Scientific Study & Research

Chemistry & Chemical Engineering, Biotechnology, Food Industry

ISSN 1582-540X

ORIGINAL RESEARCH PAPER

[(i-Bu₂NH₂)₂C₂O₄]₄.SnPh₂C₂O₄.C₂O₄(SnPh₃)₂ and [(i-Bu₂NH₂)₂C₂O₄]₃.SnBu₂C₂O₄: SYNTHESIS, INFRARED AND MOSSBAUER STUDIES

Yaya Sow*, Libasse Diop

Université Cheikh Anta Diop, Faculté des Sciences et Techniques, Département de Chimie Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Dakar, Sénégal

*Corresponding author: <u>yayasow81@yahoo.fr</u>

Received: August, 27, 2014 Accepted: December, 12, 2014

Abstract: $[(i-Bu_2NH_2)_2C_2O_4]_4.SnPh_2C_2O_4.C_2O_4(SnPh_3)_2$ and $[(i-Bu_2NH_2)_2C_2O_4]_3.SnBu_2C_2O_4$ have been synthesized and characterized by infrared and Mossbauer spectroscopies. The suggested structure are discrete (one being a two metallic components), the environments around the tin(IV) centres being octahedral and pentagonal bipyramidal, the oxalate anions being monodentate, the cations linking through N-H....O hydrogen bonds the free oxygen atoms of the oxalate. The second metallic component of one of the structures is cis coordinated $C_2O_4(SnPh_3)_2$.

Keywords: cis coordinated $C_2O_4(SnPh_3)_2$, discrete structures,

monodentate oxalate, N-H...O hydrogen bonds,

two metallic components structures

INTRODUCTION

The interest of research workers for organostannic compounds is related to their very exiting structural aspects and the various applications found for some of this family of compounds [1 - 8]. Within this family the compounds (SnBu₂)₂(C₂O₄)₃(Cy₂NH₂)₂ has been reported containing *trans* octahedral coordinated SnR₂ residue [9]. In a recent paper our group has published the X ray structure of C₂O₄(SnPh₃)₂ which contains monocoordinated SnPh₃ residues and a bridging oxalate, the environment around the tin centre being tetrahedral [10]. Our group has yet published several papers in the field of organotin chemistry [11 - 13] including SnPh₂ residue containing compounds. In this paper we have initiated the synthesis of two new compounds containing the complexanion [(C₂O₄)₄SnBu₂]⁶⁻ and [(C₂O₄)₅SnPh₂]⁸⁻ stabilized by the *i*-Bu₂NH₂⁺ cation and the neutral compound C₂O₄(SnPh₃)₂, in of them, their infrared and Mossbauer studies have been carried out, then structures suggested on the basis of spectroscopic data.

MATERIALS AND METHODS

The oxalic acid salts have been obtained as a white precipitate on mixing aqueous solutions of *i*-Bu₂NH with H₂C₂O₄·2H₂O in 2/1 or 1/1 ratio respectively. Analytical data of oxalic salts are presented in Table 1.

Table 1. Results of the elemental analyses of oxalic salts

	Chemical formula	Elemental analysis (%)							
Compound		С		H		N			
		calc.	found	calc.	found	calc.	found		
$\underline{\mathbf{L}}_{1}$	$(i-Bu_2NH_2)_2C_2O_4$	62.03	62.00	11.57	11.49	8.04	8.06		
$\underline{\mathbf{L}}_{2}$	<i>i</i> -Bu ₂ NH ₂ HC ₂ O ₄	54.77	55.00	9.55	9.49	6.39	6.45		

[(*i*-Bu₂NH₂)₂C₂O₄]₄.SnPh₂C₂O₄.C₂O₄(SnPh₃)₂ (**A**) and [(*i*-Bu₂NH₂)₂C₂O₄]₃.SnBu₂C₂O₄ (**B**) have been prepared by allowing *i*-Bu₂NH₂HC₂O₄ or (*i*-Bu₂NH₂)₂C₂O₄ to react with SnPh₃OH or SnBu₃Cl in ethanol in the 1/1 and 2/1 ratio respectively; a white precipitate was obtained in both cases and stirred around two hours.

Table 2. Results of the elemental analyses of compounds $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$

pui			Elemental analysis (%)						
Compound	Chemical formula	C		Н		N			
Cor			found	calc.	found	calc.	found		
A	$[(i-Bu_2NH_2)_2C_2O_4]_4.SnPh_2C_2O_4.C_2O_4(SnPh_3)_2$	58.56	58.20	7.93	7.77	4.41	4.25		
<u>B</u>	$[(i-Bu_2NH_2)_2C_2O_4]_3.SnBu_2C_2O_4$	56.25	56.35	10.18	9.97	6.15	6.18		

The infrared spectra were recorded at the *Instituto de Química - U.N.A.M, Mexico*, by means of a BX FT-IR type spectrometer. Elemental analyses have been performed at the

Instituto de Química - U.N.A.M, Mexico. Mössbauer spectra were obtained as described previously [14].

Infrared data are given in cm⁻¹ (IR abbreviations: (vs) very strong, (s) strong, (m) medium, (w) weak, (vw) very weak). Mossbauer parameters are given in mm·s⁻¹ (Mossbauer abbreviations: Q.S = quadrupole splitting, I.S = isomer Shift, Γ = full width at half-height, A = area). All the chemicals were purchased from Aldrich Company Germany and used as such.

RESULTS AND DISCUSSION

Let us consider the infrared and Mossbauer data of the studied compounds:

<u>A</u>: $v_{as}COO^{-}$: 1682 (vs), 1662 (s), 1634 (s); $v_{s}COO^{-}$: 1288 (s), 1262 (s); δCOO⁻: 789 (s); I.S₁ = 0.74; Q.S₁ = 2.01; Γ₁ = 0.87; A₁ = 66; I.S₂ = 1.11; Q.S₂ = 3.79; Γ₂ = 0.87; A₂ = 33; <u>B</u>: $v_{as}COO^{-}$: 1700 (s), 1620 (vs); $v_{s}COO^{-}$: 1250 (vs); δCOO⁻: 780 (s); I.S = 1.45; Q.S = 3.63; Γ = 0.88; A = 100.

The infrared spectra of these two complexes $(\underline{\mathbf{A}}, \underline{\mathbf{B}})$ exhibit the presence of a non-centrosymmetrical oxalate because of the presence of more than two bands in the stretching vibrations region. On the infrared spectra of the two compounds, the wide absorption band centered in 2900 cm⁻¹ indicates the presence of hydrogen bonds.

(SnBu₂)₂(C₂O₄)₃(Cy₂NH₂)₂ has been reported to contain almost linear SnBu₂ groups in a *trans* octahedral environment with mono- and bichelating oxalates [9]. According to Bancroft and Platt [15] the values of the quadrupole splitting, (3.79 and 3.63 mm·s⁻¹), the SnBu₂ and SnPh₂ residue are linear leading to an octahedral environment and a pentagonal bipyramidal environment around the tin(IV) centres, while the Q.S of 2.01 mms⁻¹ related to C₂O₄(SnPh₃)₂ is consistent with the presence of *cis* coordinated SnPh₃ residues. In the proposed discrete structures the oxalate anions are monodentate when linked to a SnR₂ residue, the cations linking through N-H...O hydrogen bonds the free oxygen atoms of the oxalate. In the case of the adduct the structure is a two metallic components one the second metallic component being the *cis* coordinated C₂O₄(SnPh₃)₂ (Figures 1 and 2).

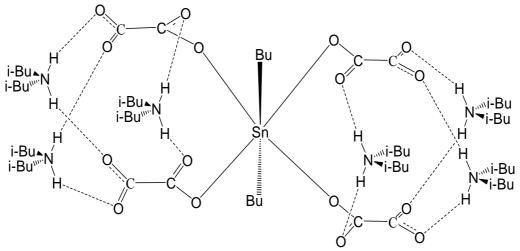


Figure 1. Suggested structure for $[(i-Bu_2NH_2)_2C_2O_4]_3$. SnBu₂C₂O₄

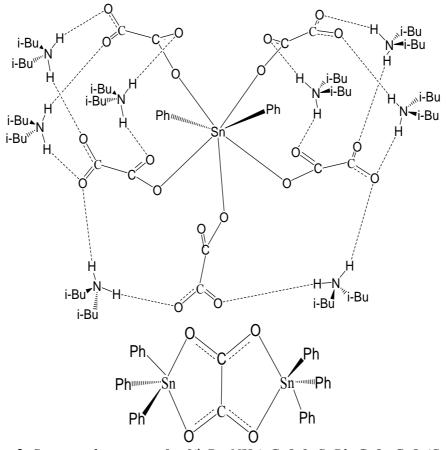


Figure 2. Suggested structure for $[(i-Bu_2NH_2)_2C_2O_4]_4$. $SnPh_2C_2O_4$. C_2O_4 ($SnPh_3$)₂

CONCLUSION

The complex-anion $[(C_2O_4)_4SnBu_2]^{6-}$ and $[(C_2O_4)_5SnPh_2]^{8-}$ stabilized by the $i\text{-Bu}_2NH_2^+$ cation have been characterized in the work. The suggested structures are discrete with octahedral and pentagonal bipyramidal environments around the tin(IV) centre and a monodentate oxalate ion. The second metallic component of one of the structures is the cis coordinated $C_2O_4(SnPh_3)_2$. The key role of non-symmetrical cations involved in N-H...O hydrogen bonds is noteworthy.

ACKNOWLEDGEMENTS

We thank Professor José D. ARDISSON from *Laboratorio de Fisica Aplicada*, CDTN/CNEN, Belo Horizonte M.G. Brazil for running the Mossbauer spectra and Dr. Raymundo Cea OLIVARES from *Instituto de Química - U.N.A.M.*, Mexico for recording the infrared spectra and performing part of the elemental analyses.

REFERENCES

- 1. Evans, C.J., Karpel, S.: Agricultural Chemicals and Medical Uses (Chapters 6 and 7) in: Organotin Compounds in Modern Technology (Journal of Organometallic Chemistry library, 16), Elsevier Science Ltd., Amsterdam, 1985, 178-215;
- 2. Yip-Foo, W., Chen-Shang, C., Siang-Guan, T., Ching, K.Q., Hoong-Kun, F.: Catena-Poly[[triphenyltin(IV)]-μ-5-amino-2-nitrobenzoato-κ² O ¹:O ¹], *Acta Crystallographica*, **2001**, **E67**, m1276-m1277;
- 3. Yang, S., Bao-Ying, Z., Ru-Fen, Z., Shao-Liang, Z., Chun-Lin, M.: Syntheses, characterizations, crystal structures, and *in vitro* antitumor activities of chiral triorganotin(IV) complexes containing (S)-(+)-2-(4-isobutyl-phenyl)propionic and (R)-(+)-2-(4-hydroxyphenoxy)propionic acid ligands, *Journal of Coordination Chemistry*, **2012**, <u>65</u>, 4125-4136;
- 4. Handong, Y., Hong, L., Min, H.: Synthesis, structural characterization and DNA-binding properties of organotin(IV) complexes based on Schiff base ligands derived from 2-hydroxy-1-naphthaldy and 3- or 4-aminobenzoic acid, *Journal Organometallic Chemistry*, **2012**, **713**, 11-19;
- 5. Xiao, X., Xiao, H., Zemin, M., Dongsheng, Z., Kuizhan, S., Jingwen, L., Min, T., Lin, X.: Organotin(IV) carboxylates based on amide carboxylic acids: Syntheses, crystal structures and characterizations, *Journal Organometallic Chemistry*, **2013**, **729**, 28-29;
- 6. Laijin, T., Xianxian, C., Yanxiang, Z., Jianzhuang, J., Xijie, L.: Synthesis, characterization and cytotoxic activity of 5,10,15,20-tetrakis[4-(triorgano stannyloxy) phenyl]porphyrins, *Applied Organometallic Chemistry*, **2013**, **27**, 191-197;
- 7. Kapoor, R.N., Guillory, P., Schulte, I., Cervantes-Lee, F., Haiduc, I., Parkanyi, I., Pannell, K.H.: Di(p-tert-butylphenyl)-N,N-di-(iso-butyl)carbamoylmethylphosphine oxide and its organotin and uranyl adducts: structural and spectroscopic characterization, *Applied Organometallic Chemistry*, **2005**, **19**, 510-517;
- 8. Zhang, W.L., Ma, J.F., Jiang, H.: μ-Isophthalato-bis[triphenyltin(IV)] [Sn₂(C₆H₅)₆(C₈H₄O₄)], *Acta Crystallographica*, **2006**, <u>E62</u>, m460-m461;
- 9. Ng, S.W., Kumar Das, V.G., Gielen, M., Tiekink, E.R.T.: Structural chemistry of organotin carboxylates XV. Diorganostannate esters of dicyclohexylammonium hydrogen oxalate. Synthesis, crystal structure and *in vitro* antitumour activity of bis(dicyclohexyl ammonium) bisoxalatodi-n- butylstannate and bis(dicyclohexylammonium) μ-oxalatobis(aquadi-n-butyloxalatostannate), *Applied Organometallic Chemistry*, **1992**, **6**, 19-25;
- 10. Diop, L., Mahieu, B., Mahon, M.F., Molloy, K.C., Okio, K.Y.A.: Bis(triphenyltin) oxalate, *Applied Organometallic Chemistry*, **2003**, **17** (11), 881-882;
- 11. Okio, K.Y.A., Diop, L., Russo, U.: [Cy₂NH₂SO₄(SnPh₃)₂X]₂ (X = F, Cl): Synthesis and spectroscopic studies, *Scientific Study and Research Chemistry & Chemical Engineering, Biotechnology, Food Industry,* **2009**, **10** (1), 11-14;
- 12. Fall, A., Sow, Y., Diop, L., Diop, C.A.K., Russo, U.: Synthesis infrared and Mossbauer Studies Mono-Di-and trinuclear Oxalato Triphenyltin(IV) Derivatives, *Main Group Metal Chemistry*, **2010**, **33** (4-5), 233-240;
- 13. Seck, M.Sy.S., Diop, L., Stievano, L.: 2Cu(en)₂Cl₂.4SnPh₂Cl₂.SnCl₄ and Cu(en)₃CuCl₄SnPh₃Cl: Synthesis and spectroscopic studies, *Main Group Metal Chemistry*, **2010**, **33** (6), 301-305;
- 14. De Sousa, G.F., Deflon, V.M., Gambardella, M.T., Do, P., Francisco, R.H.P., Ardisson, J.D., Niquet, E.: X-ray crystallographic and Mossbauer spectroscopic applications in dependence of partial quadrupole splitting, [R], on the C-Sn-C angle seven-coordinated diorganotin(IV) complexes, *Inorganic Chemistry*, 2006, 45 (11), 4518-4525;
- 15. Bancroft, G.M., Platt, R.H.: *Mossbauer Spectra of Inorganic Compounds: Structure and Bonding in Advanced Inorganic Chemistry and Radiochemistry*, Ed. by H.T. Emeleus & A.G. Sharpe, Acad. Press, New York, **1972**, 112;