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Abstract. We introduce two types of Orlicz-Sobolev spaces on a
metric measure space. One space is the completion of locally Lips-
chitz functions in a norm of Orlicz-Sobolev type involving an abstract
differentiation operator and the other space is defined via an Orlicz-
Poincaré inequality. We prove that these spaces agree and are reflexive
provided that the measure is doubling and the Young function defining
the underlying Orlicz space is doubling, together with its complemen-
tary function. In the case where the Young function is a power function
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Haj lasz and Koskela (1999).
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1. Introduction

A celebrated theorem of Rademacher shows that Lipschitz real-
valued functions on Rn are a.e. differentiable with respect to the
Lebesgue measure. Cheeger [2] proved a deep generalization of Radema-
cher’s theorem for a large class of metric measure spaces, showing that
each doubling metric measure space supporting a Poincaré inequality
admits a differentiable structure with which Lipschitz functions can
be differentiated almost everywhere.

In the following, (X, d, µ) is a metric measure space, i.e. (X, d) is a
metric space and µ is a Borel regular outer measure that is finite and
positive on balls [11].

A strong measurable differentiable structure on (X, d, µ) is a count-
able collection {(Xα, φα) : α ∈ Λ} of measurable sets Xα ⊂ X with

positive measure and Lipschitz coordinates φα = (φ1
α, ..., φ

N(α)
α ) : X →

R, such that:
(i) µ(X \

∪
α∈Λ

Xα) = 0;

(ii) There exists a non-negative integer N such that N(α) ≤ N for
all α ∈ Λ;

(iii) If f : X → R is Lipschitz, then for each α ∈ Λ there exists
a unique (up to a set of zero measure) measurable bounded vector
valued function Dαf : Xα → RN(α) such that

(1)

lim
y→x

|f(y) − f(x) −Dαf(x) · (φα(y) − φα(x))|
d(y, x)

= 0, µ− a.e. x ∈ Xα.

Such a structure is called non-degenerate if N(α) ≥ 1 holds for all
α. The smallest N for which N(α) ≤ N for all α ∈ Λ is called the
dimension of the strong measurable differentiable structure.

Cheeger proved that every doubling metric measure space (X, d, µ)
supporting a (1, p)−Poincaré inequality admits a non-degenerate strong
measurable differentiable structure.

A function f : X → R is said to be (Cheeger) differentiable at
x ∈ Xα if there exists a unique (up to a set of zero measure) measurable
bounded vector valued function Dαf : Xα → RN(α) such that (1)
holds. In this case Dαf(x) is called the (measurable) differential of
f at x. Assuming, as we may, that the sets Xα, α ∈ Λ are mutually
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disjoint and regarding each RN(α) as a subset of RN , we define

Df =
∑
α∈Λ

Dαf

for each f ∈ LIPloc (X).
We will denote by LIP (X) and LIPloc(X) the collections of all real-

valued Lipschitz functions, respectively locally Lipschitz functions.
From (1) we see that for every function f ∈ LIPloc (X) that is constant
in some measurable set E ⊂ X we have Df = 0 µ−a.e. in E.

The infinitesimal behavior of a real function on a metric space u :
X → R at a point x ∈ X is described by the upper and lower Lipschitz
constants

Lip u(x) = lim sup
r→0

L(x, u, r)

r
and lip u(x) = lim inf

r→0

L(x, u, r)

r
,

where L (x, u, r) = sup {|u(y) − u(x)| : d (x, y) ≤ r}.
There exists a constant C = C (N) > 0 depending only on the di-

mension of the strong measurable differentiable structure [13, Remark
2.1.4] such that for each Lipschitz function f : X → R and for a.e.
x ∈ X,

(2)
1

C
|Df(x)| ≤ Lip f(x) ≤ C |Df(x)| .

Cheeger considered a Sobolev-type space H1,p (X), 1 ≤ p <∞, which
is the completion of LIP (X) in the norm ∥·∥1,p defined by ∥f∥1,p =

∥f∥Lp(X) + ∥|Df |∥Lp(X)[2, Theorem 4.47], [13, Remark 2.1.4], where

D is the Cheeger differential operator and proved that H1,p (X) is
reflexive if p > 1.

An abstract differential operator [4, Theorem 10] on LIPloc (X) is a
linear operator D which associates with each u ∈ LIPloc (X) a mea-
surable function Du : X → RN , where N is a fixed positive integer,
such that the following conditions are satisfied:

(D1) There exists a constant CD > 0 such that |Du| ≤ CDL µ−a.e.
whenever u is an L−Lipschitz function;

(D2) If u ∈ LIPloc (X) is constant in some measurable set E ⊂ X,
then Du = 0 µ−a.e. in E.

The above discussion shows that Cheeger differential operator is a
special case of abstract differential operator, where N is the dimension
of the strong measurable differentiable structure and CD = C from (2),
see also [6, Theorem 11.6].
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Franchi, Haj lasz and Koskela [4] compared two different types of
Sobolev spaces in the setting of metric spaces, namely H1,p (X) and
P 1,p (X), 1 ≤ p <∞. Here H1,p (X) is the closure of the set of locally
Lipschitz functions with finite norm ∥f∥1,p = ∥f∥Lp(X) + ∥|Df |∥Lp(X),

where D is an abstract differential operator. P 1,p (X) is the set of
all functions u ∈ Lp (X) for which there exist a nonnegative function
g ∈ Lp (X) and some constants CP > 0 and σ ≥ 1 such that the pair
(u, g) satisfies the (1, p)−Poincaré inequality (6). The spaces P 1,p (X)
have been introduced in [7] and developed in [8]. It is proved in [4,
Theorem 9] that P 1,p (X) ⊂ H1,p (X) provided that the measure µ is
doubling, see also [6, Theorem 10.1]. Note that in [4, Theorem 9] the
condition (D2) is replaced by a weaker one, assuming that Du = 0
µ−a.e. in each open set where u ∈ LIPloc (X) is constant. If in
addition all pairs (u, |Du|) satisfy a (1, p)−Poincaré inequality with
fixed constants, for each u ∈ LIPloc (X), then P 1,p (X) = H1,p (X)
and D naturally extends from LIPloc (X) to H1,p (X) [4, Theorem
10]; moreover, if p > 1, then H1,p (X) is reflexive [6, Theorem 10.2].

The aim of this note is to generalize the above mentioned results of
Franchi, Haj lasz and Koskela for 1 < p < ∞ to the case of some new
Orlicz-Sobolev spaces H1,Φ (X) and P 1,Φ (X), where an Young func-
tion Φ satisfying the ∆2−condition together with its complementary
function replaces the power function tp. In our results, (X, d, µ) is a
doubling metric measure space and D is an abstract differential op-
erator on X. If in addition X supports a (1,Φ)−Poincaré inequality,
then D can be the Cheeger differential operator, whose action extends
from locally Lipschitz functions to Orlicz-Sobolev functions.

2. Preliminaries

We will denote by B (x, r) the open ball centered at x ∈ X of radius
r > 0, B (x, r) = {y ∈ X : d (y, x) < r}. If B = B (x, r) and σ > 0, we
denote the ball B (x, σr) by σB.

The metric measure space (X, d, µ) is said to be doubling if there is
a constant Cµ ≥ 1 so that

(3) µ(B(x, 2r)) ≤ Cµµ(B(x, r))

for every ball B(x, r) in X.
Lebesgue’s differentiation theorem holds on every doubling metric

measure space [11, Theorem 1.8 and 2.7], i.e. for every f ∈ L1
loc(X)
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and µ−a.e. x ∈ X,

(4) lim
r→∞

1

µ (B (x, r))

∫
B(x,r)

|f (y) − f (x)| dµ (y) = 0.

Remark 1. Assume that (X, d, µ) is a doubling metric measure space,
f ∈ L1

loc(X) and x ∈ X is a Lebesgue point of f , i.e. (4) holds. Let
Bi = B (xi, ρi), i ≥ 1 be a sequence of balls in X such that x ∈ Bi for
all i ≥ 1 and ρi → 0 as i→ ∞. Then lim

i→∞
1

µ(Bi)

∫
Bi

|f (y) − f (x)| dµ (y) =

0. Indeed, for every i ≥ 1 we have Bi ⊂ B (x, 2ρi) ⊂ 3Bi, hence
1

µ(Bi)

∫
Bi

|f (y) − f (x)| dµ (y) ≤ (Cµ)2 1
µ(B(x,ρi))

∫
B(x,ρi)

|f (y) − f (x)| dµ (y).

Given a locally integrable function u on X and E ⊂ X a measurable
set of positive finite measure, we denote the integral mean of u on E
by uE, i. e. uE = 1

µ(E)

∫
E

u dµ.

The Hardy-Littlewood maximal function M (f) of a locally inte-
grable real-valued function f in X is defined by

M (f) (x) = sup
r>0

1

µ (B (x, r))

∫
B(x,r)

|f | dµ

for all x ∈ X. If the measure µ is doubling, the maximal function
theorem [11, Theorem 2.2] shows that M maps L1 (X) to weak-L1 (X)
and Lp (X) to Lp (X) for p > 1.

In analysis on metric measure spaces the notion of upper gradient
is a substitute for the length of the gradient of a smooth function and
was introduced by Heinonen and Koskela in [12]. A Borel measurable
function g : X → [0,∞] is an upper gradient of a real-valued function
u on X if γ

|u(γ (a)) − u(γ (b))| ≤
∫
γ

g ds

for every rectifiable curve γ : [a, b] → X.
If u : X → R is Lipschitz continuous, then lip u is an upper gradient

of u [6], hence Lip u is also an upper gradient of u.

A function Φ : [0,∞) → [0,∞] is called a Young function if Φ (t) =
t∫
0

φ (s) ds for an increasing, left-continuous function φ : [0,∞) →

[0,∞] vanishing at the origin, which is neither identically zero nor
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identically infinite on (0,∞). Every Young function is convex, in-
creasing, left continuous and satisfies Φ (0) = 0, lim

t→∞
Φ (t) = ∞.

In applications of Orlicz spaces, some growth conditions for the
corresponding Young functions are very useful. A Young function
Φ : [0,∞) → [0,∞] is said to be doubling or to satisfy a ∆2−condition
if there is a constant CΦ ≥ 1 such that Φ(2t) ≤ CΦΦ(t) for all t ≥ 0.
Every Young function satisfying the ∆2−condition is finite, strictly
increasing and continuous [16, Remark 2.2]. A growth condition in
the opposite direction is the ∇2−condition. A Young function Φ :
[0,∞) → [0,∞] is said to satisfy a ∇2−condition if there is a constant
C > 1 such that Φ(Ct) ≥ 2CΦ(t) for all t ≥ 0. A N−function is a

continuous Young function Φ : [0,∞) → [0,∞) satisfying lim
t→a

Φ(t)
t

= a

for a ∈ {0,∞}. For a complementary pair of N− functions, one of the
functions satisfies the ∇2−condition if and only if the other satisfies
the ∆2−condition [15]. If p, q > 1 are Hölder conjugates to each

other, Φ (t) = tp/p and Φ̃ (t) = tq/q are complementary N−functions
satisfying the ∆2−condition.

Let (X,A, µ) be a measure space with µ a complete, σ−finite mea-
sure and let Φ : [0,∞) → [0,∞] be a Young function. The Or-
licz space LΦ(X) is the set of all real-valued measurable functions
u in X such that

∫
X

Φ(λ |u|)dµ < ∞ for some λ > 0. We identify

any two functions that agree µ−a.e. LΦ(X) is a vector space and

∥u∥LΦ(X) = inf

{
k > 0 :

∫
X

Φ( |u|
k

)dµ ≤ 1

}
defines a norm on LΦ(X),

called the Luxemburg norm.

If two complementary Young functions Φ, Φ̃ satisfy the ∆2−condition,
then the space LΦ(X) is reflexive [5].

We will consider the Orlicz space LΦ(X,RN) as the set of all Bochner
measurable functions U : X → RN such that |U | ∈ LΦ(X). A function
U : X → RN , U = (U1, ..., UN) is Bochner measurable if and only if
all the functions Ui, 1 ≤ i ≤ N are measurable. The definition of
LΦ(X,RN) does not depend on the choice of a norm on RN . In the
following we will choose the Euclidean norm on RN . A Luxemburg
norm on LΦ(X,RN) is defined by analogy to the Luxemburg norm on
LΦ(X), replacing the modulus on R by a norm on RN . It is easy to see
that U = (U1, ..., UN) belongs to LΦ(X,RN) if and only if Ui ∈ LΦ(X)
for 1 ≤ i ≤ N . If LΦ(X) is reflexive, then LΦ(X,RN) is reflexive as a
finite product of reflexive spaces.
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Tuominen [16] introduced the Orlicz-Sobolev space N1,Φ (X), which
is the set of equivalence classes of functions u ∈ LΦ (X) possesing an
upper gradient in LΦ (X), with respect to the equivalence relation
defined by u ∼ v iff ∥u− v∥1,Φ = 0, where

∥f∥1,Φ = ∥f∥LΦ(X) + inf
{
∥g∥LΦ(X) : g an upper gradient of f

}
.

We define another two types of Orlicz-Sobolev spaces on a metric
measure space, corresponding to a Young function Φ. We follow [4]
and [6], where the case Φ (t) = tp, 1 ≤ p < ∞ has been considered.
The definition of the Orlicz-Sobolev space P 1,Φ (X), a generalization
of P 1,p (X), involves a Poincaré inequality and does not require any
additional assumption on the metric measure space.

Definition 1. [16] Let Φ : R+ → R+ be a strictly increasing Young
function and Ω ⊂ X an open set. We say that a pair (u, g) formed
of a function u ∈ L1

loc(Ω) and a measurable non-negative function g
on Ω satisfies a (1,Φ)−Poincaré inequality in Ω if there exist some
constants CP > 0 and σ ≥ 1 such that for each ball B = B(x, r)
satisfying τB ⊂ Ω,

(5)
1

µ(B)

∫
B

|u− uB| dµ ≤ CP rΦ
−1

 1

µ(σB)

∫
σB

Φ(g)dµ

 .

If the inequality (5) holds for each u ∈ L1
loc(Ω) and every upper

gradient g of u, with fixed constants, then Ω is said to support a
(1,Φ)−Poincaré inequality.

For Φ (t) = tp, 1 ≤ p <∞, the (1,Φ)−Poincaré inequality is known
as the (1, p)−Poincaré inequality

(6)
1

µ(B)

∫
B

|u− uB| dµ ≤ CP r

 1

µ(σB)

∫
σB

gpdµ

 1
p

.

Definition 2. We say that a function u : X → R in LΦ (X) belongs to
P 1,Φ (X) if there exists a non-negative function g ∈ LΦ (X) such that
the pair (u, g) satisfies the (1,Φ)−Poincaré inequality (5) for some
constants CP > 0 and σ ≥ 1.

The definition of a generalization of H1,p (X), the Orlicz-Sobolev
space H1,Φ (X), as the closure of a subclass of locally Lipschitz func-
tions under some norm involving an abstract derivative requires a more
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specialized approach. Let D be an abstract differential operator de-
fined on LIPloc (X).

The set VΦ (X) =
{
u ∈ LIPloc (X) ∩ LΦ (X) : |Du| ∈ LΦ (X)

}
is a

vector space and the functional defined by

∥u∥ = ∥u∥LΦ(X) + ∥|Du|∥LΦ(X)

for u ∈ VΦ (X) is a norm on this space. Then H1,Φ (X) is defined
as the closure of VΦ (X) under the above norm. Since LΦ (X) is a
Banach space, we see that each element of H1,Φ (X) is represented by
a pair (u,G), where u ∈ LΦ (X) and G : X → RN is measurable with
|G| ∈ LΦ (X), for which there exists a sequence (un)n≥1 in VΦ (X) such

that un → u in LΦ (X) and |Dun −G| → 0 in LΦ (X) as n→ ∞.
As discussed in [4] and [6, Section 10] for Φ (t) = tp, there may be

a problem with the extension of D from VΦ (X) to H1,Φ (X). As-
sume that two sequences (un)n≥1 and (vn)n≥1 in VΦ (X) have the

same limit u in LΦ (X) and that there exist two measurable functions
G,H : X → RN with |G| , |H| ∈ LΦ (X) such that |Dun −G| → 0 and
|Dvn −H| → 0 in LΦ (X) as n → ∞. If G and H are distinct, which
may happen, the pairs (u,G) and (u,H) belong to distinct equivalence
classes in H1,Φ (X) and we cannot define Du unambiguously. We say
that the property of uniqueness of the gradient holds in H1,Φ (X) if
for every sequence (wn)n≥1 in VΦ (X), such that wn → 0 in LΦ (X)

and |Dwn − J | → 0 in LΦ (X) as n → ∞, where J : X → RN is
measurable with |J | ∈ LΦ (X), we necessarily have J = 0 a.e. As-
suming that the uniquess of the gradient holds and taking (un)n≥1

and (vn)n≥1 as above, it follows that (un − vn) → 0 in LΦ (X) and

|D (un − vn) − (G−H)| ≤ |Dun −G| + |Dvn −H| → 0 in LΦ (X),
hence G = H a.e. and we can define Du = G.

3. Preliminary results

We prove an elementary lemma for further reference.

Lemma 1. Assume that fn → f in LΦ (X) and fn → f µ−a.e. on
X as n → ∞. If the Young function Φ satisfies the ∆2−condition,
then there exists a subsequence (fnk

)k≥1 such that
∫
X

Φ (|fnk
|) dµ →∫

X

Φ (|f |) dµ as k → ∞.
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Proof. Since
∫
X

Φ (|g|) dµ ≤ ∥g∥LΦ(X) if g ∈ LΦ (X) and ∥g∥LΦ(X) ≤ 1

[16, (2.18)], the norm convergence in LΦ (X) implies the Φ−mean
convergence, namely fn → f in LΦ (X) implies

∫
X

Φ (|fn − f |) dµ→ 0.

By a partial converse of Lebesgue dominated convergence theorem,
for each sequence (hn)n≥1 convergent to zero in L1 (X) there exist a

subsequence (hnk
)k≥1 and a nonnegative function h ∈ L1 (X) such that

|hnk
| ≤ h for all k ≥ 1. Since Φ (|fn − f |) → 0 in L1 (X) as n → ∞,

there exists a strictly increasing sequence of positive integers (nk)k≥1

and a function F such that Φ (|fnk
− f |) ≤ F for all k ≥ 1.

Since Φ is increasing, convex and satisfies the ∆2−condition, we
have by the above inequality

Φ (|fnk
|) ≤ Φ

(
2
|fnk

− f | + |f |
2

)
≤ CΦ

2
(Φ (|fnk

− f |) + Φ (|f |))

≤ CΦ

2
(F + Φ (|f |))

for all k ≥ 1. Note that the ∆2−condition shows that Φ (|f |) ∈ L1 (X),
hence CΦ

2
(F + Φ (|f |)) ∈ L1 (X). Since Φ (|fnk

|) → Φ (|f |) as k → ∞,
the claim follows by Lebesgue dominated convergence theorem.

We will denote the mean oscillation of a locally integrable function
u on X over a ball B ⊂ X by

MO(u,B) =
1

µ (B)

∫
B

|u− uB| dµ.

In order to define a discrete convolution operator for locally inte-
grable functions on a doubling metric measure space, we need the
notions of (ε, λ)− cover of an open set and of Lipschitz partition of
unity subordinated to {2Bi : i ≥ 1}, where {Bi : i ≥ 1} is an (∞, 2)−
cover of the open set. These notions and their properties have been
discussed in [9]. In the following, X is a doubling metric measure
space with a doubling constant Cµ and Ω ⊂ X is open.

Given the real numbers ε > 0, λ ≥ 1, an (ε, λ)− cover of Ω [9] is
a countable cover B = {Bi = B (xi, ri) : i ≥ 1} of Ω with the following
properties:

(1) ri ≤ ε for all i;
(2) λBi ⊂ Ω for all i;
(3) If λBi meets λBj, then ri ≤ 2rj;
(4) Each ball λBi meets at most C = C (Cµ, λ) balls λBj.
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Clearly, if 0 < ε ≤ ε′ ≤ ∞ and 1 ≤ λ′ ≤ λ <∞, then every (ε, λ)−
cover of Ω is also an (ε′, λ′)− cover of Ω.

In [9, Lemma 3.1] it is shown that every open set Ω ⊂ X admits an
(ε, λ)− cover for arbitrary ε > 0, λ ≥ 1; note that, by the construction
of a such a cover from [3, Theorem III.1.3], we can assume that the
balls 1

5
Bi, i ≥ 1 are mutually disjoint. If the balls Bi have the same

radius, then each family {τBi : i ≥ 1} with τ > 0 has bounded overlap:∑
i≥1

χτBi
≤ (Cµ)2 log2(10τ+2).

Let B = {Bi = B (xi, ri) : i ≥ 1} be an (∞, 2)− cover of Ω. It is
shown in [9, Lemma 3.2] that there exists a collection of real functions
{φi : i ≥ 1} defined on Ω such that

(1) each φi is Li−Lipschitz, where Li := C (Cµ) /ri;
(2) 0 ≤ φi ≤ 1 for all i;
(3) φi = 0 on X \ 2Bi for all i;
(4)

∑
i≥1

φi = 1 on X.

A collection φ = {φi : i ≥ 1} as above is called a (Lipschitz) parti-
tion of unity with respect to B.

Given an (∞, 2)− cover B of Ω and a partition of unity {φi : i ≥ 1}
with respect to B, the corresponding discrete convolution of u ∈
L1
loc (Ω) is defined by

uB(x) =
∑
i≥1

uBi
φi(x), x ∈ Ω.

Note that, for each x ∈ Ω, there are at most C (Cµ, 2) non-zero
terms in the series defining uB(x).

Heikkinen [9] proved the following properties of the discrete convo-
lution.

Lemma 2. [9, Lemma 3.3] Let u ∈ L1
loc (Ω) and Φ be an Young func-

tion.
(1) The function uB is locally Lipschitz. Moreover, for each x ∈

Bi = B (xi, ri)

Lip uB (x) ≤ Li
1

µ (5Bi)

∫
5Bi

|u− u5Bi
| dµ.

(2) ∥wB∥LΦ(Ω) ≤ C (Cµ) ∥w∥LΦ(Ω) for each w ∈ LΦ (Ω).

(3) Assume that Φ satisfies the ∆2−condition and u ∈ LΦ (Ω). If
Bk is an (εk, 2)− cover of Ω for k ≥ 1 and if εk → 0 as k → ∞, then
uBk

→ u in LΦ (Ω).
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Lemma 3. Let (X, d, µ) be a doubling metric measure space and D be
an abstract differential operator on LIPloc (X). Let B = {Bi(xi, ε) : i ≥ 1}
be an (ε, 2)− cover of X with balls of fixed radius ε > 0 and let uB be
the discrete convolution of u ∈ L1

loc (X) with respect to B. Then

(7) |DuB(x)| ≤ C

ε

∑
i≥1

MO (u, 5Bi)χBi
(x)

for almost every x ∈ X, where C = 2 (Cµ)5C (Cµ)C (Cµ, λ)CD.

Proof. Fix a ball Bj ∈ B. For all x ∈ Bj,

(8) |DuB(x)| =
∣∣D (uB − uBj

)
(x)
∣∣ ≤∑

i≥1

∣∣uBi
− uBj

∣∣ |Dφi(x)| .

If 2Bi ∩ 2Bj is empty, then φi = 0 on 2Bj and, since φi is Lipschitz,
Dφi = 0 µ−a.e. on 2Bj. In this case, let Eij ⊂ 2Bj be a set of measure
zero such that Dφi = 0 on 2Bj\Eij. Moreover, due to condition (1) for
a partition of unity with respect to B and to condition (D1) satisfied
by D, for each i ≥ 1 there is a set of measure zero Fi such that
|Dφi| ≤ CDC (Cµ) ε−1 on X \ Fi. By (8) we obtain

|DuB(x)| ≤
∑

i≥1:2Bi∩2Bj ̸=∅

∣∣uBi
− uBj

∣∣ |Dφi(x)|(9)

≤ CDC (Cµ) ε−1
∑

i≥1:2Bi∩2Bj ̸=∅

|uBi
− uB∗| .

for all x ∈ Bj \
∪

i≥1:2Bi∩2Bj=∅
(Eij ∪ Fi), hence for µ−a.e. x ∈ Bj.

Note that for all i we have
∣∣uBi

− uBj

∣∣ ≤ 1
µ(Bi)

∫
Bi

∣∣u (y) − uBj

∣∣ dµ (y)

and
∣∣u (y) − uBj

∣∣ ≤ 1
µ(Bj)

∫
Bj

|u (y) − u (z)| dµ (z), hence

(10)
∣∣uBi

− uBj

∣∣ ≤ 1

µ (Bi)

1

µ (Bj)

∫
Bi

∫
Bj

|u (y) − u (z)| dµ (z) dµ (y) .

Assume that 2Bi∩ 2Bj is non-empty. By the triangle inequality, Bi ⊂
5Bj and Bj ⊂ 5Bi. Using the doubling property of µ we get µ (5Bj) ≤
(Cµ)5 µ (Bi) and µ (5Bj) ≤ (Cµ)3 µ (Bj). Integrating the inequality
|u (y) − u (z)| ≤

∣∣u (y) − u5Bj

∣∣+ ∣∣u (z) − u5Bj

∣∣ over Bi×Bj and taking

account of (10) we get
∣∣uBi

− uBj

∣∣ ≤ 1
µ(Bi)

∫
Bi

∣∣u (y) − u5Bj

∣∣ dµ (y) +
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1
µ(Bj)

∫
Bj

∣∣u (z) − u5Bj

∣∣ dµ (z). Using the estimates of µ (Bi) and µ (Bj)

in terms of µ (5Bj) this implies

(11)
∣∣uBi

− uBj

∣∣ ≤ 2 (Cµ)5
1

µ (5Bj)

∫
5Bj

∣∣u (y) − u5Bj

∣∣ dµ (y) .

From (9) and (11), using the bounded overlap of the family {2Bi : i ≥ 1},
we obtain

|DuB(x)| ≤ C

ε
MO (u, 5Bj)(12)

≤ C

ε

∑
i≥1

MO (u, 5Bi)χBi
(x) .

for all x ∈ Bj\
∪

i≥1:2Bi∩2Bj=∅
(Eij ∪ Fi), where C = 2 (Cµ)5C (Cµ)C (Cµ, λ)CD.

Since {Bj : j ≥ 1} is a cover of X, from (12) we get |DuB(x)| ≤
C
ε

∑
i≥1

MO (u, 5Bi)χBi
(x) for all x ∈ X belonging to the complement

of ∪{Eij : i, j ≥ 1 and 2Bi ∩ 2Bj = ∅} ∪
∪
i≥1

Fi. Therefore, (7) holds

for almost every x ∈ X.

4. Comparison between two Orlicz-Sobolev spaces and
extension of a differential operator

Next we prove generalizations of Theorem 9 and Theorem 10 in [4],
see also Theorem 10.1 and Theorem 10.2 in [6].

Theorem 4. Let (X, d, µ) be a doubling metric measure space and
D be a abstract differential operator on LIPloc (X). If Φ is a Young
function satisfying the ∆2−condition together with its complementary

function Φ̃, then P 1,Φ (X) ⊂ H1,Φ (X).

Proof. Let u ∈ P 1,Φ (X).
Assume that, for each integer k ≥ 1, Bk = {Bki : i ≥ 1} is an

(εk, 2)− cover of X with balls of fixed radius εk > 0 and that εk → 0
as k → ∞. Denote uk = uBk

for k ≥ 1. By Lemma 2, uk → u in
LΦ (Ω) as k → ∞.

Let k ≥ 1. By the proof of Lemma 3,

|Duk(x)| ≤ C

εk
MO (u, 5Bki)

for almost every x ∈ Bki, for each i ≥ 1.
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Since u ∈ P 1,Φ (X), there exists a nonnegative function g ∈ LΦ (X)
and some constants CP > 0, σ ≥ 1 such that (5) holds for every ball
B ⊂ X of radius r. Then

MO (u, 5Bki) ≤ CP εkΦ−1

 1

µ (5σBki)

∫
5σBki

Φ (g) dµ


for all i ≥ 1. It follows that

(13) |Duk(x)| ≤ CCPΦ−1

 1

µ (5σBki)

∫
5σBki

Φ (g) dµ

 ,

for almost every x ∈ Bki, for each i ≥ 1.From the above inequality
and the ∆2−condition for Φ,

Φ (|Duk(x)|) ≤ C ′ 1

µ (5σBki)

∫
5σBki

Φ (g) dµ,

for almost every x ∈ Bki, for each i ≥ 1. Here C ′ = max{1, (CΦ)log2(2CCP )}.
Therefore, ∫

Bki

Φ (|Duk|) dµ ≤ C ′
∫

5σBki

Φ (g) dµ for all i ≥ 1.

Since {Bki : i ≥ 1} is a cover of X,∫
X

Φ (|Duk|) dµ ≤
∑
i≥1

∫
Bki

Φ (|Duk|) dµ

≤ (CΦ)log2(2CCP )
∑
i≥1

∫
X

Φ (g)χ5σBki
dµ,

The family {5σBki : i ≥ 1} has bounded overlap: there exists a con-
stant C (Cµ, σ) such that each ball 5σBki meets at most C (Cµ, σ) balls
5σBkj. The above inequality implies

(14)

∫
X

Φ (|Duk|) dµ ≤ C ′C (Cµ, σ)

∫
X

Φ (g) dµ.

Since g ∈ LΦ (X) and Φ satisfies the ∆2−condition,
∫
X

Φ (g) dµ is finite.

By (14), there exists M = C ′C (Cµ, σ) ≥ 1 so that
∫
X

Φ (|Duk|) dµ ≤
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M . Using the convexity of Φ and Φ(0) = 0 we get∫
X

Φ

(
|Duk|
M

)
dµ ≤ 1.

Therefore, |Duk| ∈ LΦ (X) and ∥|Duk|∥LΦ(X) ≤M .

We proved that the sequence (Duk)k≥1 is bounded in LΦ
(
X,RN

)
.

Since Φ and its complementary Young function satisfy the ∆2−condition,
the space LΦ

(
X,RN

)
is reflexive. Passing to a subsequence, we may

assume that (Duk)k≥1 is weakly convergent in LΦ
(
X,RN

)
to some

h ∈ LΦ
(
X,RN

)
. By Mazur’s lemma, there exists a sequence of con-

vex combinations Wk =
N(k)∑
j=k

λkjDuj, k ≥ 1, that converges strongly in

LΦ
(
X,RN

)
to h. Note that Wk = Dvk, where

vk =

N(k)∑
j=k

λkjuj,

for k ≥ 1.
Since the sequence of Lipschitz functions (vk)k≥1 converges to u in

LΦ (X) and (Dvk)k≥1 converges in LΦ
(
X,RN

)
, it follows that u ∈

H1,Φ (X), q.e.d.

Remark 2. For Φ (t) = tp with 1 < p < ∞, the above theorem gives
Theorem 9 in [4], see also Theorem 10.1 in [6].

Theorem 5. Let (X, d, µ) be a doubling metric measure space, Φ a
Young function satisfying the ∆2−condition and let D be an abstract
differential operator on LIPloc (X). Assume that for every locally
Lipschitz function u, the pair (u, |Du|) satisfies the (1,Φ)−Poincaré
inequality with fixed constants. Then H1,Φ (X) ⊂ P 1,Φ (X) and the
uniqueness of the gradient holds in H1,Φ (X). Moreover, if the com-

plementary function Φ̃ of Φ also satisfies the ∆2−condition, then:
a) |Du| ≤ Cg a.e. for some constant C, whenever u ∈ H1,Φ (X),

g ∈ LΦ (X) and the pair (u, g) satisfies the (1,Φ)−Poincaré inequality;
b) H1,Φ (X) = P 1,Φ (X) ;
c) H1,Φ (X) is reflexive.

Proof. Step 1. First we prove that the uniqueness of the gradient
holds in H1,Φ (X). Assume that (fn)n≥1 is a sequence in VΦ (X), such

that fn → 0 in LΦ (X) and |Dfn −G| → 0 in LΦ (X), where G : X →
RN is measurable with |G| ∈ LΦ (X). We prove that G = 0 a.e. We
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choose a sequence 0 < rn < 1, n ≥ 1 such that
∑
n≥1

rn < ∞. We will

specify later some additional conditions on this sequence. By passing
to a subsequence we may assume that

∥fn+1 − fn∥LΦ(X) + ∥|Dfn+1 −Dfn|∥LΦ(X) ≤ rn, n ≥ 1.

Then (fn)n≥1 converges pointwise a.e. in LΦ (X) to 0 and (Dfn)n≥1

converge pointwise a.e. to G in LΦ
(
X,RN

)
to 0, by [1, Theorem 1.4

and Theorem 1.6 ].
Set φn = fn+1 − fn for n ≥ 1. Since dn is locally Lipschitz,

the pair (φn, |Dφn|) satisfies the (1,Φ)−Poincaré inequality (5). Set
ψn = M (Φ (|Dφn|)), where M is the Hardy-Littlewood maximal op-
erator. The following uniform Lipschitz-type estimate follows from the
(1,Φ)−Poincaré inequality, by [16, Lemma 5.15]:

(15) |φn (x) − φn (y)| ≤ CLd (x, y)
(
Φ−1 (ψn (x)) + Φ−1 (ψn (y))

)
,

for µ−almost all x, y ∈ X, for all n ≥ 1. The constant CL > 0
depends only on the doubling constant Cµ of µ and on the constant

CP of the (1,Φ)−Poincaré inequality. Denote gk(x) =
∞∑
n=k

Φ−1 (ψn (x))

for x ∈ X, k ≥ 1.
Fix k ≥ 1. By (15) it follows that for µ−almost all x, y ∈ X, for all

m ≥ l ≥ k we have

|(fm − fl) (x) − (fm − fl) (y)| ≤ CLd (x, y) (gk (x) + gk (y)) .

Lettingm→ ∞ in the above inequality, we obtain that for µ−almost
all x, y ∈ X and for all l ≥ k

(16) |fl (x) − fl (y)| ≤ CLd (x, y) (gk (x) + gk (y)) .

In order to get an uniform estimate for the Lipschitz constant of some
restriction of fl for l ≥ k we consider the upper level sets Ek,t =
{gk > t}, where t > 0.

Fix some t > 0. By (16), for µ−almost all x, y ∈ X \ Ek,t and for
all l ≥ k we have

|fl (x) − fl (y)| ≤ 2CLtd (x, y) .

Since fl is continuous, the above inequality holds for all x, y ∈ X \Ek,t,
i.e. the restriction of fl to X \ Ek,t is 2CLt−Lipschitz. Using the
MacShane extension to X of this restriction and condition (D1) from
the definition of the abstract differential operator D, we conclude that

|Dfl (x)| ≤ 2CDCLt
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for a.e. x ∈ X \ Ek,t and for all l ≥ k. Letting l → ∞ in the above
inequality we get |G (x)| ≤ 2CDCLt for a.e. x ∈ X \ Ek,t, hence

µ {|G| > 2CDCLt} ≤ µ (Ek,t) for k ≥ 1.

We will show that µ (Ek,t) → 0 as k → ∞, hence µ {|G| > 2CDCLt} =
0. Since t > 0 is arbitrary, it follows that G = 0, as claimed.

In order to prove that µ (Ek,t) → 0 as k → ∞, note that Φ−1 (ψn (x)) ≤
t

2n−k+1 for all n ≥ k implies gk (x) ≤ t, therefore

(17) Ek,t ⊂
∞∪
n=k

{
Φ−1 (ψn (x)) >

t

2n−k+1

}
.

Since Φ is strictly increasing,
(18){

Φ−1 (ψn (x)) >
t

2n−k+1

}
⊂
{
M (Φ (|Dφn|)) > Φ

(
t

2n−k+1

)}
.

Since Φ satisfies the ∆2−condition, |Dφn| ∈ LΦ (X) implies Φ (|Dφn|) ∈
L1 (X). The weak L1− estimate for the maximal function in doubling
metric measure spaces [11, Theorem 2.2] yields
(19)

µ

({
M (Φ (|Dφn|)) > Φ

(
t

2n−k+1

)})
≤ C1

(
Φ

(
t

2n−k+1

))−1 ∫
X

Φ (|Dφn|) dµ.

Here C1 depends only on the doubling constant Cµ.
From (17), (18) and (19) we obtain

(20) µ (Ek,t) ≤ C1

∞∑
n=k

(
Φ

(
t

2n−k+1

))−1 ∫
X

Φ (|Dφn|) dµ.

Recall that
∫
X

Φ (|f |) dµ ≤ ∥f∥LΦ(X) if f ∈ LΦ (X) and ∥f∥LΦ(X) ≤ 1

[16, (2.18)]. Since ∥|Dφn|∥LΦ(X) ≤ rn < 1, we have

(21)

∫
X

Φ (|Dφn|) dµ ≤ rn

for all n ≥ 1.
Since Φ (t) ≤ (CΦ)n−k+1 Φ

(
t

2n−k+1

)
by the ∆2−condition, we get

from (20) and (21)

(22) µ (Ek,t) ≤
C1

Φ (t)
(CΦ)1−k

∞∑
n=k

rn (CΦ)n .
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Now we choose some 0 < a < 1 such that the condition Sk :=

(CΦ)1−k
∞∑
n=k

rn (CΦ)n → 0 as k → ∞ is satisfied with rn = an, n ≥ 1. In

this case Sk = CΦa
k

∞∑
n=0

(aCΦ)n and it suffices to assume that a < 1
CΦ

.

Then 0 < rn < 1 for n ≥ 1,
∑
n≥1

rn <∞ and Sk → 0 as k → ∞.

By (22) we obtain µ (Ek,t) → 0 as k → ∞, which completes the
proof of the first step.

Step 2. We prove that H1,Φ (X) ⊂ P 1,Φ (X) showing that the va-
lidity of the (1,Φ)−Poincaré inequality extends from locally Lipschitz
functions to functions in H1,Φ (X) via approximation.

Let u ∈ H1,Φ (X). As in the proof of Step 1, we find a sequence
(ωn)n≥1 in VΦ (X) such that ωn → u in LΦ (X), |Dωn −Du| → 0 in

LΦ (X), while ωn → u and Dωn → Du pointwise a.e. on X. For every
ball B = B (x, r) and all n ≥ 1

(23)
1

µ(B)

∫
B

|ωn − (ωn)B| dµ ≤ CP rΦ
−1

 1

µ(σB)

∫
σB

Φ(|Dωn|)dµ

 .

Since |Dωn| → |Du| in LΦ (X), passing to a subsequence we may as-
sume that

∫
σB

Φ(|Dωn|)dµ→
∫
σB

Φ(|Du|)dµ, by Lemma 1. Since Φ−1 is

continuous, the right hand side of (23) converges to Φ−1

(
1

µ(σB)

∫
σB

Φ(|Du|)dµ
)

as n→ ∞.
On the other hand,

1

µ(B)

∫
B

|u− uB| dµ ≤ 1

µ(B)

∫
B

|ωn − (ωn)B| dµ+

+
1

µ(B)

∫
B

|u− ωn| dµ+ |uB − (ωn)B|(24)

≤ 1

µ(B)

∫
B

|ωn − (ωn)B| dµ+
2

µ(B)

∫
B

|u− ωn| dµ.

Since µ (B) < ∞, convergence in LΦ (B) implies convergence in
L1 (B) [16, Lemma 4.18 and Remark 4.19], therefore

∫
B

|u− ωn| dµ→ 0
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as n→ ∞. Using (24) and (23), then letting n→ ∞ we obtain

1

µ(B)

∫
B

|u− uB| dµdµ ≤ CP rΦ
−1

 1

µ(σB)

∫
σB

Φ(|Du|)dµ

 .

From now on, we assume that the complementary function Φ̃ of Φ
also satisfies the ∆2−condition. By Theorem 4 and Step 2, H1,Φ (X) =
P 1,Φ (X).

Step 3. Let u ∈ H1,Φ (X) and g ∈ LΦ (X) such that the pair (u, g)
satisfies the (1,Φ)−Poincaré inequality. We will use the approximat-
ing sequence (uk)k≥1 for u from the proof of Theorem 4, associated to
the sequence Bk = {Bki : i ≥ 1} of (εk, 2)− covers of X with balls of
fixed radius εk > 0 for k ≥ 1, such that εk → 0 as k → ∞.

By (13) for all k, i ≥ 1 the following inequality holds

|Duk(x)| ≤ CCPΦ−1

 1

µ (5σBki)

∫
5σBki

Φ (g) dµ

 ,

for x ∈ Bki \ Aki, where Aki ⊂ Bki is some set of zero measure.
Since Φ (g) ∈ L1 (X), the complement of the set of Lebesgue points
of Φ (g) is a set Ag ⊂ X of zero measure, see Remark 1. Let x ∈

X \
(
Ag ∪

∞∪
k=1

∞∪
i=1

Aki

)
. For each k we select from the cover Bk of X

a ball Bkik containing x, and x /∈ Akik , hence (13) holds with i = ik.
Since x /∈ Ag, we get 1

µ(5σBkik)

∫
5σBkik

Φ (g) dµ→ 0 for k → ∞, hence

(25) lim sup
k→∞

|Duk(x)| ≤ CCPg (x) .

We took into account that Φ−1 is continuous. Note that (25) holds for
µ−a.e. x ∈ X.

Since (Duk)k≥1 is bounded in the reflexive space LΦ
(
X,RN

)
, pass-

ing to a subsequence, we may assume that (Duk)k≥1 is weakly con-

vergent in LΦ
(
X,RN

)
to some h ∈ LΦ

(
X,RN

)
. By Mazur’s lemma,

there exists a sequence of convex combinations Wk =
N(k)∑
j=k

λkjDuj,

k ≥ 1, that converges strongly in LΦ
(
X,RN

)
to h. By the uniqueness

of the gradient, h = Du a.e. Hence, |Wk| → |Du| as k → ∞ in LΦ (X).
Passing again to a subsequence, we may assume that |Wk| → |Du| as
k → ∞ a.e. on X.
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We have Wk = Dvk, where

vk =

N(k)∑
j=k

λkjuj,

for k ≥ 1.
Then

|Dvk| ≤
N(k)∑
j=k

λkj |Duj| on X.

Now (25) and the above inequality show that for µ−a.e. x ∈ X we
have

|Du(x)| = lim
k→∞

|Dvk (x)| ≤ CCPg (x) .

Step 4. Since LΦ (X) is reflexive and F = (F0, F1, ..., FN) ∈
LΦ
(
X,RN+1

)
if and only if Fi ∈ LΦ (X) for all 0 ≤ i ≤ N , the

space LΦ
(
X,RN+1

)
is reflexive. By the uniqueness of the gradient,

∥u∥H1,Φ(X) = ∥u∥LΦ(X) + ∥|Du|∥LΦ(X) defines a norm on H1,Φ (X).

The application u 7−→ (u,Du) from H1,Φ (X) into LΦ
(
X,RN+1

)
is

linear and injective. Denote by (Du)i the i−th component of Du for
1 ≤ i ≤ N . We have

∥(u,Du)∥LΦ(X,RN+1) ≤ ∥u∥LΦ(X) +
N∑
i=1

∥(Du)i∥LΦ(X) ≤ N ∥u∥H1,Φ(X)

and

∥(u,Du)∥LΦ(X,RN+1) ≥ ∥u∥LΦ(X)+ max
1≤i≤N

∥(Du)i∥LΦ(X)
≥ 1√

N
∥u∥H1,Φ(X) .

Then the Banach space H1,Φ (X) is isomorphic as a normed space
with a closed subspace of the reflexive space LΦ

(
X,RN+1

)
, therefore

H1,Φ (X) is reflexive.

Remark 3. For Φ (t) = tp with 1 < p < ∞, the above theorem gives
Theorem 10 in [4], see also Theorem 10.2 in [6].

Assume that (X, d, µ) is a doubling metric measure space supporting
a (1,Φ)−Poincaré inequality. By [16, Theorem 5.7], (X, d, µ) supports
a (1, p)−Poincaré inequality for all log2Cµ ≤ p < ∞. By Cheeger’s
theorem, X admits a non-degenerate strong measurable differentiable
structure. So, the Cheeger differential operator D is well defined on
LIPloc (X) and is an example of abstract differential operator. Let u
be a locally Lipschitz function. By (2) and the fact that Lip u is an
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upper gradient of u, it follows that |Du| is also an upper gradient of u,
hence the pair (u, |Du|) satisfies the (1,Φ)−Poincaré inequality with
fixed constants. The above theorem implies the following

Corollary 6. Let Φ be a Young function satisfying the ∆2−condition
and let (X, d, µ) be a doubling metric measure space supporting a
(1,Φ)−Poincaré inequality. Denote by D the Cheeger differential op-
erator on LIPloc (X). Then H1,Φ (X) ⊂ P 1,Φ (X) and the uniqueness
of the gradient holds in H1,Φ (X). Moreover, if the complementary

Young function Φ̃ also satisfies the ∆2−condition, then H1,Φ (X) =
P 1,Φ (X) and this space is reflexive.
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