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 Abstract: The magnitude of convection is proportional to the Rayleigh number based on the 

width of the melted region. The importance of the natural convection increase with time. 
For a short period after the beginning of melting, heat transfer is dominated by conduction. 
A regular solution is presented to demonstrate the increasing effect of natural convection on 
the melting process. 
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1. ANALYSIS 
 
The physical model considered is infinity long circular cylinder of radius horizontally embedded solid material 
(figure 1). The temperature of the solid is held at the melting temperature, Tm, originally. The surface 
temperature of the hot cylinder is kept at a constant temperature, i mT T>  when the melting begins. The position 

of the melting front is denoted by ( ),R tψ which not asymmetric due to the natural convection is. The variation 
of density through phase change which is the most commonly adopted assumption in the theoretical study of 
phase change problems is not considered here. 
 
The equations governing the stream function and the temperature in cylinder polar coordinates are: 
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where: 
 R = contour of melted region; 

,r ψ denote the radial and the azimuthally coordinates; 
t is the time; 
υ  is the kinematics’ viscosity; 
β is the thermal expansion coefficient; 
g gravitational acceleration; 
T represents temperature; 
f is the stream function which is related to the velocities by 
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where ,u v is the radial and azimuthally velocity. 
 α thermal diffusivity; 
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2∇  is the Laplace operator in cylindrical polar coordinates and J is the Jacobian. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Physical model and coordinates 
 
 
 
and Stefan number where C is the specific heat and L is the latent heat. 
 
Substitution of anterior equations in first equation (1) results: 
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where          

 Pr υ
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=  is Prandtl number; 
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 B&  is B derivative with respect to t; 
 B′  is B derivative with respect to ψ . 
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The moving melting front presents some difficulties in 
the analysis of the melting problem. A dimension less 

gap width of the melted liquid ( )
( ),

,
R t a

B t
a

ψ
β

⎡ ⎤−⎣ ⎦=  

is introduced (a is radius of the hot cylinder). 
ff
α

=  is 

stream function. 
r ar
aB
−

=  is radial – coordinate 

transformation.     
( )

2 ; i m

l

s

C T Ttt
a

L
ε

αε ρ
ρ

−
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 are time  



 
 
MOCM 11 – Volume 2 – ROMANIAN TECHNICAL SCIENCES ACADEMY - 2005            205 
 

Equation (2) shows that the buoyancy forces are proportional to Ra which is evaluated at the radius of the inner 
cylinder. 
 
In this paper, we concentrate on the short-time solution where natural convection is weak and can be treated as a 
perturbed quantity and condition is the dominant head transfer mode. Also, we assume that the Stefan number is 
small. This is a desirable characteristic in selecting thermal storage materials. For a small number, the melting 
front moves slowly and a quasi - steady approximation can be justified. With this assumptions the regular 
perturbation series can be expressed 
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where all the expression depends on r.  
 
The governing equations of θ ’s and f’s can be obtained by substituting equations (3) into equations (2) and 
collecting the terms of equal order ε and Ra.The equations governing the gap functions can be obtained from the 
principle of energy conservation along the melting front, the boundary between two phases. It is: 
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where k is the thermal conductivity and ρ is the density. 
 
The gap width can be expanded into a power series of Ra and ε such as, 
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2. BOUNDARY CONDITIONS 

 
Boundary conditions required to solve the above equations are: 
 
 a. 0; 1r θ= =  constant temperature; 

             0ff
r

∂
= =

∂
 no slip condition; 

 b. 1; 0r θ= =  melting temperature 
 
The initial condition for the melting front is: 
 
 0; 0.t B= =  
 
The solutions of equations which satisfy the boundary conditions are 
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Equations (5) show that the solution is independent of the Prandtl number, at least up to the first order of Ra and 
ε. 

 
 

3. RESULTS AND DISCUSSION 
 
The propagation of the melting front can be described from equation (4) after the values of 00 10 10, , ,...B B B are 
calculated. Since the regular perturbation solutions with the quasi-steady approximation are valid only for small 

3RaB and ε, we present the solutions up to the first order of Ra and ε. The value of 00 10 10, , ,...B B B are show in 
figure 2. B00 represents the location of the melting front due to the heat conduction. B01 is the first order unsteady 
effect. Its values are negative. B10 is the first order effect due to the natural convection. Its values are also 
negative. Physically, B10 show that the natural convection sends a hot fluid upward along the surface of the hot 
cylinder. The liquid is cooled along the melting front and flows toward the bottom of the annulus region.  
 
At the beginning of the melting process, the magnitude of natural convection is too small to be measured 
accurately. Since the gradient of B10 becomes steeper and that of B00 less steep as the size of the melted region 
grows, the natural convection eventually becomes the dominant heat transfer mode in the melting process. 

 
   
 

 
 
 
 
 
 
 
 
 
 
 
 
        Figure 2. Melting front 
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