Scientific Study & Research

Chemistry & Chemical Engineering, Biotechnology, Food Industry

ISSN 1582-540X

ORIGINAL RESEARCH PAPER

NEW ORGANO-AND HALOTIN (IV) WITH EDTA: SYNTHESIS AND INFRARED STUDY

Serigne Cissé, Ibrahima Cissé, Libasse Diop*

Université Cheikh Anta Diop, Faculté des Sciences et Techniques, Département de Chimie, Laboratoire de Chimie Minérale et Analytique (LACHIMIA), DAKAR, Sénégal

*Corresponding author: <u>dlibasse@gmail.com</u>

Received: March, 30, 2015 Accepted: June, 26, 2015

Abstract: Nine acidic or neutral ethylenediaminetetraacetato $[H_2Y^{2-}, H_3Y^{-} \text{ or } Y^{4-}]$ containing adducts and derivatives have been synthesized and studied by infrared. The suggested structures are discrete with octahedral or trigonal bipyramidal environments around the tin centres, the ethylenediaminetetraacetic anion behaving as a bidentate and hydrogen bonds involved, a tridentate, a tetradentate, a bichelating and hydrogen bonds involved ligand, a tri- or tetrachelating ligand. For all the structures when intermolecular hydrogen bonds involving OH or CH groups are considered, a supramolecular architecture may be obtained.

Keywords:

bidentate and hydrogen bonds involved, tridentate, tetradentate, bichelating and hydrogen bonds involved, a tri-, tetrachelating ethylenediaminetetraacetic anion, discrete structures, hydrogen bonds, supramolecular architectures

INTRODUCTION

The interesting structural aspects and applications in organotin(IV) chemistry-medicine, agriculture, industry - explain the interest of various research groups worldwide [1-4]. In the framework of our research work in the coordinating ability of oxyanions towards organotin (IV) molecules, our group has yet published some papers [5-10] and report here the study of the interactions between [Et₄N][H₃Y]·3H₂O or [BzN(CH₃]₂[H₂Y]·H₂O and SnPh₃Cl, SnBu₂Cl₂ or SnCl₂·2H₂Owhich has yielded nine new compounds, infrared study of which have been carried out then structures suggested on the basis of spectroscopic data.

MATERIALS AND METHODS

[Et₄N][H₃Y]·3H₂O (L₄) and [BzNMe₃]₂[H₂Y]·H₂O (L₅) have been obtained as powders evaporation of the solution obtained the water dissolving ethylenediaminetetraacetic acid (EDTA) in aqueous solutions of Et₄NOH or BzNMe₃OH in 1 : 4 ratio. The analytical data % calculated (%found): (L_4) : C =45.46(46.07), H = 8.69(8.75), N = 8.84(8.88); (L₅): C = 59.19(59.07), H = 7.95(7.87), N = 9.20(9.23) have allowed to suggest the above formulae for (L_4) and (L_5) . When SnPh₃Cl or SnBu₂Cl₂ are allowed to react with (L₄) and (L₅) in ethanol in specific ratios, white precipitates are obtained which are stirred around two hours and washed with ethanol: SnBu₂Cl₂ with L₅ in 4 : 1 ratio gives (A); SnPh₃Cl with L₅ in 2 : 1 ratio gives (**B**); SnPh₃Cl with L₄ in 4 : 1 ratio gives (**C**); SnBu₂Cl₂ with L₄ in 4 : 1 gives (**D**); SnPh₃Cl with L₄ in 2 : 1 ratio gives (E). The analytical data have allowed to suggest the following formulae % calculated (%found): [BzNMe₃]₂[H₂Y]·3SnBu₂Cl₂

```
(A): C = 43.17(43.20), H = 6.71(6.80), N = 3.73(3.70); H_2Y(SnPh_3)_2 \cdot 2H_2O
```

(**B**):
$$C = 55.79(55.72)$$
, $H = 4.48(4.60)$, $N = 2.83(2.78)$; $[Et_4N][H_3Y] \cdot 3SnPh_3Cl$

(C):
$$C = 52.64(52.70)$$
, $H = 5.35(5.26)$, $N = 2.79(2.72)$; $[SnBu_2][H_2Y] \cdot 2SnBu_2Cl_2 \cdot 4H_2O$

(**D**):
$$C = 33.95(33.82)$$
, $H = 6.37(6.47)$, $N = 2.33(2.40)$; $Y(SnPh_2)_2$

(E):
$$C = 48.96(48.82)$$
, $H = 3.87(3.81)$, $N = 3.36(3.30)$.

When $SnCl_2$ is allowed to react with (L_4) or (L_5) in specific ratios, white precipitates are obtained which are stirred around two hours and washed with ethanol:

```
- SnCl_2 with L_4 in 5 : 1 ratio gives (F);
```

- SnCl₂ with L₄ in 1 : 2 ratio gives (**G**);
- $SnCl_2$ with L_4 in 2 : 1 ratio gives (**H**);
- SnCl₂ with L_5 in 5 : 1 ratio gives (**I**).

The analytical data have allowed to suggest the following formulae % calculated (%found): SnY·3SnCl₂(OH)₂·2EtOH·H₂O

```
(F): C = 14.15(14.05), H = 02.72(02.79), N = 02.36(02.42);
```

SnY 5SnCl₂(OH)₂ EtOH.5H₂O

(G): C = 08.67(08.74), H = 02.04(02.17), N = 01.68(01.67);

 $SnY \cdot 2SnCl_2(OH)_2 \cdot \frac{1}{2}EtOH \cdot 2H_2O$

(**H**): C = 14.76(14.60), H = 02.36(02.47), N = 03.13(03.27); $[BzNMe_3 \cdot Cl]_2[BzNMe_3 \cdot OH]_2 \cdot SnY \cdot 4SnCl_2(OH)_2 \cdot 6H_2O$

(I): C = 28.39(27.96), H = 04.67 (04.67), N = 03.97 (03.83).

The infrared spectra were recorded with a Bruker FTIR (4400 -350cm⁻¹) spectrometer at Saint Boniface College, Winnipeg-Canada. The elemental analyses have been performed at the laboratory of Microanalyses - University of Bath (UK) -. Infrared data are given in cm⁻¹ - abbreviations: (br) broad, (vs.) very strong, (s) strong, (m) medium, (sh) shoulder. All the chemicals are from Aldrich Company –Germany-and were used without any further purification.

RESULTS AND DISCUSION

Let us consider the infrared data of the studied derivatives based on assignments in [11] $v_{as}COO + \delta NH (1647sh-1625s)$, $\delta CH_2 + v_sCOO (1425sh-1375s)$, vCC (818sh) for (**A**);

 $v_{as}COO+\delta NH$ (1638s-1559sh), δCH_2+v_sCOO (1486m-1340sh), νCC (919sh), $\nu SnPh_3(728-696)\nu s$ for (**B**);

 $v_{as}COO + \delta NH$ (1648s-1559w), $\delta CH_2 + v_sCOO$ (1480m-1456s), $vSnPh_3(718-676)vs$, vCC (967w) for (**C**);

 $vOH_2+ vNH (3435)s$, $v_{as}COO+\delta NH (1668s)$, $\delta CH_2+ v_sCOO (1461s-1395sh)$, vCC (856vs) for **(D)**;

 $v_{as}COO$ (1633s), $\delta CH_2 + v_sCOO$ (1480m-1345m), vCC (722sh) for (E);

 $vOH_2(3412s)$, $v_{as}COO$ (1638s), $\delta CH_2 + v_sCOO$ (1435sh-1365s), vCC (718sh) for (**F**);

 $vOH_2(3602s) v_{as}COO (1648s-1549sh), \delta CH_2 + v_sCOO (1486m), vCC (909sh) for (G);$

 $vOH_2(3432s)v_{as}COO (1650s)$, $\delta CH_2 + v_sCOO (1482m-1356s)$, vCC (917w) for (**H**);

 $vOH_2(3425)s$, $v_{as}COO$ (1658s), $\delta CH_2 + v_sCOO$ (1401s-1355sh), vCC (856vs) for (I).

From these data we suggest five discrete structures with the ethylenediaminetetraacetic anion behaving as a bidentate and hydrogen bonds involved, tridentate, tetradentate, bichelating and hydrogen bonds involved, tri or tetrachelating, the environments around the tin centres being octahedral or trigonal bipyramidal.

For **A** a discrete structure with octahedral Sn centres, the anion behaving as a trichelating ligand is suggested (Figure 1).

Figure 1. Proposed structure for the compound A

For **B** a dimeric structure is suggested with a trigonal bipyramidal environment around Sn centres, the anion behaving as a tetradentate ligand, the water being considered as lattice (Figure 2a) or while considering the water molecules as coordinated ones a

discrete structure with trigonal bipyramidal Sn centres, the anion behaving as a bidentate ligand involved in hydrogen bonding with water molecules (Figure 2b).

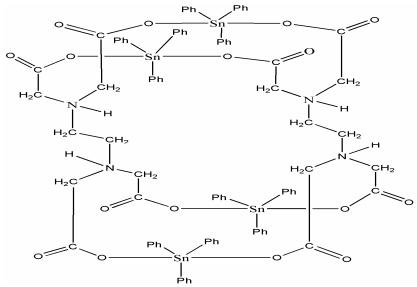


Figure 2a. Proposed structure for the compound B

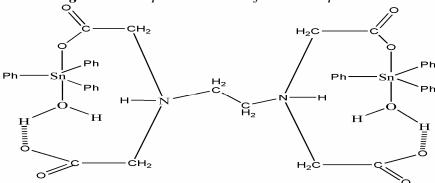


Figure 2b. Proposed structure for the compound B

For C a discrete structure with Sn centres in a trigonal byramidal environment, the anion behaving as a tridentate ligand (Figure 3).

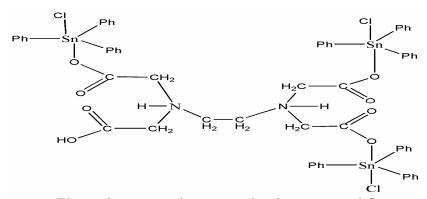


Figure 3. Proposed structure for the compound C

The compound **D** contains a SnBu₂ residue octahedrally trans coordinated and two [SnBu₂Cl₂·2H₂O] adducts connected to the [SnBu₂ (H₂Y)] component through O-----H₂O hydrogen bonds, the anion behaving as a bichelating and hydrogen bonding involved ligand (Figure 4).

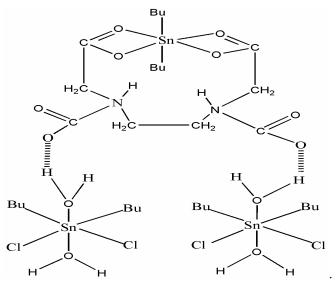
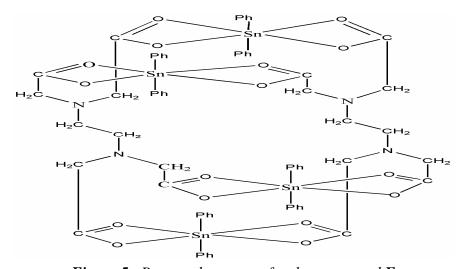



Figure 4. Proposed structure for the compound D

For **E** a dimeric structure with Sn centres an octahedral environment, the anion behaving as a tetrachelating ligand (Figure 5).

Figure 5. Proposed structure for the compound E

The structure of the compound **F** consists of neutral anion pentachelating the central Sn atom and monocoordinating two [SnCl₂(OH)₂·EtOH] and one [SnCl₂(OH)₂·H₂O] adducts, the anion behaving as a trichelating and tridentate ligand, the environment around the tin centres being octahedral (Figure 6).

Figure 6. Proposed structure for the compound F

For **G** a two components structure is suggested: one component consists of a neutral anion pentachelating the Sn central atom and monocoordinating four $[SnCl_2(OH)_2 \cdot H_2O]$ adducts, the second component being the adduct $[SnCl_2(OH)_2 \cdot EtOH.H_2O]$, the anion behaving as a pentachelating and tetradentate ligand (Figure 7).

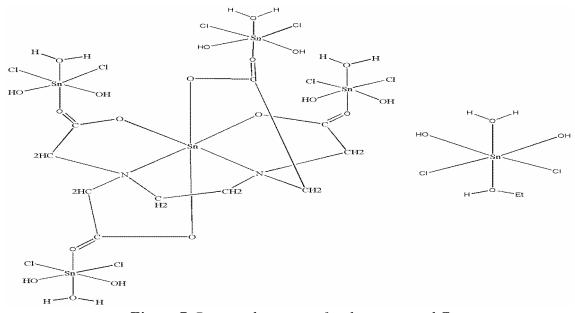


Figure 7. Proposed structure for the compound G

The structure of the compound **H** consists of a anion pentachelating Sn central atom and monocoordinating two $[SnCl_2(OH)_2 \cdot H_2O]$ adducts, the anion behaving as a pentachelating and bidentate ligand (Figure 8).

Figure 8. Proposed structure for compound H

For **I** the structure consists of a anion pentachelating Sn central atom and monocoordinating two [SnCl₂(OH)₂·HO] and two [SnCl₃(OH)₂] complex-anions, the water molecules being lattice, the anion behaving as a pentachelating and tetradentate ligand (Figure 9).

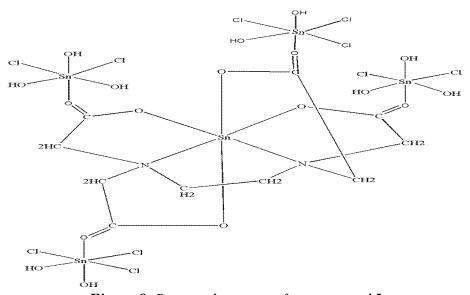


Figure 9. Proposed structure for compound I

For all the structures when extra hydrogen bonds are considered supramolecular architectures may be obtained.

CONCLUSION

The structures of five compounds studied in this work have a discrete structure with octahedral or trigonal bipyramidal environments around the tin centres, the anion behaving as a bidentate and hydrogen bonds involved, tridentate, tetradentate, bichelating and hydrogen bonds involved, tri- or tetrachelating ligand. For almost all these structures when intermolecular hydrogen bonds are considered involving OH or CH groups, a supramolecular architecture may be obtained.

ACKNOWLEDGEMENTS

We thank Professor K.C.Molloy –University of Bath-UK-for performing elemental analyses and Professor L.A.DIOP College Saint Boniface-Saint Boniface-Winnipeg-Canada for running the ir spectra.

REFERENCES

- 1. Gielen, M., De Clercq, L., Willem, R., Joosen, E.: New Developpements in developpements in anti-tumour Active organotin compounds in Tin and Malignant cell. Growth, (Editor Zuckerman, J.J.), CRC Press Inc., Bocca Raton, **1988**, 39-46;
- 2. Koch, B., Basu Baul, T.S., Chatterjee, A.: A cell proliferation inhibition and antitumor activity of novel alkyl series of diorganotin (IV) Compounds Investigational, *Journal of Applied Toxicology*, **2008**, **28**, 430-438;
- 3. Haiduc, I., Silvestru, C.: Organometallics in cancer chemotherapy, *Main Group Metal Compounds*, CRC Press, Boca Raton, Florida, USA, **1989**, **1**, 256;
- 4. Gielen, M.: Tin as Vital Nutrient: implications in cancer prophylaxis and other physiological processes in: *Antitumor Active Tin compounds*, (Editor: Cardelli, N.F.), CRC Press, **1986**;
- 5. Okio, K.Y.A., Diop, L., Russo, U.: [Cy₂NH₂SO₄(SnPh₃)₂X]₂ (X = F, Cl): synthesis and spectroscopic studies, *Scientific Study & Research Chemistry & Chemical Engineering, Biotechnology, Food Industry*, **2009**, **10** (1), 11-14;
- 6. Diallo, W., Okio, K.Y.A., Diop, C.A.K., Diop, L.A., Diop, L., Russo, U.: New selenito SnPh₃ residue containing complexes and adducts: synthesis and spectroscopic studies, *Main Group Metal Chemistry*, **2009**, **32** (2), 93-100;
- Diallo, W., Diassé-Sarr, A., Diop, L., Mahieu, B., Biesemans, M., Willem, R., Kociok-Köhn, G., Molloy K.C.: X Ray Structure of Tetrabutylammonium Chlorotrimethyltin Hydrogenosulphate: The First Cyclic Dimer Hydrogenosulphato Hydrogen Bonded Adduct, *Scientific Study & Research - Chemistry & Chemical Engineering, Biotechnology, Food Industry*, 2009, 10 (3), 207-212;
- 8. Qamar Kane, H., Okio, K.A., Fall, A., Diop, L., Russo, U., Mahieu, B.: Et₄NC₂O₄SnPh₃.2SnPh₃Cl and Cy₂NH₂C₂O₄SnPh₃.2SnPh₃Cl: Synthesis and spectroscopic characterization, *Main Group Metal Chemistry*, **2009**, **32** (4), 229-233;
- 9. De Barros, D., Diop, L., Mahieu, B.: On the Existence of « Tetrahedral » SnMe₂(PhCO₂)₂ and SnMe₂(PhCO₂)₃ in New Benzoato Adducts: Synthesis and Spectroscopic Studies, *Main Group Metal Chemistry*, **2009**, <u>32</u> (6), 341-346;
- 10. De Barros, D., Diop, L., Mahieu, B.: Me₄NHWO₄SnPh₃X (X = Cl, Br), R₄NWO₄SnPh₃ (R=Me, Et) and (SnBu₃)2WO₄: Synthesis and Spectroscopic Studies, *Main Group Metal Chemistry*, **2010**, **33** (1-2), 91-92;
- 11. Nakamoto, K.: *Infrared and Raman Spectra of Inorganic and Coordination Compounds*, 4thedition, John Wiley and sons, **1986**.