Scientific Study & Research

Chemistry & Chemical Engineering, Biotechnology, Food Industry

ISSN 1582-540X

ORIGINAL RESEARCH PAPER

R₂NH₂C₂O₄SnC₂O₄SnBu₃, (R₂NH₂)₄(C₂O₄)₃(SnR'₃)₂ (R = Cy, *i*-Bu; R' = Me, Bu) AND SOME MIXED ORGANO- AND HALOTIN (IV) OXALATO NEW MOETIES CONTAINING COMPLEXES: SYNTHESIS, INFRARED, MOSSBAUER AND NMR STUDIES

Yaya Sow, Libasse Diop*

Université Cheikh Anta Diop, Faculté des Sciences et Techniques, Département de Chimie, Laboratoire de Chimie Minérale et Analytique (LACHIMIA), Dakar, Sénégal

*Corresponding author: dlibasse@gmail.com

Received: March, 30, 2015 Accepted: May, 29, 2015

On allowing $(Cy_2NH_2)_2C_2O_4\cdot 2H_2O$ to react with SnBu₃Cl or **Abstract:** SnMe₃Cl, i-Bu₂NH₂HC₂O₄ with SnBu₃Cl, (Bu₂NH₂)₂C₂O₄ with SnMe₃Cl, (i-Bu₂NH₂)₂C₂O₄ with SnPh₂Cl₂, a mixture of i-Bu₂NH₂)₂C₂O₄ and $(Me_4N)_2C_2O_4$ with $SnPh_2Cl_2$, $(Pr_2NH_2)_2C_2O_4$ with $SnPh_3Cl$, the oxalato $Cy_2NH_2C_2O_4SnBu_3 : 3H_2O \cdot 1/4Cy_2NH_2Cl$, derivatives and complexes $Bu_2NH_2C_2O_4SnBu_3\cdot 1/2(i-Bu_2NH_2)_2C_2O_4, y_2NH_2C_2O_4SnMe_3\cdot 1/2(Cy_2NH_2)_2C_2O_4,$ $Sn(C_2O_4)_2 \cdot [C_2O_4(SnMe_3 \cdot H_2O)_2] \cdot 2EtOH \cdot 1/4[(Bu_2NH_2)_2C_2O_4], (i-Bu_2NH_2)_2 \cdot C_2O_4$ $2SnPh_2Cl_2 \cdot SnCl_4 \cdot 4(i-Bu_2NH_2OH) \cdot 2(i-Bu_2NH_2Cl)$, $2[SnPh_2Cl_4(i-Bu_2NH_2)_2]$ $SnCl_2C_2O_4\cdot 4i$ - Bu_2NH_2Cl and $2[Pr_2NH_2C_2O_4SnPh_3]\cdot (Pr_2NH_2)_2C_2O_4\cdot SnCl_4\cdot$ 2Pr₂NH₂Cl were obtained. Double chain, two metallic components and a dimeric structures are suggested with trans coordinated SnMe₃ residues, these chains being connected through $R_2NH_2^+$ (R = Cy, i-Bu) only or by (R₂NH₂)₂C₂O₄ bridges. The oxalate behaves as a monochelating, a bridging, an only hydrogen bonding involved or monodentate and H bond involved ligand. The environments around the tin (IV) centres are cis or trans trigonal bipyramidal, tetrahedral or octahedral. Supramolecular architectures may be obtained when extra hydrogen bonds are possible.

Keywords: cis or trans trigonal bipyramidal, double chain structure, mono-

or bichelating, mono- or bidentate, only hydrogen bonding involved oxalates, tetrahedral or octahedral environments,

supramolecular architectures, trans coordinated SnR'_3 residues (R'=Me, Bu)

INTRODUCTION

Many research groups involving our are focusing in attempting to synthesize new molecules belonging to organo- and halotin(IV) family because of several applications found (medecine, industry, agriculture) and also for diversity of structural chemistry [1 - 10]. In this research field we have initiated here the study of the interactions between $i\text{-Bu}_2\text{NH}_2\text{HC}_2\text{O}_4$ and SnBu_3Cl or SnPh_2Cl_2 , $(\text{Cy}_2\text{NH}_2)_2\text{C}_2\text{O}_4\cdot2\text{H}_2\text{O}$ and SnMe_3Cl or SnBu_3Cl , $(i\text{-Bu}_2\text{NH}_2)_2\text{C}_2\text{O}_4$ and SnPh_2Cl_2 $\text{Pr}_2\text{NH}_2\text{HC}_2\text{O}_4$ and SnPh_3Cl , $(\text{Bu}_2\text{NH}_2)_2\text{C}_2\text{O}_4$ and SnMe_3Cl which have given the seven studied derivatives and complexes infrared and NMR studies of which have been carried out, then structures suggested on the basis of the spectroscopic data.

MATERIALS AND METHODS

 $(Cy_2NH_2)_2C_2O_4\cdot 2H_2O$ (**L**₁), *i*-Bu₂NH₂HC₂O₄ (**L**₂), (Bu₂NH₂)₂C₂O₄ (**L**₃), (*i*-Bu₂NH₂)₂C₂O₄ (**L**₄) and Pr₂NH₂HC₂O₄ (**L**₅) have been obtained as white precipitates or powders: a solution is obtained mixing aqueous solutions of Cy₂NH, *i*-Bu₂NH, Bu₂NH or Pr₂NH with H₂C₂O₄·2H₂O in 2/1, 1/1, 2/1, 2/1 or 1/1 ratio respectively. The analytical data of **L**₁ to **L**₅ are presented in Table 1.

Table 1. Results of the elemental analyses for L_1 to L_5 Elemental analysis (%)

	ınd	Chemical formula	Elemental analysis (%)						
	Compound		C		Н		N		
			calc.	found	calc.	found	calc.	found	
	L_1	$(Cy_2NH_2)_2C_2O_4\cdot 2H_2O$	64.58	65.00	11.61	11.49	5.38	5.26	
	L_2	<i>i</i> -Bu ₂ NH ₂ HC ₂ O ₄	54.77	55.00	9.55	9.49	6.39	6.45	
	L_3	$(Bu_2NH_2)_2C_2O_4$	62.03	62.00	11.57	11.49	8.04	8.06	
	L_4	(i-Bu2NH2)2C2O4	62.03	62.00	11.57	11.49	8.04	8.06	
	L_5	$Pr_2NH_2HC_2O_4$	50.25	50.02	8.96	9.01	7.32	7.28	

 $Cy_2NH_2C_2O_4SnBu_3\cdot 1/4Cy_2NH_2Cl\cdot 3H_2O\ (\textbf{A}),\ \emph{i-}Bu_2NH_2C_2O_4SnBu_3\cdot 1/2(\emph{i-}Bu_2NH_2)_2C_2O_4\ (\textbf{B})\ and\ Cy_2NH_2C_2O_4SnMe_3\cdot 1/2(Cy_2NH_2)_2C_2O_4\ (\textbf{C})\ have been obtained by allowing <math display="block">(Cy_2NH_2)_2C_2O_4\cdot 2H_2O\ to\ react\ with\ SnBu_3Cl\ in\ 1/2\ ratio,\ \emph{i-}Bu_2NH_2HC_2O_4\ with\ SnBu_3Cl\ in\ 1/2\ ratio,\ (Cy_2NH_2)_2C_2O_4\cdot 2H_2O\ with\ SnMe_3Cl\ in\ 1/1\ ratio;\ a\ powder\ was\ obtained\ in\ all\ cases\ after\ a\ slow\ solvent\ evaporation.$

 $Sn(C_2O_4)_2\cdot [C_2O_4(SnMe_3\cdot H_2O)_2]\cdot 2EtOH\cdot 1/4[(Bu_2NH_2)_2C_2O_4] \ (\textbf{D}) \ and \ (\emph{i}-Bu_2NH_2)_2C_2O_4\cdot 2SnPh_2Cl_2\cdot SnCl_4\cdot 4(\emph{i}-Bu_2NH_2OH)\cdot 2(\emph{i}-Bu_2NH_2Cl) \ (\textbf{E}) \ have been prepared by allowing \ (Bu_2NH_2)_2C_2O_4 \ and \emph{i}-Bu_2NH_2HC_2O_4 \ to react with SnMe_3Cl or SnPh_2Cl_2 \ in ethanol in the 1/2 or 1/1 ratio respectively: a white precipitate was obtained in both cases and stirred around two hours. <math display="block">2[SnPh_2Cl_4(\emph{i}-Bu_2NH_2)_2]\cdot SnCl_2C_2O_4\cdot 4\emph{i}-Bu_2NH_2Cl \ (\textbf{F}) \ and \\ 2[Pr_2NH_2C_2O_4SnPh_3]\cdot (Pr_2NH_2)_2C_2O_4\cdot SnCl_4\cdot 2Pr_2NH_2Cl \ (\textbf{G}) \ have been obtained by allowing (\emph{i}-Bu_2NH_2)_2C_2O_4 \ to react with SnPh_2Cl_2 \ and Pr_2NH_2HC_2O_4 \ to react with$

SnPh₃Cl in ethanol in 1/2 and 2/1 ratio respectively; a white precipitate was obtained in both cases and stirred around two hours.

The analytical data of **A** to **G** are presented in Table 2.

Table 2. Results of the elemental analyses for compound A to G

put			Elemental analysis [%]						
lodi	Chemical formula	C		Н		N			
Compound		calc.	found	calc.	found	calc.	found		
A	Cy ₂ NH ₂ C ₂ O ₄ SnBu ₃ ·1/4Cy ₂ NH ₂ Cl·3H ₂ O	52.78	52.99	9.88	9.76	2.54	2.51		
В	$i-Bu_2NH_2C_2O_4SnBu_3\cdot 1/2(i-Bu_2NH_2)_2C_2O_4$	54.51	54.41	9.96	9.93	4.10	4.15		
C	$Cy_2NH_2C_2O_4SnMe_3\cdot 1/2(Cy_2NH_2)_2C_2O_4$	54.51	54.49	8.77	8.63	4.24	4.25		
D	$Sn(C_2O_4)_2$ · $[C_2O_4(SnMe_3\cdot H_2O)_2]$ ·2EtOH· 1/4 $[(Bu_2NH_2)_2C_2O_4]$	26.59	25.99	4.75	4.86	0.75	0.81		
E	$(i-Bu_2NH_2)_2C_2O_4\cdot 2SnPh_2Cl_2\cdot SnCl_4\cdot 4(i-Bu_2NH_2OH)\cdot 2(i-Bu_2NH_2Cl)$	48.67	48.46	8.29	8.24	5.04	5.05		
F	2[SnPh ₂ Cl ₄ (<i>i</i> -Bu ₂ NH ₂) ₂]·SnCl ₂ C ₂ O ₄ · 4 <i>i</i> -Bu ₂ NH ₂ Cl	47.18	46.91	7.92	7.81	4.89	4.82		
G	2[Pr ₂ NH ₂ C ₂ O ₄ SnPh ₃]·(Pr ₂ NH ₂) ₂ C ₂ O ₄ · SnCl ₄ ·2Pr ₂ NH ₂ Cl	43.44	43.32	5.95	6.03	3.85	3.78		

The infrared spectra were recorded at the *Instituto de Química - U.N.A.M.*, *Mexico*, by means of a BX FT-IR type spectrometer. Elemental analyses have been performed at the *Instituto de Química - U.N.A.M.*, *Mexico*.

Infrared data are given in cm⁻¹ (IR abbreviations: (vs) very strong, (s) strong, (m) medium, (w) weak, (vw) very weak).

The NMR spectra were recorded in the solid state and in chloroform at the *Instituto de Química - U.N.A.M.*, *Mexico*, by means of a Bruker 300 type spectrometer.

Mössbauer spectra were obtained as described previously [11]. Mossbauer parameters are given in $mm \cdot s^{-1}$ (Mossbauer abbreviations: Q.S = quadrupole splitting, I.S = isomer Shift, Γ = full width at half-height, A = area).

All the chemicals were purchased from Aldrich Company Germany and used as such.

RESULTS AND DISCUSSION

Let us consider the IR and NMR data of the three studied complexes: $Cy_2NH_2C_2O_4SnBu_3\cdot 1/4Cy_2NH_2Cl\cdot 3H_2O$

(A): $v_{as}COO^{-}$: 1675 (s), 1627 (vs); $v_{s}COO^{-}$: 1345 (s),1272 (vs); δCOO^{-} : 785 (s); $v_{as}SnBu_{3}$: 695 (vs); $v_{s}SnBu_{3}$: 601 (vw); i-Bu₂NH₂C₂O₄SnBu₃·1/2(i-Bu₂NH₂)₂C₂O₄;

(**B**): $v_{as}COO^{-}$: 1710 (s), 1650 (vs); $v_{s}COO^{-}$: 1345 (s), 1287 (vs); δCOO^{-} : 779 (s); $v_{as}SnBu_{3}$: 698 (vs); $v_{s}SnBu_{3}$: 601 (vw); $Cv_{2}NH_{2}C_{2}O_{4}SnMe_{3}$: 1/2($Cv_{2}NH_{2}$) $_{2}C_{2}O_{4}$;

(C): $v_{as}COO^{-}$: 1650 (s), 1627 (vs); $v_{s}COO^{-}$: 1305 (s), 1282 (vs); δCOO^{-} : 789 (s); $v_{as}SnMe_{3}$: 555 (vs); $v_{s}SnMe_{3}$: 518 (vw); NMR Solid-state ¹¹⁷Sn:7.3 ppm; Solution ¹¹⁷Sn: the wide resonance centered in 145 ppm; NMR ¹H (CDCl₃): 8.97 (NH); 3.02 (CHCy); 2.07 (CH₂Cy); 1.74 (CH₂Cy); 1.59 (CH₂Cy); 1.20 (CH₂Cy); 0.53 [58/55] (CH₃Sn); NMR ¹³C (CDCl₃): 165.7 (C₂O₄); 53.5 (CHCy); 29.2, 24.9, 24.8 (CH₂Cy); -0.1 (CH₃Sn).

The X ray structures of $Cy_2NH_2C_2O_4SnMe_3$ and $Bu_2NH_2C_2O_4SnMe_3$ have been reported by our group [11]. They consist of chains of $[C_2O_4SnMe_3]^T$ connected as a double chain structure with two bridging cations or as a layered structure with one bridging cation between the chains. The appearance of v_sSnBu_3 as a weak band is an indication of D_3h symmetry allowing to suggest a structure similar to one of those reported by our group in [12] and containing trans coordinated $SnMe_3$ residues (Figure 1). We have arbitrary chosen the double chain structure.

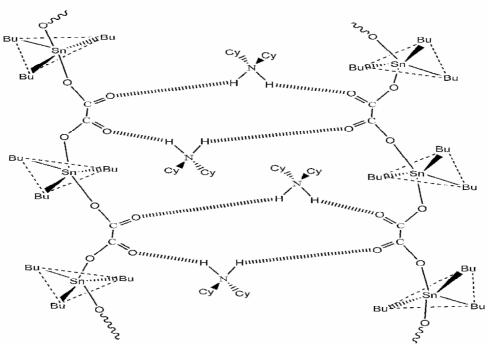


Figure 1. Proposed structure for compound A

For $(i\text{-Bu}_2\text{NH}_2)_2\text{C}_2\text{O}_4\text{SnBu}_3\cdot 1/2(i\text{-Bu}_2\text{NH}_2)_2\text{C}_2\text{O}_4$ and $(\text{Cy}_2\text{NH}_2)_2\text{C}_2\text{O}_4\text{SnMe}_3\cdot 1/2(\text{Cy}_2\text{NH}_2)_2\text{C}_2\text{O}_4$, the appearance of both $v_s\text{SnBu}_3$ and $v_s\text{SnMe}_3$ as weak bands are consistent with trans coordinated SnBu_3 and SnMe_3 residues allowing to suggest a double chain of $[\text{SnR}_3\text{C}_2\text{O}_4]^-$ connected by anion through $(\text{R}_2\text{NH}_2)_2\text{C}_2\text{O}_4$ - R = i-Bu, Cy - via NH...... O hydrogen bonds leading to the structure reported on Figure 2.

A second discrete dimeric structure with *trans* coordinated SnR₃ residue can also be considered (Figure 3). The ¹¹⁷Sn value of 7.3 ppm is consistent with the presence of a *trans* coordinated SnMe₃ residue - in solution a cleavage of the chains occurs (145ppm). Let us consider the IR and Mossbauer data:

 $Sn(C_2O_4)_2 \cdot [C_2O_4(SnMe_3H_2O)_2] \cdot 2EtOH \cdot 1/4[(Bu_2NH_2)_2C_2O_4]$

(**D**): $v_{as}COO^-$: 1700 (s), 1670 (s), 1661 (s); v_sCOO^- : 1280 (vs), 1239 (vs); δCOO^- : 788 (s); $v_{as}SnMe_3$, $v_{as}SnMe_3$: 520 (vw); $I.S_1 = 1.27$; $Q.S_1 = 3.71$; $\Gamma_1 = 0.9$; % $A_1 = 67$; $I.S_2 = 1.87$

0.088; Γ_2 =0.94; %A₂ = 33; $(i-Bu_2NH_2)_2C_2O_4$ 2 SnPh₂Cl₂ 2 SnCl₄ 4 ($i-Bu_2NH_2OH$) 2 ($i-Bu_2NH_2Cl$);

(E): $v_{as}COO^-$: 1675 (vs), 1671 (s); v_sCOO^- : 1299 (vs), 1239 (s); δCOO^- : 790 (s); $I.S_1 = 0.13$; $Q.S_1 = 0.37$; $\Gamma_1 = 0.95$; % $A_1 = 33$; $I.S_2 = 1.37$; $Q.S_2 = 4.30$; $\Gamma_2 = 0.95$; % $A_2 = 67$.

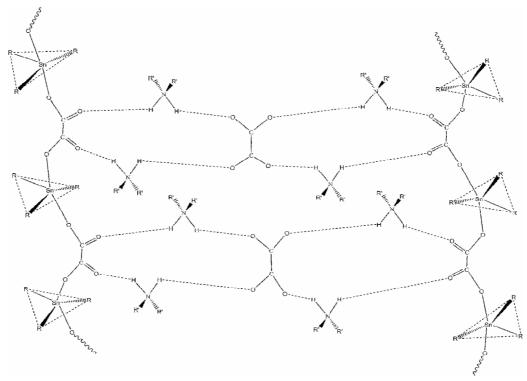


Figure 2. Proposed structure for compound B and C (R = Bu, Me; R' = i-Bu, Cy)

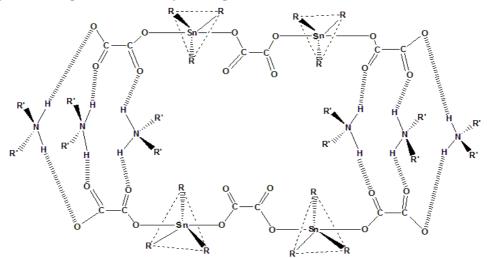


Figure 3. Dimeric structure suggested for compound B and C

From the Mossbauer data two tin centres are present, one SnMe₃ residue in a *trans* coordinated environment, the other one due to the presence of $Sn(C_2O_4)_2 \cdot 2EtOH$ adduct because of the weakness of the isomer shift: a unique absorption as the oxotin(IV)

centres and a doublet due to organotin centres allowing to suggest the presence of $C_2O_4(SnMe_3\cdot H_2O)_2$ yet reported by the Dakar group [13]. This compound can be considered as a 1/1 adduct between $Sn(C_2O_4)_2\cdot 2EtOH$ and $C_2O_4(SnMe_3\cdot H_2O)_2$. The proposed structure is a two metallic components one: $Sn(C_2O_4)_2\cdot 2EtOH$ and $C_2O_4(SnMe_3\cdot H_2O)_2$ interacting through hydrogen bonds or *van der Waals* forces (Figure 4). A supramolecular architecture may be obtained when extra hydrogen bonds are considered.

Figure 4. Proposed structure for D

The Mossbauer data of this adduct are consistent with the presence of two organotin(IV) centres, one organotin(IV) centre in a *trans* octahedral environment and one halotin(IV) centre according to Bancroft and Platt [14] allowing to conclude to the presence of $[SnPh_2Cl_2(OH)_2]^{2-}$ and $[C_2O_4(SnCl_4)]^{2-}$. The value of the isomer shift of the halotin(IV)centre allows to consider the presence of a SnO_2Cl_4 framework.

The suggested structure is reported on Figure 5. Two Cl interact electrostatically with the trimetallic hydrogen bonded component. A supramolecular architecture may be obtained when extra hydrogen bonds are considered.

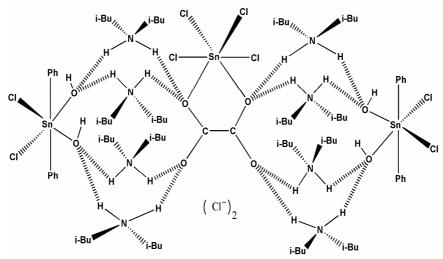


Figure 5. Proposed structure for E

Let us consider the IR and Mossbauer data of the studied adducts:

2[SnPh₂Cl₄(i-Bu₂NH₂)₂]·SnCl₂C₂O₄·4i-Bu₂NH₂Cl (**F**): ν_{as} COO⁻: 1680 (s), 1652 (vs); ν_{s} COO⁻: 1251 (vs); δ COO⁻: 788 (s); I.S₁ = 0.61; Q.S₁ = 1.92; Γ_{1} = 0.99; % A₁ = 66; I.S₂ = 0.09; Γ_{2} = 0.97; % A₂ = 34;

 $2[Pr_2NH_2C_2O_4SnPh_3]\cdot(Pr_2NH_2)_2C_2O_4\cdot SnCl_4\cdot 2Pr_2NH_2Cl$ (G): $v_{as}COO^-$: 1647 (vs), 1612 (s); v_sCOO^- : 1270 (s), 1261 (vs); δCOO^- : 789 (s).

The Mossbauer data of $2[SnPh_2Cl_4(i-Bu_2NH_2)_2]\cdot SnCl_2C_2O_4\cdot 4(i-Bu_2NH_2Cl)$ are consistent with the presence of two types of tin centres - two organotin(IV) and one halotin(IV) - the very weak value of the isomer shift of the halotin(IV) centres has not allowed to consider the presence of a O_2SnCl_4 framework according to Tudela [15] equation - $\delta = O.29\pm 0.08 \text{mm}\cdot\text{s}^{-1}$ for chloro compounds - what explain the correlation with the presence of the O_2SnCl_2 framework in the structure. The suggested structure consists of two $[SnPh_2Cl_4]^{2-}$ and $SnCl_2C_2O_4$ components linked by cationCl......cation hydrogen bonded strings the environments around the tin centres being cis octahedral (1.92 mm·s⁻¹) and tetrahedral ($\delta = 0.09 \text{ mm·s}^{-1}$) according to Bancroft and Platt [11] allowing to suggest the structure reported on Figure 6.

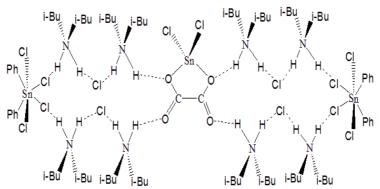


Figure 6. Proposed structure for compound F

The structure contains the dimeric $[C_2O_4(SnPh_3)Pr_2NH_2]_2$ - similar to the dimeric structure of $[C_2O_4(SnPh_3)Cy_2NH_2]_2$ reported by Ng and Hook [16] and the complex-anion $[C_2O_4(SnCl_4)]^2$ reported by Sow *et al* [17], these two components being connected by cation.....Cl...cation hydrogen bonded strings leading to the structure reported on Figure 7.

Figure 7. Proposed structure for compound G

CONCLUSION

The structure suggested for the studied derivatives are of double chain type connected by cations or $(R_2NH_2)_2C_2O_4$ - R = i-Bu, Cy - the SnR_3 residue being trans coordinated, the oxalate behaving as a monochelating, a bidentate bridging ligand or only hydrogen bonds involved. Dimeric or two metallic components structures were also proposed. Supramolecular architectures may be obtained when extra hydrogen bonds are possible.

ACKNOWLEDGEMENTS

We thank Professor José D. ARDISSON from *Laboratorio de Fisica Aplicada*, CDTN/CNEN, Belo Horizonte M.G. Brazil for running the Mossbauer spectra and Dr. Raymundo Cea OLIVARES from *Instituto de Química - U.N.A.M.*, Mexico for recording the infrared spectra and performing part of the elemental analyses.

REFERENCES

- 1. Evans, C. J., Karpel, S.: Agricultural Chemicals and Medical Uses (Chapters 6 and 7) in: *Organotin Compounds in Modern Technology (Journal of Organometallic Chemistry Library, 16*), Elsevier Science Ltd., Amsterdam, **1985**, 178-215;
- 2. Gielen, M.: Tin as a Vital nutrient: Implication In Cancer Prophylaxis and Other Physiological Processes, Antitumor Active Organotin compounds, Chap.13, N.F. Cardelli (Ed), C.R.C press, **1986**;
- 3. Gielen, M., Bouhdid, A., Kayser, S., Biesemans, M., De Vos, D., Mahieu, B., Willem, R.: Di(*n*-butyl)tin Bis(dihydroxybenzoate)s: Synthesis, Spectroscopic Characterization and *in vitro* Antitumour Activity, *Applied Organometallic Chemistry*, **1995**, **9**, 251-257;
- 4. Ng, S.W., Kumar Das, V.G.: Structural studies on triorganostannates derived from dicarboxylic acids. Crystal structure of tetramethylammonium oxalatotriphenylstannate bis(triphenyltin) oxalate, *Journal of Organometallic Chemistry*, **1993**, **456** (2), 175-179;
- 5. Ng, S.W., Hook, J.M.: Bis(diisoproprylammonium)bis(oxalatotriphenyl stannate), *Acta Crystallographica*, **1999**, <u>C55</u>, 310-312;

R₂NH₂C₂O₄SnC₂O₄SnBu₃, (R₂NH₂)₄(C₂O₄)₃(SnR'₃)₂ (R = Cy, *i*-Bu; R' = Me, Bu) AND SOME MIXED ORGANO- AND HALOTIN (IV) OXALATO NEW MOETIES CONTAINING COMPLEXES: SYNTHESIS, INFRARED, MOSSBAUER AND NMR STUDIES

- 6. Yip-Foo, W., Chen-Shang, C., Siang-Guan, T., Ching, K.Q., Hoong-Kun, F.: Catena-Poly[[triphenyltin(IV)]-μ-5-amino-2-nitrobenzoato-κ² O ¹:O ¹], *Acta Crystallographica*, **2001**, **E67**, m1276-m1277;
- 7. Yang, S., Bao-Ying, Z., Ru-Fen, Z., Shao-Liang, Z., Chun-Lin, M.: Syntheses, characterizations, crystal structures, and *in vitro* antitumor activities of chiral triorganotin(IV) complexes containing (S)-(+)-2-(4-isobutyl-phenyl) propionic and (R)-(+)-2-(4-hydroxyphenoxy)propionic acid ligands, *Journal of Coordination Chemistry*, **2012**, <u>65</u>, 4125-4136;
- 8. Handong, Y., Hong L., Min H.: Synthesis, structural characterization and DNA-binding properties of organotin(IV) complexes based on Schiff base ligands derived from 2-hydroxy-1-naphthaldy and 3-or 4-aminobenzoic acid, *Journal of Organometallic Chemistry*, **2012**, **713**, 11-19;
- 9. Xiao, X., Xiao, H., Zemin, M., Dongsheng, Z., Kuizhan, S., Jingwen, L., Min, T., Lin, X.: Organotin(IV) carboxylates based on amide carboxylic acids: Syntheses, crystal structures and characterizations, *Journal of Organometallic Chemistry*, **2013**, **729**, 28-29;
- 10. Laijin, T., Xianxian, C., Yanxiang, Z., Jianzhuang, J., Xijie, L.: Synthesis, characterization and cytotoxic activity of 5,10,15,20 tetrakis [4-(triorgano stannyloxy) phenyl]porphyrins, *Applied Organometallic Chemistry*, **2013**, **27**, 191-197;
- 11. De Sousa, G.F., Deflon, V.M., Gambardella, M.T., Do, P., Francisco, R.H.P., Ardisson, J.D., Niquet, E.: X-ray crystallographic and Mossbauer spectroscopic applications in dependence of partial quadrupole splitting, [R], on the C-Sn-C angle seven-coordinated diorganotin(IV) complexes, *Inorganic Chemistry.* **2006**, **45** (11), 4518-4525;
- 12. Sow, Y., Diop, L., Molloy, K.C., Kociock-Kohn, G.: Crystal and molecular structure of diorganoammo nium oxalatotrimethylstannate, [R₂NH₂][(C₂O₄)SnMe₃] (R = *i*-Bu, Cy), *Main Group Metal Chemistry*, **2012**, **34** (5-6), 127-130;
- 13. Diop, L., Mahon, M.F., Molloy, K.C., Sidibe, M.: Crystal Structure of Bis-(aquatrimethylstannyl)oxalate [Me₃Sn(H₂O)]₂C₂O₄, *Main Group Metal Chemistry*, **1997**, **20** (10), 649-654;
- 14. Bancroft, G.M., Platt, R.H.: *Mossbauer Spectra of Inorganic Compounds: Structure and Bonding in Advanced Inorganic Chemistry and Radiochemistry*, 15, Ed. by H. T. Emeleus and A. G. Sharpe, *Academic Press, NewYork*, **1972**, 112;
- 15. Tudela, D.V., Fernandez, V., Tornero, J.D., Vegas, A.: Mixed Halide Tin(IV) Complexes with N,N-dimethylformamide and dimethylsulfoxide, *Zeitschrift für anorganische und allgemeine Chemie*, **1986**, **532** (1), 215-224;
- 16. Ng, S.W., Hook, J.M.: Bis(diisoproprylammonium)bis(oxalatotriphenyl stannate), *Acta Crystallographica*, **1999**, <u>C55</u>, 310-312;
- 17. Sow, Y., Diop, L., Kociock-Köhn, G., Molloy, K.C.: X-ray crystal structure of (*n*-Pr₂NH₂)₂C₂O₄·SnCl₄, *Main Group Metal Chemistry*, **2010**, <u>33</u> (4-5), 205.