in X.

The measure µ on the metric space (X, d) is said to be doubling if
there is a constant Cd ≥ 1 such that for every ball B(x, r) ⊂ X,

(1.1) µ(B(x, 2r)) ≤ Cdµ(B(x, r)).
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A metric space is called proper if every closed ball of the space is
compact. A metric space equipped with a doubling measure is proper
if and only if it is complete.

Remark 1. Let (X, τ) be a normal topological space and (X,Σ, µ)
is a measure space, such that τ ⊂ Σ and the measure µ is regular.
Then every µ−measurable function f : X → R that is finite µ−a.e.
coincides µ−a.e. with a Borel measurable function g : X → R, that
belongs to one of the Baire classes B0, B1, B2. Moreover, if f ≥ 0,
then we may choose g ≥ 0 [15],[4], [14].

If (X, d, µ) is a metric measure space, then the above assumptions
hold, where τ is the topology induced by d and Σ is the family of all
µ−measurable subsets of X. Let B be a Banach function space over
(X,µ). Then every function f ∈ B, being µ−measurable and finite
µ−a.e., coincides µ−a.e. with a Borel function.

We will denote by Γrec the family of all non-constant rectifiable
compact curves in X. We will consider in the following, as we may,
that every compact rectifiable curve γ is parameterized by arc-length,

i.e. γ : [0, l (γ)] → X and l
(
γ|[0,t]

)
= t for all t ∈ [0, l (γ)]. For

g : X → [0,∞] we may define
∫
γ

gds =
l(γ)∫
0

(g ◦ γ) (t) dt for all curves

γ ∈ Γrec for which g ◦ γ : [0, l (γ)]→ [0,∞] is Lebesgue measurable. If
g : X → [0,∞] is Borel measurable, then g ◦ γ : I → [0,∞] is Borel
measurable for every continuous function γ : I → X, where I ⊂ R is
an interval.

Definition 5. A Borel measurable function g : X → [0,∞] is said to
be an upper gradient of a function u : X → R if for every rectifiable
curve γ : [0, l (γ)]→ X the following inequality holds

(1.2) |u(γ(0))− u(γ(l (γ)))| ≤
∫
γ

gds.

The B−modulus of a family Γ of curves in X is defined by
ModB(Γ) = inf ‖ρ‖B ,where the infimum is taken over all Borel func-
tions ρ : X → [0,∞] satisfying

∫
γ

ρ ds ≥ 1 for all locally rectifiable

curves γ in X. The B−modulus of the family of curves that are not
rectifiable is zero.

A B−weak upper gradient of a function u : X → R is a Borel
measurable function g : X → [0,∞] such that (1.2) holds for all
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rectifiable curves γ : [0, l (γ)]→ X except for a curve family with zero
B−modulus.

We will weaken the assumption that g is Borel measurable in the
definition of a B−weak upper gradient, saying that g : X → [0,∞]
is a generalized B−weak upper gradient of a function u : X → R if
there exists a curve family Γ0 ⊂ Γrec with ModB(Γ0) = 0 such that for
every γ ∈ Γrec \ Γ0 the function g ◦ γ : [0, l (γ)] → [0,∞] is Lebesgue
measurable and (1.2) holds. Clearly, a generalized B−weak upper
gradient of a function u : X → R is a B−weak upper gradient of
this function if and only if it is Borel measurable. We will discuss the
connections between these two notions in Section 3.

For every function u : X → R we will denote by Gu,B the family
of all B−weak upper gradients g ∈ B of u in X. Consider the set

Ñ1,B(X) formed from the real-valued functions u ∈ B for which Gu,B

is non-empty. The functional ‖u‖1,B := ‖u‖B + inf {‖g‖B : g ∈ Gu,B}
is a seminorm on Ñ1,B(X). The Sobolev space of Newtonian type

N1,B(X) is defined as the quotient normed space of Ñ1,B(X) with
respect to the equivalence relation defined by: u ∼ v if ‖u− v‖1,B = 0.

The norm onN1,B(X) corresponding to the seminorm ‖·‖1,B is denoted

by ‖·‖N1,B(X) [12].

For B = Lp (X), 1 ≤ p <∞, the space N1,B(X) = N1,p (X) was the
first extension, based on upper gradients, of Sobolev spaces to met-
ric measure spaces, introduced and studied by Shanmugalingam [16].
The case B = L∞ (X) has been studied by Durand-Cartagena and
Jaramillo [7]. The theory of Newtonian spaces N1,p (X) was further
generalized by Tuominen [17] and Aı̈ssaoui [1], who studied the case
where B = LΨ(X) is an Orlicz space, and very recently by Costea
and Miranda [6], who developed the theory for the case where B =
Lp,q(X) is a Lorentz space. Note that for B = Lp,q(X) the functions in
N1,B(X) are assumed to extended real-valued, unlike for B = Lp (X)
and B = LΨ(X), the definition of an upper gradient being more gen-
eral than Definition 5, that is taken from [16], following [11].

Remark 2. It was proved in [12, Proposition 2] that for every B−weak
upper gradient g ∈ B of a function u : X → R there is a decreasing
sequence (gi)i≥1 of upper gradients of u such that lim

i→∞
‖gi − g‖B = 0.

Then Gu,B is non-empty if and only if u has an upper gradient in B.
For all u ∈ N1,B(X) we have

‖u‖
N1,B(X)

:= ‖u‖B + inf {‖g‖B : g ∈ B is an upper gradient of u} .
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2. Approximation by bounded functions in Newtonian
spaces

The following lattice property of N1,B(X) is well-known in the cases
where B is an Orlicz space [17, Lemma 6.14] or a Lorentz space [6,
Lemma 3.15, Lemma 3.16].

Lemma 2. If gi ∈ B is a B-weak upper gradient of ui : X → R,
for i = 1, 2, then u := max{u1, u2} and v := min{u1, u2} have the
B−weak upper gradient g = max{g1, g2} and g ∈ B. Moreover, with
the above notations, if gi ∈ B is a generalized B−weak upper gradient
of ui : X → R, for i = 1, 2, then g is a generalized B−weak upper
gradient of u and v.

Proof. If gi, i = 1, 2 are Borel measurable, then g is Borel measurable.
More general, if gi ◦ γ : [0, l (γ)] → [0,∞], i = 1, 2 are Lebesgue
measurable for some γ ∈ Γrec, then g◦γ : [0, l (γ)]→ [0,∞] is Lebesgue
measurable.

For i ∈ {1, 2}, let Γi ⊂ Γrec be the family of curves γ : [0, l (γ)]→ X
for which the inequality the function gi ◦ γ : [0, l (γ)] → [0,∞] is
not Lebesgue measurable or |ui(γ(0))− ui(γ(l (γ)))| ≤

∫
γ

gids does not

hold. Then ModB(Γi) = 0, i = 1, 2.
If gi, i = 1, 2 are Borel measurable, then

∫
γ

gids ≤
∫
γ

gds for every γ ∈

Γrec, therefore |ui(γ(0))− ui(γ(l (γ)))| ≤
∫
γ

gds for all γ ∈ Γrec\Γi, i =

1, 2. In the general case,
∫
γ

gids ≤
∫
γ

gds for every γ ∈ Γrec \ (Γ1 ∪ Γ2),

hence |ui(γ(0))− ui(γ(l (γ)))| ≤
∫
γ

gds for all γ ∈ Γrec \ (Γ1 ∪ Γ2),

i = 1, 2.
But |u (x)− u (y)| ≤ max {|u1 (x)− u1 (y)| , |u2 (x)− u2 (y)|} for

all x, y ∈ X. Then |u(γ(0))− u(γ(l (γ)))| ≤
∫
γ

gds for all γ ∈

Γrec \ (Γ1 ∪ Γ2) and ModB (Γ1 ∪ Γ2) = 0, hence g is a (generalized)
B-weak upper gradient of u.

Since v := min{u1, u2} = −max{−u1,−u2} and (−ui) has a (gener-
alized) B-weak upper gradient gi, i = 1, 2, it follows by the preceding
proof that g is also a (generalized) B-weak upper gradient of v.

Obviously, 0 ≤ g ≤ g1 + g2, hence g ∈ B by Definition 1 (P1) iii)
and (P2). �

We need the following counterpart of Lemma 3.16 from [6].
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Lemma 3. If g ∈ B is a (generalized) B-weak upper gradient of u :
X → [0,∞), then for every k ∈ [0,∞) the function g is a (generalized)
B-weak upper gradient of uk := min{u, k}. Moreover, if u ∈ B, then
uk ∈ B, with ‖uk‖B ≤ ‖u‖B, for every k ∈ [0,∞).

Proof. Let k ∈ [0,∞). Since |uk (x)− uk (y)| ≤ |u (x)− u (y)| for all
x, y ∈ X, it is obvious that each (generalized) B-weak upper gradient
of u is also a (generalized) B-weak upper gradient of uk.

Since 0 ≤ uk ≤ u on X, we have N (uk) ≤ N (u) by Definition 1
(P2), hence u ∈ B implies uk ∈ B. �

A function u : X → R is said to be absolutely continuous (AC) on
a compact rectifiable curve γ parameterized by arc-length if u ◦ γ :
[0, l (γ)] → R is absolutely continuous. The function u is said to
be AC on B−almost every curve if there exists a family Γ0 ⊂ Γrec
with MB (Γ0) = 0, such that u is absolutely continuous on each curve
γ ∈ Γrec \Γ0. We will denote by ACCB (X) the family of all functions
u : X → R that are AC on B−almost every curve. It is known that
every function u : X → R that has a B−weak upper gradient g ∈ B
in X belongs to ACCB (X), in particular N1,B (X) ⊂ ACCB (X) [13],
[12].

Lemma 4. [13] Assume that F ⊂ X is a Borel set and that the func-
tion u ∈ ACCB (X) is constant µ−a.e. on F . If u has a B−weak
upper gradient g in X, then gχX\F is also a B−weak upper gradient
of u in X.

We will say that B has property (C) if lim
k→∞

µ (Ek) = 0 for every

sequence Ek ⊂ X, k ≥ 1 of measurable sets such that lim
k→∞
‖χEk

‖B = 0.

The following lemma provides an example of class of Banach func-
tion spaces that have property (C).

Lemma 5. Every rearrangement invariant Banach function space
over a resonant measure space has property (C).

Proof. Let B a rearrangement invariant Banach function space over
a resonant measure space. Let Ek ⊂ X, k ≥ 1 be a sequence of
measurable sets such that lim

k→∞
‖χEk

‖B = 0. Denoting tk := µ (Ek),

k ≥ 1, this means that lim
k→∞

ΦB (tk) = 0. Let t := lim sup
k→∞

tk. Then

t ≥ 0 and there exists a subsequence
(
tkj
)
j≥1

such that t = lim
j→∞

tkj .

If t > 0, we see for t < ∞ that lim
j→∞

ΦB

(
tkj
)

= ΦB (t) > 0 for t < ∞
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and for t =∞ that lim
j→∞

ΦB

(
tkj
)

= lim
τ→∞

ΦB (τ) (see Lemma 1). We get

a contradiction, that proves that t = 0, hence there exists lim
k→∞

tk =

0. �

Proposition 1. Let B be a Banach function space over X that has
absolutely continuous norm and has property (C). Let u ∈ N1,B(X) be
nonnegative. For each integer k ≥ 0 we define uk := min {u, k}. Then
uk ∈ B for each k ≥ 0 and the sequence (uk)k≥0 converges to u in the

norm of N1,B(X).

Proof. Let g ∈ B be a B−weak upper gradient of u. By Lemma 3, for
each k ≥ 0, uk ∈ B and g is a B−weak upper gradient of uk. Then 2g
is a B−weak upper gradient of uk − u.

For each integer k ≥ 0, let Ek := {x ∈ X : u (x) > k}. Since the
set Ek is measurable and the measure µ is Borel regular and outer
regular, there exists an open set Ok ⊂ X such that Ek ⊂ Ok and
µ (Ok) ≤ µ (Ek) + 2−k.

Having Ek+1 ⊂ Ek for each k ≥ 0, we may choose the sequence
(Ok)k≥0 such that Ok+1 ⊂ Ok for each k ≥ 0. Since u ≥ kχEk

on X,
‖u‖B ≥ ‖kχEk

‖B, for each k ≥ 0. Then lim
k→∞
‖χEk

‖B = 0. Since B

has property (C), it follows that lim
k→∞

µ (Ek) = 0. Then lim
k→∞

µ (Ok) = 0

and, since Ok+1 ⊂ Ok for each k ≥ 0 and there exists k0 such that

µ (Ok0) < ∞, we have µ

(
lim supOk

k→∞

)
= µ

(
∞⋂
k=1

Ok

)
= lim

k→∞
µ (Ok) =

0.
Let k ≥ 0 be an integer. Since uk − u = 0 on the closed set X \Ok

and 2g is a B−weak upper gradient of uk − u, by Lemma 4 2gχOk

is also a B−weak upper gradient of uk − u in X. For x ∈ Ek we
have |uk(x)− u(x)| = u (x) − k ≤ u (x), while for x ∈ Ok \ Ek we
have |uk(x)− u(x)| = 0 ≤ u (x), therefore |uk − u| ≤ uχOk

. Since
‖uk − u‖N1,B(X) ≤ ‖uk − u‖B + ‖2gχOk

‖B, we have

‖uk − u‖N1,B(X) ≤ ‖uχOk
‖B + 2 ‖gχOk

‖B .

Since µ

(
lim supOk

k→∞

)
= 0, by the absolute continuity of the norm

on B and the fact that u, g ∈ B, we get lim
k→∞
‖uχOk

‖B = 0 and

lim
k→∞
‖gχOk

‖B = 0. The claim follows using the last inequality. �
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Corollary 1. Let (X, d, µ) and B be as in Proposition 1. For each
u ∈ N1,B(X) and every ε > 0 there is a bounded function v ∈ N1,B(X)
such that ‖u− v‖N1,B(X) < ε.

Proof. Let u ∈ N1,B(X) and ε > 0. Define u+ = max{u, 0} and
u− = max{−u, 0}. Then u+, u− ∈ N1,B(X) are nonnegative and
u = u+ − u−. By Proposition 1, the sequences u+

k := min {u+, k}
and u−k := min {u−, k}, k ≥ 1, converge , respectively, to u+

and u− in the norm of N1,B(X). There exists a positive integer
N = N (ε) so that

∥∥u± − u±k ∥∥N1,B(X)
< ε

2
for every k ≥ N , hence∥∥u− (u+

N − u
−
N

)∥∥
N1,B(X)

< ε. �

Remark 3. Proposition 1 and Corollary 1 extend, respectively, Propo-
sition 6.5 from [6] and Proposition 6.16 from [17].

3. Approximation by compactly supported functions in
Newtonian spaces

We investigate some natural connections between the notions of
B−weak upper gradient and generalized B−weak upper gradient.

Lemma 6. Let u : X → R.
1) If g is a generalized B−weak upper gradient of u and h = g

µ−almost everywhere in X, then h is a generalized B−weak upper
gradient of u.

2) For every generalized B−weak upper gradient g1 of u that is finite
µ−a.e. there exists a B−weak upper gradient h1 of u such that h1 = g1

µ−almost everywhere in X.

Proof. 1) Assume that g : X → [0,∞] is a generalized B−weak upper
gradient of u. There exists a exists a curve family Γ0 ⊂ Γrec with
ModB(Γ0) = 0 such that for every γ ∈ Γrec \ Γ0 the function g ◦ γ :
[0, l (γ)]→ [0,∞] is Lebesgue measurable and (1.2) holds.

Assume that h = g µ−a. e. in X. Let E1 :=
{x ∈ X : g (x) 6= h (x)}. Then E1 is measurable and µ (E1) = 0. Since
µ is Borel regular, there exists a Borel set E ⊂ X such that E1 ⊂ E
and µ (E) = µ (E1). Let Γ1 be the family of all curves for which
L1 (γ−1 (E)) > 0. The Borel function ρE := ∞ · χE is an admissible
function for Γ1 and ‖ρE‖B = 0, hence ModB (Γ1) = 0. For every
γ ∈ Γrec \Γ1 we have L1 (γ−1 (E)) = 0, but γ−1 (E1) ⊂ γ−1 (E), hence
γ−1 (E1) is L1-measurable and L1 (γ−1 (E1)) = 0.

Let γ ∈ Γrec \ (Γ0 ∪ Γ1), with γ : [0, l (γ)] → X parameterized by
arc-length. Then (h ◦ γ) (t) = (g ◦ γ) (t) for L1−a.e. x ∈ [0, l (γ)] and
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g ◦ γ : [0, l (γ)] → [0,∞] is Lebesgue measurable, therefore h ◦ γ :
[0, l (γ)]→ [0,∞] is also Lebesgue measurable and∫

γ

h ◦ γ ds =

∫
γ

g ◦ γ ds ≥ |u(γ(0))− u(γ(l (γ)))| .

Since ModB (Γ0 ∪ Γ1) = 0, it follows that h is a generalized B−weak
upper gradient of u.

2) Let g1 be a generalized B−weak upper gradient of u that is finite
µ−a.e. By Remark 1, there exists a Borel function h1 : X → [0,∞]
such that h1 = g1 µ−a.e. The preceding argument shows that h1

is a generalized B−weak upper gradient of u, therefore, being Borel
measurable, h1 is a B−weak upper gradient of u. �

Corollary 2. A function u ∈ B belongs to N1,B(X) if and only if
there exists in B a generalized B−weak upper gradient of u. For every
u ∈ N1,B(X) we have ‖u‖

N1,B(X)
= ‖u‖B + inf{‖h‖B : h ∈ B is a

generalized B−weak upper gradient of u}.

The following counterpart of the product rule extends Lemma 6.7
from [6] in the case of real-valued functions and slightly generalizes
Theorem 2 from [13], where u1 and u2 were assumed to be bounded
Borel measurable functions.

Lemma 7. Assume that uk : X → R is a µ−measurable function
which has a B−weak upper gradient gk ∈ B in X, for k ∈ {1, 2}.
Then the function g := |u1| g2 + |u2| g1 is a generalized B−weak upper
gradient of u := u1u2 in X . Moreover, if u1 and u2 are bounded, then
g ∈ B.

Proof. Let Γ0 be the family of all γ ∈ Γrec for which
∫
γ

(g1 + g2) ds =

∞. Since g1 + g2 ∈ B, we have ModB (Γ0) = 0 by [12, Proposition
1 (b)]. Let Γk, k ∈ {1, 2} be the family of all γ ∈ Γrec for which
|uk (γ (0))− uk (γ (l (γ)))| ≤

∫
γ

gk ds does not hold. ThenModB (Γk) =

0, since gk is a B−weak upper gradient of uk. Let Γ3 ⊂ Γrec be the
family of curvesthat have a subcurve in Γ1 ∪ Γ2.

Assume that γ ∈ Γrec \ Γ3. Then uk ◦ γ is absolutely continuous on
[0, l (γ)] for k = 1, 2, hence g◦γ : [0, l (γ)]→ [0,∞] is Borel measurable.
As in the proof of [13, Theorem 2], using a method from [5, Lemma
1.7] it follows that |u (γ (0))− u (γ (l))| ≤

∫
γ

[|u1| g2 + |u2| g1] ds.
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Since ModB (Γ0 ∪ Γ3) = 0, it follows that g := |u1| g2 + |u2| g1 is a
generalized B−weak upper gradient of u := u1u2.

If u1 and u2 are bounded, let Mk := sup
x∈X
|uk(x)|, k = 1, 2. Since g is

µ−measurable, 0 ≤ g ≤ M1g2 + M2g1 and M1g2 + M2g1 ∈ B, we get
g ∈ B. �

Fix a point x0 ∈ X. As in [17, Lemma 6.15] and [6, Lemma 6.8] we
define a sequence of cut-off functions, as follows:

ϕk (x) =

 1, if d (x0, x) ≤ k − 1
k − d (x0, x) , if k − 1 < d (x0, x) < k

0, if d (x0, x) ≥ k
, k ≥ 1.

Note that for each k ≥ 1 the function ϕk is 1−Lipschitz.

Proposition 2. Assume that (X, d, µ) is a metric measure space and
B is Banach function space over (X,µ) that has absolutely continu-
ous norm. If u ∈ N1,B(X) is bounded, then the function uϕk is in
N1,B(X), for each k ≥ 1, and the sequence (uϕk)k≥1 converges to u in

the norm of N1,B(X).

Proof. Let k ≥ 1. Denote vk := uϕk The function ϕk is Borel measur-
able, hence vk is µ−measurable. Since 0 ≤ |vk| ≤ |u|, and u ∈ B, it
follows that vk ∈ B.

Since ϕk is 1−Lipschitz, the constant function 1 is an upper gradient
of ϕk. Moreover, since ϕk is constant on the closed sets B (x0, k − 1)
and X \B(x0, k), applying twice Lemma 4 we get that the characteris-
tic function of B (x0, k)\B (x0, k − 1) is a B− weak upper gradient of
ϕk. The same remark applies to 1−ϕk. Denote by hk the characteristic
function of B (x0, k) \B (x0, k − 1).

We have u − vk = u (1− ϕk). It follows by the product rule from
Lemma 7 that |u|hk + g (1− ϕk) is a generalized B− weak upper
gradient of vk. But

(3.1) gk := (|u|+ g)χX\B(x0,k−1) ≥ |u|hk + g (1− ϕk)

on X.
Since u ∈ ACCB, we find a curve family Γ such that u ◦ γ is abso-

lutely continuous on [0, l (γ)], in particular Borel measurable, for all
γ ∈ Γrec\Γ. Consequently, gk◦γ is Borel measurable on [0, l (γ)] for all
γ ∈ Γrec \Γ. By inequality (3.1) it follows that gk is a generalized B−
weak upper gradient of vk. Moreover, gk ∈ B by Definition 1 (P2).
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Then ‖u− vk‖N1,B(X) ≤ ‖u− vk‖B + ‖gk‖B, therefore

(3.2)

‖u− vk‖N1,B(X) ≤
∥∥∥uχX\B(x0,k−1)

∥∥∥
B

+
∥∥∥(|u|+ g)χX\B(x0,k−1)

∥∥∥
B
.

Since the sequence of sets
(
X \B (x0, k − 1)

)
k≥1

converges to

the empty set µ−a.e. and u, |u| + g ∈ B, it follows that∥∥∥uχX\B(x0,k−1)

∥∥∥
B
→ 0 and

∥∥∥(|u|+ g)χX\B(x0,k−1)

∥∥∥
B
→ 0 as k → ∞,

by the absolute continuity of the norm of B.
By (3.2) we obtain ‖u− vk‖N1,B(X) → 0 as k →∞. �

Corollary 3. Let B be a Banach function space over X that has ab-
solutely continuous norm and has property (C). For each u ∈ N1,B(X)
and every ε > 0 there is a bounded function w ∈ N1,B(X) supported
in a closed ball, such that ‖u− w‖N1,B(X) < ε.

Proof. Let u ∈ N1,B(X) and ε > 0. By Corollary 1, there is a bounded
function v ∈ N1,B(X) such that ‖u− v‖N1,B(X) <

ε
2
.

By Proposition 2 applied to the bounded function v ∈ N1,B(X),
there is an integer k ≥ 1 such that w := vϕk satisfies ‖v − w‖N1,B(X) <
ε
2
. Then ‖u− w‖N1,B(X). The function w ∈ N1,B(X) is bounded, since

|w| ≤ |v|, and w is supported in the closed ball B (x0, k). �

Corollary 4. Assume that (X, d, µ) is a proper metric measure space,
with µ nonatomic. Let B be a rearrangement invariant Banach func-
tion space over (X,µ) that has absolutely continuous norm. For each
u ∈ N1,B(X) and every ε > 0 there is a bounded compactly supported
function w ∈ N1,B(X) such that ‖u− w‖N1,B(X) < ε.

Proof. Let u ∈ N1,B(X) and ε > 0. Since B is rearrangement in-
variant, it has property (C), by Lemma 5. By Corollary 3, there
is a bounded function w ∈ N1,B(X) supported in some closed ball
B (x0, k), where k ≥ 1 is an integer, such that ‖u− w‖N1,B(X) < ε.

Since X is proper, B (x0, k) is compact. �

Remark 4. Proposition 2 extends Lemma 6.15 from [17] and Lemma
6.8 from [6] to the setting of Newtonian spaces based on Banach func-
tion spaces.
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