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Abstract. We give a characterization of hereditary dually chordal
graphs using weak decomposition. We also give a recognition algo-
rithm for hereditary dually chordal graphs and we determine the com-
binatorial optimization numbers in efficient time.
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1. Introduction

The triangulated graphs (chordal) class has been noticed because
of their properties. Among these properties we mention: perfection,
recognition algorithms and ability to solve some combinatorial opti-
mization problems (determining the stability number and minimum
number of covering cliques) with linear complexity algorithms.

Interest for strongly chordal (M. Farber [5], see [3], [7], Strongly
chordal graphs are defined in terms of a stronger ordering condition.
A graph G is strongly chordal if and only if every induced subgraph
of G has a simple vertex. A vertex v of the graph G is simple in G if
the set N [u] : u ∈ N [v] is linearly ordered by inclusion.) graphs arises
in several ways.
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The problems of locating minimum weight dominating sets and min-
imum weight independent dominating sets in strongly chordal graphs
with real vertex weights can be solved in polynomial time, whereas
each of these problems is NP-hard for chordal graphs.

A vertex u ∈ N [v] is a maximum neighbor of v iff for all w ∈ N [v]
the inclusion N [w] ⊆ N [v] holds (note that u = v is not excluded).
The ordering (v1, · · · , vn) is a

maximum neighborhood ordering if for all i ∈ {1, · · · , n} there is a
maximum neighbor ui ∈ Ni[vi]:

for all w ∈ Ni[vi], Ni[w] ⊆ Ni[ui] holds.
The graph G is dually chordal [2] iff G has a maximum neighborhood

ordering.
Many problems eficiently solvable for strongly chordal graphs re-

main polynomial-time solvable for dually chordal graphs.
The k-th power of a graph G is a graph on the same vertex set as G,

where a pair of vertices is connected by an edge if they have distance
at most k in G.

Any power of a dually chordal graph [2] is dually chordal.
The hereditary dually chordal graphs [2], i.e., graphs for which each

induced subgraph is a dually chordal graph.
In [13] specifies that the dually chordal graphs holds:
clique problem is NP-complete, independent set is NP-complete, the

recognition problem in linear time.

2. Preliminaries

According to ([1]), G=(V,E) is a connected, finite and undirected
graph, without loops and multiple edges, having V=V(G) as the vertex
set and E=E(G) as the set of edges. G (or co-G) is the complement
of G. If U ⊆ V , by G(U) (or [U ]G, or [U]) we denote the subgraph of
G induced by U. By G-X we mean the subgraph G(V-X), whenever
X ⊆ V , but we simply write G-v, when X={v}. If e=xy is an edge
of a graph G, then x and y are adjacent, while x and e are incident,
as are y and e. If xy ∈ E, we also use the property x ∼ y, and xℵy
whenever x,y are not adjacent in G. If A,B⊂V are disjoint and ab∈E
for every a∈A and b∈B, we say that A,B are totally adjacent and we
denote by A ∼ B, while by AℵB we mean that no edge of G joins
some vertex of A to a vertex from B and, in this case, we say A and
B are totally non-adjacent.

The neighborhood of the vertex v∈V is the set NG(v)={u∈V:uv∈E},
while NG[v]=NG(v)

∪
{v}; we denote N(v) and N[v], when G appears
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clearly from the context. The degree of v in G is dG(v)=|NG(v)|. The
neighborhood of the vertex v in the complement of G will be denoted
by N(v).

The neighborhood of S⊂V is the set N(S)=
∪

v∈S N(v) − S and
N[S]=S

∪
N(S). A graph is complete if every pair of distinct vertices is

adjacent.
By Pn, Cn, Kn we mean a chordless path on n≥3 vertices, a chord-

less cycle on n≥3 vertices, and a complete graph on n≥1 vertices,
respectively.

A complete bipartite graph is a graph whose vertices can be parti-
tioned into two subsets V1 and V2 such that no edge has both endpoints
in the same subset, and every possible edge that could connect vertices
in different subsets is part of the graph. A complete bipartite graph
with partitions of size |V1| = m and |V2| = n, is denoted Km,n.

Let F denote a family of graphs. A graph G is called F-free if none
of its subgraphs are in F.

The Zykov sum of the graphs G1, G2 is the graph G=G1+G2 hav-
ing:

V(G) =V(G1)
∪
V(G2),

E(G) =E(G1)
∪
E(G2)

∪
{uv:u∈V(G1),v∈ V(G2)}.

Let G be connected and u and v be two nonadjacent vertices of G.
A uv-separator is a set S ⊆V (G) such that u and v are in different
connected components of G - S. The separator is minimal if no proper
subset of S has the same property.

Let G=(V,E) be a connected graph. A non-empty set of vertices
T is called star-cutset ([2]) if G-T is not connected and there exists a
vertex v in T that is adjacent to any other vertex in T. The cutset is
minimal if no proper subset of T has the same property.

We call a graph Berge if neither the graph nor its complement con-
tains Cn, as an induced subgraph, for n odd and n ≥ 5.

The chromatic number of a graph G (χ(G)) is the least number of
colors it takes to color its vertices so that adjacent vertices have differ-
ent colors. The stability number α(G) of a graph G is the cardinality
of the largest stable set. Recall that a stable set of G is a subset of
the vertices such that no two of them are connected by an edge. The
clique number of a graph G is a number of the vertices in a maximum
clique of G, denoted by ω(G).

A graph G is perfect if, for each induced subgraph S of G, the
chromatic number of S is equal to the clique number of S. A graph
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is minimal imperfect if it is not perfect and yet every proper induced
subgraph is perfect.

A class H of graphs is called hereditary if every induced subgraph
of a graph in H is in H.

3. A new characterization of hereditary dually chordal
graphs

We recall a characterization of the weak decomposition of a graph.
Definition 1. ([10]) A set A⊂V(G) is called a weak set of the

graph G if NG(A) ̸=V(G)-A and G(A) is connected. If A is a weak
set, maximal with respect to set inclusion, then G(A) is called a weak
component. For simplicity, the weak component G(A) will be denoted
with A.

Definition 2. ([10]) Let G=(V,E) be a connected and non-complete
graph. If A is a weak set, then the partition {A,N(A),V-A

∪
N(A)} is

called a weak decomposition of G with respect to A.
The name of weak component is justified by the following result.
Theorem 1.([11]) Every connected and non-complete graph G=(V,E)

admits a weak component A such that G(V-A)=G(N(A))+G(N(A)).
Theorem 2.([11]) Let G=(V,E) be a connected and non-complete

graph and A⊂V. Then A is a weak component of G if and only if G(A)
is connected and N(A) ∼ N(A).

The next result, that follows from Theorem 2, ensures the existence
of a weak decomposition in a connected and non-complete graph.

Corollary 1. If G=(V,E) is a connected and non-complete graph,
then V admits a weak decomposition (A,B,C), such that G(A) is a
weak component and G(V-A)=G(B)+G(C).

Theorem 2 provides an O(n+m) algorithm for building a weak de-
composition for a non-complete and connected graph.

Algorithm for the weak decomposition of a graph ([8], see [12])
Input : A connected graph with at least two nonadjacent vertices,

G=(V,E).
Output : A partition V=(A,N,R) such that G(A) is connected, N=N(A),

AℵR=N(A).
Begin
A:= any set of vertices such that A

∪
N(A)̸=V N:= N(A)

R := V-A
∪

N(A)
While (∃n∈N, ∃r∈R such that nr/∈E) do
Begin
A:= A

∪
{n}
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N:= (N-{n})
∪

(N(n)
∩

R)
R:=R-(N(n)

∩
R)

end
end
Definition 3. ([5]) A strong elimination ordering of a graph G =

(V, E) is an ordering v1, v2, · · · , vn of V with the property that for
each i, j, k and l, if i < j,k < l, vk, vl ∈ N [vi], and vk ∈ N [vj], then
vl ∈ N [vj].

Definition 4. ([5]) A graph is strongly chordal if it admits a strong
elimination ordering.

Remark 1. ([5]) Every induced subgraph of a strongly chordal graph
is strongly chordal.

A graph G is hereditary dually chordal graph if any induced sub-
graph of G is dually chordal.

If C is a cycle of even length in the graph G, then a strong chord
of C is an edge of G joining two vertices, u and v, of C such that
dC(u, v)is odd and greater than 1.

Theorem 3. ([5]) A graph G is strongly chordal if and only if it is
chordal and every

even cycle of length at least 6 in G has a strong chord.
Theorem 4. [4, 6] Let G be a graph. Then, G is chordal if and

only if every minimal vertex separator of G is complete.
Theorem 6. [8] G is triangulated if and only if for any weak de-

composition (A;N;R) with G(A) weak component:
1) N is a clique
2) [R] and G- R are triangulated.
Corollary 2. [2] For a graph G the following conditions are equiv-

alent:
(i) G is a strongly chordal graph;
(ii) G is a hereditary dually chordal graph.
Teorema 7. G is hereditary dually chordal if and only if for any

weak decomposition (A,N,R) with G(A)weak component:

(1) N is clique
(2) G(R) and G(V-R) are hereditary dually chordal.

Proof. I. We suppose that G is hereditary dually chordal. From
Corollary 2 it follows that G is strongly chordal. Fom G strongly
chordal it follows that, according to Remark 1., G( R) and G(V-R)
are chordals. From Corollary 2, (2) holds. Since G is strongly chordal,
according to Theorem 3, it follows that G is chordal. From Theorem
6 it follows that N is the clique. So, (1) holds.
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II. Suppose (1) and (2) hold. We show that G is hereditary dually
chordal. From (2) and from Corollary 2 and Theorem 3, it follows
that G(R), G(V-R) are chordals. From (1) and from Theorem 6, it
follows that G is chordal. If G is not strongly chordal then, according
to Theorem 3, there is an even cycle, C, of length at least 6 which
has no strong chord. Because N is clique and R ∼ N it follows that
either C ⊆ G(R) or C ⊆ G(N

∪
A). So, either G(R) or G(V-R) is not

strongly chordal. So, according to Corollary 3, either G(R) or G(V-R)
is not hereditary dually chordal, contradicting (2).

The above results lead to the following recognition algorithm.
Input: A connected graph with at least two nonadjacent vertices,

G=(V,E ).
Output: An answer to the question: is G a hereditary dually chordal

graph
begin
L:={G}; //L a list of graphs
While (L ̸= ϕ)
Extract an element F from L;
Find a weak decomposition (A,N,R) for F;
If (N not clique in F) then
Return: G is not hereditary dually chordal
else introduce in L the connected components of G(R), G(V-R)

incomplete
Return: G is hereditary dually chordal
end
The fact that N is the clique is proved in the following: If there

is a vertex v in N with the degree in G(N) less than |N|-1 (thus we
determine the grades of the vertices in the subgraph G(N)) then N is
not the clique. So the algorithm is O(n(n+m)) time (just because the
weak decomposition is O(n+m)).

Corollary 3 [9, 12]. If G is a connected graph and (A,N,R) a weak
decomposition with A weak component then the following holds:

α(G) = max
{
α[A] + α[R], α(A

∪
N)
}

;

ω(G)=max{ω([N ]) + ω([R]), ω([A
∪
N ])}.

Corollary 4. Let G=(V,E) be a connected and non-complete graph
with G(A) a weak component in G. If G is hereditary dually chordal
then holds:
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(1) α(G) = α(G(A)) + α(G(R));

(2) ω(G) = max
{
|N | + ω(G(R)), ω(G(A

∪
N))

}
.

Proof. From Corollary 3, because N is clique in G results (2) . Let
T ⊂ A

∪
N such that T is stable set and |T | = α([A

∪
N ]G). Because

N is clique in G results |T
∩
N | ≤ 1. If T

∩
N = ϕ then T

∪
{r} is a

stable set in [A
∪
R]G else if T

∩
N = {v} then (T − {v})

∪
{r} is a

stable set in [A
∪
R]G, ∀r ∈ R. So, (1) holds.

Corollary 4 implies an algorithm for the construction of a stable set
of maximum cardinal and a clique of maximum cardinal in a hereditary
dually chordal graph.

Input: G =(V, E) a connected and noncomplete graph satisfying
conditions in Corollary 4

Output : A stable set S with |S|=α(G)
begin
S = ϕ
L = {G} // L is a list of graphs
while (L ̸= ϕ)
begin
extract an element F from L
if (F is complete) then

S = S
∪

{v} ,∀v ∈ V (F )

else
Determine a weak decomposition (A,N, R) for F
Put [A]F and the connected components of [R]F in L
end
end.
Input: G=(V, E) a connected and noncomplete graph satisfying

conditions in Corollary 4
Output: A clique Q with |Q|=ω(G)
Begin
Q = ϕ
k=0
L = {G} // L is a list of graphs
while (L ̸= ϕ)
begin
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extract an element F from L
if (F is complete) then
Q = Q

∪
V (F )

k = k + 1
Qk = Q
Q = ϕ
else
Determine a weak decomposition (A,N, R) for L
Put [A

∪
N ]F and [N

∪
R]F in L

end
Let m be so that |Qm| = max{|Q1| , · · · , |Qk|}and Q = Qm

Then ω(G) = |Q|
end

The complexity of α and ωis O(n(n+m)). The fact that V(F) is
clique reads as follows: If there is a vertex v in V(F) with the degree
in F less than |V(F)|-1 (thus we determine the grades of the vertices in
F), then V(F) is not the clique. This way, the algorithm is O(n(n+m))
(as long as the weak decomposition has the complexity O(n+m)).

4. Conclusions

We give a characterization of hereditary dually chordal graphs using
weak decomposition. We also give recognition algorithms for heredi-
tary dually chordal graphs in O(n(n+m)) time. Finally, we determine
the combinatorial optimization numbers in O(n(n+m)) time.
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