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Abstract. We introduce two types of Orlicz-Sobolev spaces on a
metric measure space. One space is the completion of locally Lips-
chitz functions in a norm of Orlicz-Sobolev type involving an abstract
differentiation operator and the other space is defined via an Orlicz-
Poincaré inequality. We prove that these spaces agree and are reflexive
provided that the measure is doubling and the Young function defining
the underlying Orlicz space is doubling, together with its complemen-
tary function. In the case where the Young function is a power function
with exponent greater than one, we recover some results of Franchi,
Hajlasz and Koskela (1999).
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1. INTRODUCTION

A celebrated theorem of Rademacher shows that Lipschitz real-
valued functions on R" are a.e. differentiable with respect to the
Lebesgue measure. Cheeger [2] proved a deep generalization of Radema-
cher’s theorem for a large class of metric measure spaces, showing that
each doubling metric measure space supporting a Poincaré inequality
admits a differentiable structure with which Lipschitz functions can
be differentiated almost everywhere.

In the following, (X, d, pt) is a metric measure space, i.e. (X,d) is a
metric space and p is a Borel regular outer measure that is finite and
positive on balls [11].

A strong measurable differentiable structure on (X, d, i) is a count-
able collection {(X,,pq) : @ € A} of measurable sets X, C X with

positive measure and Lipschitz coordinates ¢, = (o}, ..., gpév (a)) X —
R, such that:

(1) (XN LEJAXa) = 0;

(ii) There exists a non-negative integer N such that N(a) < N for
all o € A;

(iii) If f : X — R is Lipschitz, then for each o € A there exists
a unique (up to a set of zero measure) measurable bounded vector
valued function D*f : X, — RN(® such that

(1)
o @) = 1(@) = D) - (2aly) = pala))
Yy—T d(y,[l?)

=0, pu—ae e X,

Such a structure is called non-degenerate if N () > 1 holds for all
a. The smallest N for which N(a) < N for all & € A is called the
dimension of the strong measurable differentiable structure.

Cheeger proved that every doubling metric measure space (X, d, u)
supporting a (1, p) —Poincaré inequality admits a non-degenerate strong
measurable differentiable structure.

A function f : X — R is said to be (Cheeger) differentiable at
x € X, if there exists a unique (up to a set of zero measure) measurable
bounded vector valued function D*f : X, — RN gsuch that (1)
holds. In this case D*f(z) is called the (measurable) differential of
f at z. Assuming, as we may, that the sets X,, o € A are mutually
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disjoint and regarding each RM(® as a subset of RY, we define

Df=> D"f
aEN
for each f € LIP,.(X).

We will denote by LIP(X) and LIP,,.(X) the collections of all real-
valued Lipschitz functions, respectively locally Lipschitz functions.
From (1) we see that for every function f € LIP,. (X) that is constant
in some measurable set £ C X we have Df =0 p—a.e. in E.

The infinitesimal behavior of a real function on a metric space w :
X — R at apoint x € X is described by the upper and lower Lipschitz
constants

Lip u(x) = lim supM and lip u(x) = lim infw,
r—0 r r—0 r
where L (z,u,r) = sup{|u(y) —u(z)| : d(z,y) < r}.

There exists a constant C' = C'(N) > 0 depending only on the di-
mension of the strong measurable differentiable structure [13, Remark
2.1.4] such that for each Lipschitz function f : X — R and for a.e.
r e X,

e SIDf(@)| < Lip f(z) < C1Df ()]

Cheeger considered a Sobolev-type space H? (X), 1 < p < oo, which
is the completion of LIP(X) in the norm [|-[|, , defined by | f|, , =
1/l 2ocx) + 1D FIl o (x)[2, Theorem 4.47], [13, Remark 2.1.4], where

D is the Cheeger differential operator and proved that H? (X) is
reflexive if p > 1.

An abstract differential operator [4, Theorem 10] on LIP,. (X) is a
linear operator D which associates with each u € LIP,. (X) a mea-
surable function Du : X — R, where N is a fixed positive integer,
such that the following conditions are satisfied:

(D1) There exists a constant Cp > 0 such that |Du| < CpL p—a.e.
whenever u is an L—Lipschitz function;

(D2) If u € LIP,.(X) is constant in some measurable set £ C X,
then Du =0 p—a.e. in E.

The above discussion shows that Cheeger differential operator is a
special case of abstract differential operator, where N is the dimension
of the strong measurable differentiable structure and Cp = C from (2),
see also [6, Theorem 11.6].
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Franchi, Hajlasz and Koskela [4] compared two different types of
Sobolev spaces in the setting of metric spaces, namely H'? (X) and
P (X), 1 <p< co. Here H"? (X) is the closure of the set of locally
Lipschitz functions with finite norm || f{[, , = | fllox) + 1D fll o
where D is an abstract differential operator. P17 (X) is the set of
all functions u € L? (X)) for which there exist a nonnegative function
g € LP (X) and some constants Cp > 0 and ¢ > 1 such that the pair
(u, g) satisfies the (1, p) —Poincaré inequality (6). The spaces PP (X)
have been introduced in [7] and developed in [8]. It is proved in [4,
Theorem 9] that P (X) C H'” (X) provided that the measure p is
doubling, see also [6, Theorem 10.1]. Note that in [4, Theorem 9] the
condition (D2) is replaced by a weaker one, assuming that Du = 0
p—a.e. in each open set where u € LIP,.(X) is constant. If in
addition all pairs (u,|Du|) satisfy a (1,p) —Poincaré inequality with
fixed constants, for each u € LIP,.(X), then P'?(X) = H' (X)
and D naturally extends from LIP,.(X) to H" (X) [4, Theorem
10]; moreover, if p > 1, then H? (X) is reflexive [6, Theorem 10.2].

The aim of this note is to generalize the above mentioned results of
Franchi, Hajlasz and Koskela for 1 < p < oo to the case of some new
Orlicz-Sobolev spaces HY® (X) and PY?® (X), where an Young func-
tion ® satisfying the As—condition together with its complementary
function replaces the power function . In our results, (X, d, ) is a
doubling metric measure space and D is an abstract differential op-
erator on X. If in addition X supports a (1, ®) —Poincaré inequality,
then D can be the Cheeger differential operator, whose action extends
from locally Lipschitz functions to Orlicz-Sobolev functions.

2. PRELIMINARIES

We will denote by B (z,r) the open ball centered at € X of radius
r>0,B(zx,r)={ye X :d(y,z) <r}. If B=B(z,r)and o > 0, we
denote the ball B (z,0r) by oB.

The metric measure space (X, d, u) is said to be doubling if there is
a constant €, > 1 so that

(3) p(B(w,2r)) < Cup(B(z, 7))

for every ball B(z,r) in X.
Lebesgue’s differentiation theorem holds on every doubling metric
measure space [11, Theorem 1.8 and 2.7], i.e. for every f € L, .(X)

loc
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and p—a.e. r € X,

) 1
(1) s [ 1rw =@l =o.

r—00 [4
B(z,r)

Remark 1. Assume that (X,d, p) is a doubling metric measure space,
f € LL(X) and x € X is a Lebesgue point of f, i.e. (4) holds. Let
B; = B(zi,p;), i > 1 be a sequence of balls m X such that x € B; for

alli > 1 and p; — 0 asi — oo. Thenhm f|f ()| dp (y) =
O Indeed, for every 1 > 1 we have B; C B(:z: 2pz) C 3B;, hence
iy 17 0) = @) ) < (O sy (f 17 =7 @)l )
B T,Pq

Given a locally integrable function v on X and £ C X a measurable
set of positive finite measure, we denote the integral mean of v on E

by ug, i. e. uE:ﬁfudu.
E

The Hardy-Littlewood maximal function M (f) of a locally inte-
grable real-valued function f in X is defined by

M) @) = suprs [ 171 d

r>0 U
B(z,r)

for all x € X. If the measure u is doubling, the maximal function
theorem [11, Theorem 2.2] shows that M maps L' (X) to weak-L* (X)
and L? (X) to LP (X) for p > 1.

In analysis on metric measure spaces the notion of upper gradient
is a substitute for the length of the gradient of a smooth function and
was introduced by Heinonen and Koskela in [12]. A Borel measurable
function g : X — [0, 00] is an upper gradient of a real-valued function
uon X if v

u(y (a)) — uy ()] < / g ds

S
for every rectifiable curve v : [a,b] — X.

If u: X — R is Lipschitz continuous, then lip u is an upper gradient
of u [6], hence Lip u is also an upper gradient of u.

A function ® : [0,00) — [0, 00] is called a Young function if ® (t) =
f ¢ (s)ds for an increasing, left-continuous function ¢ : [0,00) —

[O oo] vanishing at the origin, which is neither identically zero nor
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identically infinite on (0,00). Every Young function is convex, in-
creasing, left continuous and satisfies @ (0) = 0, tlim(b (t) = oc.
— 00

In applications of Orlicz spaces, some growth conditions for the
corresponding Young functions are very useful. A Young function
® : [0,00) — [0, 0] is said to be doubling or to satisfy a Ay—condition
if there is a constant Cp > 1 such that ®(2t) < Ce®(t) for all ¢ > 0.
Every Young function satisfying the As—condition is finite, strictly
increasing and continuous [16, Remark 2.2]. A growth condition in
the opposite direction is the Vy—condition. A Young function & :
[0,00) — [0, 00] is said to satisfy a Vo—condition if there is a constant

C > 1 such that ®(Ct) > 2C®(¢t) for all t > 0. A N—function is a

continuous Young function @ : [0,00) — [0, 00) satisfying %im@ =a
—a

for a € {0,00}. For a complementary pair of N— functions, one of the
functions satisfies the Vo—condition if and only if the other satisfies
the Ay—condition [15]. If p,¢ > 1 are Holder conjugates to each
other, ® (t) = t?/p and ® (t) = t9/q are complementary N —functions
satisfying the Ay—condition.

Let (X, A, 1) be a measure space with p a complete, o—finite mea-
sure and let ® : [0,00) — [0,00] be a Young function. The Or-
licz space L*(X) is the set of all real-valued measurable functions
w in X such that [ ®(A|ul)dp < oo for some A > 0. We identify

X

any two functions that agree p—a.e. L®(X) is a vector space and
[ull o (x) = inf{k >0 :){@('—Z')du < 1} defines a norm on L®(X),

called the Luxemburg norm. N

If two complementary Young functions ®, ® satisfy the A,—condition,
then the space L*(X) is reflexive [5].

We will consider the Orlicz space L (X, RY) as the set of all Bochner
measurable functions U : X — R¥ such that |U] € L*(X). A function
U:X — RN U= (Uy,..,Uy) is Bochner measurable if and only if
all the functions U;, 1 < ¢ < N are measurable. The definition of
L?(X,RY) does not depend on the choice of a norm on RY. In the
following we will choose the Euclidean norm on RY. A Luxemburg
norm on L®(X,R¥) is defined by analogy to the Luxemburg norm on
L*(X), replacing the modulus on R by a norm on R¥. It is easy to see
that U = (Uy, ..., Uy) belongs to L? (X, RY) if and only if U; € L*(X)
for 1 <i < N. If L*(X) is reflexive, then L?(X,R") is reflexive as a
finite product of reflexive spaces.
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Tuominen [16] introduced the Orlicz-Sobolev space N'® (X'), which
is the set of equivalence classes of functions v € L® (X)) possesing an
upper gradient in L® (X)), with respect to the equivalence relation
defined by u ~ v iff [[u —v||, 4 = 0, where

||f“1,¢» = ||fHL<I>(X) + inf {||g||L‘1>(X) : g an upper gradient of f} .

We define another two types of Orlicz-Sobolev spaces on a metric
measure space, corresponding to a Young function ®. We follow [4]
and [6], where the case ® (t) = t#,1 < p < oo has been considered.
The definition of the Orlicz-Sobolev space P® (X), a generalization
of P'?(X), involves a Poincaré inequality and does not require any
additional assumption on the metric measure space.

Definition 1. [16] Let ® : R, — R be a strictly increasing Young
function and Q C X an open set. We say that a pair (u,g) formed
of a function u € L}, (Q) and a measurable non-negative function g
on § satisfies a (1, ®)— Poincaré inequality in Q if there exist some
constants Cp > 0 and o > 1 such that for each ball B = B(x,r)

satisfying TB C €,

1 1
(5) TB)B/W—UBWMS Cprd (o) /‘D(g)dﬂ

oB
If the inequality (5) holds for each w € Li,.(Q) and every upper

loc
gradient g of u, with fired constants, then € is said to support a

(1, ®)— Poincaré inequality.

For @ (t) =7, 1 < p < oo, the (1, ®)—Poincaré inequality is known
as the (1, p)—Poincaré inequality

1 1 »
(6) MB/‘U—UB|d,u§CpT m/gdu

oB

Definition 2. We say that a functionu : X — R in L® (X) belongs to
PY® (X)) if there exists a non-negative function g € L* (X) such that
the pair (u,g) satisfies the (1, ®) —Poincaré inequality (5) for some
constants Cp > 0 and o > 1.

The definition of a generalization of H'? (X), the Orlicz-Sobolev
space H1® (X), as the closure of a subclass of locally Lipschitz func-
tions under some norm involving an abstract derivative requires a more
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specialized approach. Let D be an abstract differential operator de-
fined on LIP,. (X).

The set Vo (X) = {u € LIPy. (X)NL* (X): |Du| € L* (X)} is a
vector space and the functional defined by

lull = Nlull o x) + 1Dulll Lo x,)

for u € Vp (X) is a norm on this space. Then H'® (X) is defined
as the closure of Vg (X) under the above norm. Since L® (X) is a
Banach space, we see that each element of H'® (X) is represented by
a pair (u,G), where u € L? (X) and G : X — RY is measurable with
|G| € L® (X), for which there exists a sequence (uy,), -, in Vg (X) such
that u, — v in L? (X) and |Du,, — G| — 0 in L® (X) as n — oo.

As discussed in [4] and [6, Section 10] for ® (¢) = tP, there may be
a problem with the extension of D from Vg (X) to H»® (X). As-
sume that two sequences (uy,),-, and (v,),s; in Vo (X) have the
same limit u in L? (X)) and that there exist two measurable functions
G, H : X — RY with |G|, |H| € L? (X) such that |Du,, — G| — 0 and
|Dv, — H| — 0 in L? (X) as n — oo. If G and H are distinct, which
may happen, the pairs (u, G) and (u, H) belong to distinct equivalence
classes in H* (X) and we cannot define Du unambiguously. We say
that the property of uniqueness of the gradient holds in HY® (X) if
for every sequence (wy),~, in Vo (X), such that w, — 0 in L* (X)
and |Dw, — J| — 0 in L* (X) as n — oo, where J : X — RV is
measurable with |J| € L? (X), we necessarily have J = 0 a.e. As-
suming that the uniquess of the gradient holds and taking (u,), -,
and (v,),~, as above, it follows that (u, —v,) — 0 in L* (X) and
|D (u, —v,) — (G —H)| < |Du, — G|+ |Dv, — Hl — 0 in L* (X)),
hence G = H a.e. and we can define Du = G.

3. PRELIMINARY RESULTS

We prove an elementary lemma for further reference.

Lemma 1. Assume that f, — f in L® (X) and f, — f p—a.c. on
X asn — oo. If the Young function ® satisfies the Ay—condition,
then there exists a subsequence (fn, )=, such that [ @ (|fy,])dp —

J@(f])dp as k — oc.
b
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Proof. Since [ ® (|g])dp < ||gllpsx) if g € L*(X) and [|g]l ey < 1
X

[16, (2.18)], the norm convergence in L* (X) implies the ®—mean
convergence, namely f, — f in L® (X) implies [ @ (|f, — f]) du — 0.

By a partial converse of Lebesgue dominated)éonvergence theorem,
for each sequence (h,), -, convergent to zero in L' (X) there exist a
subsequence (h,, ),~, and a nonnegative function h € L' (X) such that
A, | < b for all k > 1. Since ® (|f, — f|) = 0in L' (X) as n — oo,
there exists a strictly increasing sequence of positive integers (ny),,
and a function F such that ® (|f,, — f|) < F for all k> 1. -

Since @ is increasing, convex and satisfies the As—condition, we
have by the above inequality

3 (ful) < @(2'“@ f'*'f') o (& (f = f1)+ 2 (1)

< S wraqn)

for all k > 1. Note that the Ay—condition shows that @ (|f|) € L' (X),
hence < (F + @ (|f])) € L' (X). Since ® (| fn.]) = @ (| f]) as k — oo,
the claim follows by Lebesgue dominated convergence theorem. g

We will denote the mean oscillation of a locally integrable function
u on X over a ball B C X by

MO(u, B) = ﬁ/hﬁ—ulﬂdu.

In order to define a discrete convolution operator for locally inte-
grable functions on a doubling metric measure space, we need the
notions of (g, \) — cover of an open set and of Lipschitz partition of
unity subordinated to {2B; : i > 1}, where {B; : i > 1} is an (0, 2) —
cover of the open set. These notions and their properties have been
discussed in [9]. In the following, X is a doubling metric measure
space with a doubling constant C,, and €2 C X is open.

Given the real numbers € > 0, A > 1, an (g, \) — cover of Q [9] is
a countable cover B ={B; = B (z;,7;) : i > 1} of Q with the following
properties:

(1) r; < ¢ for all i;

(2) AB; C 2 for all i;

(3) If AB; meets A\Bj, then r; < 2r;;

(4) Each ball AB; meets at most C' = C (C),, \) balls AB;.
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Clearly, if 0 < e <& <oocand 1 <N <\ < o0, then every (g, \) —
cover of €2 is also an (&', \) — cover of €.

In [9, Lemma 3.1] it is shown that every open set 2 C X admits an
(e, \) — cover for arbitrary € > 0, A > 1; note that, by the construction
of a such a cover from [3, Theorem III.1.3], we can assume that the
balls %Bi, ¢ > 1 are mutually disjoint. If the balls B; have the same
radius, then each family {7 B, : i > 1} with 7 > 0 has bounded overlap:

Z XTBi S (Cu>210g2(107'+2)'

i>1
Let B={B; = B(x;,r;):i> 1} be an (00,2)— cover of Q. It is

shown in [9, Lemma 3.2] that there exists a collection of real functions

{@; : i > 1} defined on Q such that

(1) each ¢; is L;—Lipschitz, where L, :== C (C},) /ri;

(2) 0 < p; <1 for all g

(3) i =0o0n X \ 2B; for all i;

(4) > pi=1lon X.

i>1
A collection ¢ = {p; : i > 1} as above is called a (Lipschitz) parti-
tion of unity with respect to B.
Given an (00, 2) — cover B of 2 and a partition of unity {¢; : ¢ > 1}
with respect to B, the corresponding discrete convolution of u €
L} . () is defined by

loc
up(z) = ZuBi(Pi(x)a z €.
i>1
Note that, for each z € , there are at most C (C},2) non-zero
terms in the series defining ug(x).
Heikkinen [9] proved the following properties of the discrete convo-
lution.

Lemma 2. [9, Lemma 3.3] Let u € L, (Q) and ® be an Young func-
tion.

(1) The function ug is locally Lipschitz. Moreover, for each x €
Bz‘ = B (ZL‘Z', T,‘)

1
Lip ug (x) < Li———— / |u — usp,| du.
iz (5Bi)5B.

(2) llwsll oy < C(Cu) llwllpsq) for each w € L* ().

(3) Assume that ® satisfies the Ao—condition and u € L*® (Q). If
By, is an (ex,2) — cover of Q for k > 1 and if e, — 0 as k — oo, then
ug, — u in L® (Q).
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Lemma 3. Let (X,d, ) be a doubling metric measure space and D be
an abstract differential operator on LI P, (X). Let B ={B;(x;,€) : i > 1}
be an (g,2) — cover of X with balls of fized radius € > 0 and let ug be
the discrete convolution ofu € L}, (X) with respect to B. Then

(7) |Dup(2)| < — ZMO (u,5B;) x5; (7)

i>1

for almost every x € X, where C =2(C,)° C (C,) C(Cy, \) Cp.

Proof. Fix a ball B; € B. For all z € Bj,
) |Dus(e)] = D (us — up,) (@) < 3 Jup, — up| | Der(a

i>1
If 2B; N 2B, is empty, then ¢; = 0 on 2B; and, since ¢; is Lipschitz,
Dy; = 0 p—a.e. on 2B;. In this case, let £;; C 2B, be a set of measure
zero such that Dy; = 0 on 2B;\ E;;. Moreover, due to condition (1) for
a partition of unity with respect to B and to condition (D1) satisfied
by D, for each ¢ > 1 there is a set of measure zero Fj; such that

|Dg;| < CpC(C,)e~! on X \ F,. By (8) we obtain

(9) |Dug(z)] < Y. lup —up|IDgi(2)]

i>1:2B;M2B; #0
< CpC (et Y lup —up.
i>1:2B;N2B;#0

for all x € B; \ U (E;j U F}), hence for p—a.e. z € B;.

i>1:2B;N2B;=0)
Note that for all ¢ we have

iy | o) = s | dn )
and |u (y) UB‘—M}BJ f|u (2)] du (2), hence

(10)  |up, —ugp,| < y) —u(2)dp(z)dp(y) .

Assume that 2B, N 2B; is non-empty. By the triangle inequality, B; C
5B; and B; C 5B;. Using the doubling property of ;1 we get 11 (5B;) <
(C)° 1 (By) and p(5B;) < (C,)° u(B;). Integrating the inequality
u(y) —u(2)| < |u(y) —usp,| +|u(z) — usp,| over B; x B; and taking
account of (10) we get |up, — up,| < M(lBi) [ u(y) = usp, | dp (y) +
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u(113-) [ |u(z) = usp,| dpu (z). Using the estimates of y (B;) and p (B;)
J B.

in terms of p (5B;) this implies

.1
0 o= <260 s B/ o () — s | dp ().

From (9) and (11), using the bounded overlap of the family {2B; : ¢ > 1},
we obtain

(12) |Dus(z)| < gMo (u,5B;)

C
< =Y MO (u,5B;) xs, (z).
i
forallz € B\ U (E;; U Fy), where C = 2(C,,)° C (C,,)) C (Cy, \) Cp.
i>1:2B;M2B;=0
Since {Bj : j > 1} is a cover of X, from (12) we get |Dug(x)| <

€3 MO (u,5B;) xp, (z) for all z € X belonging to the complement
i>1
of U{E;; :4,j > 1 and 2B;N2B; =0} U |J F;. Therefore, (7) holds
i>1
for almost every v € X. 1

4. COMPARISON BETWEEN TWO ORLICZ-SOBOLEV SPACES AND
EXTENSION OF A DIFFERENTIAL OPERATOR

Next we prove generalizations of Theorem 9 and Theorem 10 in [4],
see also Theorem 10.1 and Theorem 10.2 in [6].

Theorem 4. Let (X,d,p) be a doubling metric measure space and
D be a abstract differential operator on LIP,,.(X). If ® is a Young
function satisfying the Ay— condition together with its complementary
function ®, then PY® (X) c HY® (X).

Proof. Let u € Pb* (X).

Assume that, for each integer & > 1, By = {By; :i> 1} is an
(eg, 2) — cover of X with balls of fixed radius € > 0 and that g, — 0
as k — oo. Denote u, = up, for k > 1. By Lemma 2, vy — u in
L*(Q) as k — oo.

Let £ > 1. By the proof of Lemma 3,

Dus(e)] < < MO (u, 5By,
k

for almost every x € By;, for each ¢ > 1.
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Since u € P1? (X), there exists a nonnegative function g € L? (X)
and some constants Cp > 0, ¢ > 1 such that (5) holds for every ball
B C X of radius r. Then

1
MO (u,5By;) < Cpe @t | ——— d(g)d
(u:5B1) < Cre (50 Bii) / (9) du
50 By;
for all + > 1. It follows that
1
13 D <COpd ! | ——— d(g)d
N =) Z (g)d |
ODEq

for almost every x € By, for each ¢ > 1.From the above inequality
and the As—condition for @,

1
o (1D <C'——— ®(g)d
(D)) < C s [ (g1
50‘Bk7;
] . ’r log,(2CCp)
for almost every x € By, for each i > 1. Here C" = max{1, (Cs) }.

Therefore,
/fl) (|Duy]) dp < C' / ® (g)dp for all 7+ > 1.
By 50 Bp;

Since {By; : ¢ > 1} is a cover of X,

[eipuhan < 2/ (1Dwl)d

X z>1
1og (2cCp z :
S 2 ) / X5O’Bk2dua
i>1 X

The family {50By; : ¢ > 1} has bounded overlap: there exists a con-
stant C' (C,, o) such that each ball 50 By; meets at most C (C,,, o) balls
50 By;;. The above inequality implies

(14) [ Dudn <0 (o) [ (g)an

b b
Since g € L* (X) and & satisfies the Ay—condition, [ ® (g) dp is finite.
X

By (14), there exists M = C'C (Cy,0) > 1 so that [ ® (|Dug|)du <
X
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M. Using the convexity of ® and ®(0) = 0 we get

|Duk|
O —— ) du <1.
/ (M (2SS
X

Therefore, |Dug| € L* (X) and [ Dugl[| o xy < M.

We proved that the sequence (Duy),~, is bounded in L® (X, RY).
Since ® and its complementary Young function satisfy the A,—condition,
the space L® (X JRY ) is reflexive. Passing to a subsequence, we may
assume that (Duy),., is weakly convergent in L® (X, RN ) to some
h € L? (X,RY). By Mazur’s lemma, there exists a sequence of con-
N(k)

vex combinations Wy, = Y A\yjDu;, k > 1, that converges strongly in
j=k

L? (X,R") to h. Note that W, = Duvy, where

N(k)
Vi = Z )\ijj,
i=k

for k > 1.

Since the sequence of Lipschitz functions (vg),, converges to u in
L®(X) and (Duy),., converges in L® (X,RY), it follows that u €
HY (X), qed n

Remark 2. For ® (t) = t" with 1 < p < oo, the above theorem gives
Theorem 9 in [4], see also Theorem 10.1 in [6].

Theorem 5. Let (X,d, ) be a doubling metric measure space, ¢ a
Young function satisfying the Ay—condition and let D be an abstract
differential operator on LIP,.(X). Assume that for every locally
Lipschitz function w, the pair (u,|Du|) satisfies the (1, ®) —Poincaré
inequality with fived constants. Then HM® (X) C P»®(X) and the
uniqueness of the gradient holds in HY® (X). Moreover, if the com-
plementary function ® of ® also satisfies the Ay—condition, then:

a) |Du| < Cg a.e. for some constant C, whenever v € HY® (X),
g € L* (X) and the pair (u, g) satisfies the (1, ®) — Poincaré inequality;

) HI® (X) = P10 (X):

c) HY® (X) is reflexive.
Proof. Step 1. First we prove that the uniqueness of the gradient
holds in H%® (X). Assume that (f,), -, is a sequence in Vg (X), such
that f, — 0in L* (X) and |Df, — G| = 0 in L? (X), where G : X —
RY is measurable with |G| € L? (X). We prove that G = 0 a.e. We
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choose a sequence 0 < r, < 1, n > 1 such that Y r, < co. We will
n>1
specify later some additional conditions on this sequence. By passing

to a subsequence we may assume that

[ fns1 = fall Loy + 11D fars = Dfalll oy S mmy n 2 1.

Then (f,),~, converges pointwise a.e. in L? (X) to 0 and (Df,),,
converge pointwise a.e. to G in L® (X, RN) to 0, by [1, Theorem 1.4
and Theorem 1.6 |.

Set v, = far1 — fn for n > 1. Since d, is locally Lipschitz,
the pair (¢n, |Dyy|) satisfies the (1, ®) —Poincaré inequality (5). Set
U = M (P (|Dgyl)), where M is the Hardy-Littlewood maximal op-
erator. The following uniform Lipschitz-type estimate follows from the
(1, ®) —Poincaré inequality, by [16, Lemma 5.15]:

(15)  len () —@n ()| < Crd (z,y) (27" (¥n () + 27" (¢ ()

for p—almost all z,y € X, for all n > 1. The constant C, > 0
depends only on the doubling constant C), of u and on the constant

Cp of the (1, @) —Poincaré inequality. Denote gi(z) = > @~ (¢, ())
n=k

forrxe X, k>1.
Fix k > 1. By (15) it follows that for y—almost all z,y € X, for all
m > | > k we have

[(fmn = J0) (@) = (fm = JO) ()] < Crd (2,y) (gk (x) + gr (1)) -

Letting m — oo in the above inequality, we obtain that for y—almost
all x,y € X and for all | > k

(16) |fi(z) = fi ()] < Crd (2, y) (gr (7) + gr () -

In order to get an uniform estimate for the Lipschitz constant of some
restriction of f; for [ > k we consider the upper level sets Ej; =
{gx > t}, where t > 0.

Fix some ¢ > 0. By (16), for p—almost all 2,y € X \ Ej; and for
all [ > k we have

|fi(x) = fi(y)] £2Ctd (x,y).

Since f; is continuous, the above inequality holds for all z,y € X\ Ej,,
i.e. the restriction of f; to X \ Ej, is 2C t—Lipschitz. Using the
MacShane extension to X of this restriction and condition (D1) from
the definition of the abstract differential operator D, we conclude that

|Dfl (ZL’)| S QCDCLt
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for a.e. x € X\ Eg; and for all | > k. Letting [ — oo in the above
inequality we get |G (z)| < 2CpCyt for a.e. x € X \ Ej 4, hence

/L{|G‘ > QCDCLt} < M(Ekﬂg) for k > 1.
We will show that p (Ej;) — 0 as k — oo, hence pu {|G| > 2CpCrt} =
0. Since t > 0 is arbitrary, it follows that G = 0, as claimed.

In order to prove that u (Ex;) — 0 as k — oo, note that 7 (1, (x)) <
s for all n > k implies g (x) < t, therefore

(17) By, C g{¢—1 (U () > ﬁ} .

Since ® is strictly increasing,

(18)
18{@1 (n(0) > gt | € { M@ D) > 0 (55 ) |

Since @ satisfies the Ay—condition, |Dy,| € L® (X) implies ® (| D, |) €
L' (X). The weak L'— estimate for the maximal function in doubling
metric measure spaces [11, Theorem 2.2] yields

(19)

w({m@ivei o () ) <a(e () [eana

Here C'; depends only on the doubling constant C),.
From (17), (18) and (19) we obtain

 wm<a X (o(5h)) [e00aha

n=~k

Recall that [ @ (1f]) di < |l i € L2 (X) and |l < 1
X
[16, (2.18)]. Since [|[Dgn|[|pex) < 7n < 1, we have

@1 [eapendn <,
X
for all n > 1.
Since @ (1) < (Cp)" "' @ (52+) by the As—condition, we get
from (20) and (21)

Cl 1— - n
(22) p(Epy) < (1) (Cs) k;’f’n (Cs)".
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Now we choose some 0 < a < 1 such that the condition S} :=

(Co) ™" S 1, (Co)™ — 0 as k — oo is satisfied with r,, = a”, n > 1. In
n=~k

oo
this case Sy = Cpa® > (aCsp)" and it suffices to assume that a < C%p

Then 0 <7, <1lforn>1, > r, <ooand S, — 0 as k — 0.
n>1

By (22) we obtain p(Ey;) — 0 as k — oo, which completes the
proof of the first step.

Step 2. We prove that H'?® (X) c PY? (X) showing that the va-
lidity of the (1, ®) —Poincaré inequality extends from locally Lipschitz
functions to functions in H® (X) via approximation.

Let w € HY® (X). As in the proof of Step 1, we find a sequence
(Wn),>; in Vg (X) such that w, — v in L® (X), |Dw, — Du| = 0 in
L?* (X), while w, — u and Dw,, — Du pointwise a.e. on X. For every
ball B = B (z,r) and all n > 1

1 L 1 y
%) B/ o = e)gldi < Cprd ™ | s [ (1D

oB

Since |Dw,,| — |Dul| in L® (X), passing to a subsequence we may as-
sume that [ ®(|Dw,|)dp — [ ®(]Dul)du, by Lemma 1. Since @~ is
ocB oB

continuous, the right hand side of (23) converges to ®~* ( €5 f O |Du|)du)

as n — o0.

On the other hand,

ﬁla/\u—ugldu < )/ ) gl dp +

1
(24) / = wn| dp + [ — (wn)
B

1
(—/ (wn) |du—|——/|u wWn| dp.

B

7;

Since i (B) < oo, convergence in L® (B) implies convergence in
L' (B) [16, Lemma 4.18 and Remark 4.19], therefore [ |u — w,|du — 0
B
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as n — oo. Using (24) and (23), then letting n — oo we obtain

1 / B 1
—_— u—ug|dudy < Cprd—1! /@Dud

oB

From now on, we assume that the complementary function ® of ®
also satisfies the Ay—condition. By Theorem 4 and Step 2, H%® (X) =
PL?(X).

Step 3. Let u € H*® (X) and g € L® (X) such that the pair (u, g)
satisfies the (1, ®) —Poincaré inequality. We will use the approximat-
ing sequence (uy),, for u from the proof of Theorem 4, associated to
the sequence By = {By; : i > 1} of (g4,2) — covers of X with balls of
fixed radius ¢, > 0 for £ > 1, such that ¢, — 0 as kK — oo.

By (13) for all k, ¢ > 1 the following inequality holds

1
D < ¢ | ———— d(g)d
)| < €Ot~ | s [ @) ]

5UBki

for © € By; \ A, where Ay; C By, is some set of zero measure.
Since @ (g) € L' (X), the complement of the set of Lebesgue points
of ®(g) is a set Ay C X of zero measure, see Remark 1. Let z €

X\ (Ag uy u Aki>. For each k we select from the cover By of X
k=1i=1
a ball By;, containing x, and x ¢ Ay;,, hence (13) holds with ¢ = ij.

Since z ¢ A,, we get ————~ [ ®(g)dp — 0 for k — oo, hence
;L(E)O’Bkik) SUBMk

(25) limsup |Dug(z)| < CCpg (z) .

k—00
We took into account that ®~! is continuous. Note that (25) holds for
pu—ae. xr e X.

Since (Duyg),, is bounded in the reflexive space L® (X,RY), pass-
ing to a subsequence, we may assume that (Duy) rp>1 18 weakly con-
vergent in L® (X,RY) to some h € L* (X,RY). By Mazur’s lemma,

N(k)
there exists a sequence of convex combinations Wy, = > Ay;Duy,
j=k
k > 1, that converges strongly in L® (X (RN ) to h. By the uniqueness
of the gradient, h = Du a.e. Hence, |W,| — |Du| as k — oo in L* (X).
Passing again to a subsequence, we may assume that |Wy| — |Dul as
k — oo a.e. on X.
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We have W), = Duv;,, where
N(k)

Vi = E )\kjuj,
Jj=k

for k > 1.
Then
N(k)
| Dvg| < Z Agj [Duj| on X.
j=k

Now (25) and the above inequality show that for p—a.e. x € X we
have

|Du(x)| = klim |Dug (x)] < CCpyg ().

Step 4. Since L?(X) is reflexive and F = (Fy, Fi,...,Fy) €
L® (X,RN“) if and only if F; € L®(X) for all 0 < i < N, the
space L? (X RN H) is reflexive. By the uniqueness of the gradient,
lull ooy = llullpoey + I1Dulll e (x) defines a norm on H* (X).
The application u — (u, Du) from H"® (X) into L* (X,R¥™) is
linear and injective. Denote by (Du); the i—th component of Du for
1 <¢ < N. We have

N
1(a, D)l o x vy < llull oy + D 1DWll oy < N llull sy
i=1
and

1
I Do ey 2 Mo oo+ 02 10Dl oy 2 75 Nl -

Then the Banach space H'® (X) is isomorphic as a normed space
with a closed subspace of the reflexive space L? (X, RV*!), therefore
HY® (X) is reflexive. 1

Remark 3. For @ (t) = t" with 1 < p < 0o, the above theorem gives
Theorem 10 in [4], see also Theorem 10.2 in [6].

Assume that (X, d, p) is a doubling metric measure space supporting
a (1, ®) —Poincaré inequality. By [16, Theorem 5.7], (X, d, 1) supports
a (1,p) —Poincaré inequality for all log, C), < p < oco. By Cheeger’s
theorem, X admits a non-degenerate strong measurable differentiable
structure. So, the Cheeger differential operator D is well defined on
LIP,.(X) and is an example of abstract differential operator. Let u
be a locally Lipschitz function. By (2) and the fact that Lip u is an
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upper gradient of u, it follows that |Du| is also an upper gradient of u,
hence the pair (u,|Du|) satisfies the (1, ®) —Poincaré inequality with
fixed constants. The above theorem implies the following

Corollary 6. Let ® be a Young function satisfying the As— condition
and let (X,d,pu) be a doubling metric measure space supporting a
(1, ®) — Poincaré inequality. Denote by D the Cheeger differential op-
erator on LIP,.(X). Then HY® (X) C PY®(X) and the uniqueness

of the gradient holds in H® (X). Moreover, if the complementary

Young function ® also satisfies the Ao—condition, then HY® (X) =
PY® (X)) and this space is reflezive.
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