ORIGINAL PAPERS

ENTOMOPHAGE DYNAMICS ON NECTARIFEROUS PLANTS AND TOMATO-CROPS

Pantelei Vition

Key words: entomophages, predatory, nectar plants, ecosystem, phytocenotic, species

INTRODUCTION

The role of entomophages (parasites, predators) and functional biocenotic importance in terrestrial ecosystems consists in phytophage population density regulation. Formation of the beneficial entomofauna complex to a large measure depends and on cultivars [4].

One of the main factors both for maintaining at a high level the productivity of agricultural crops, and in pest population density regulation is the biological methods for plant protection with the help of natural entomophages [5].

The main crop pest on tomato plants in last years became tomato fruitworm (*Heliothis armigera* Hbn.), which causes large economical injuries yearly. Besides and aphid colonis are came across (*Maerosiphum eupherbiae* Thom.), which are more numerous during the first half of summer season.

The aim of present investigations was concentrated at the influence of the nectariferous plants, both as microrezervation for nutrition and attractively, and as special spreading of natural entomophages from the strips of nectariferous plants cultivated in the tomato agrobiocenosis.

MATERIAL AND METHODS

As a material for investigations some species of beneficial insects of (Chrysopidae, Syrphidae, Tachindae, and Cantaridae) families, which occur on nectariferous plants (Anethum graveolens, Coriandrum sativum, Foeniculum vulgare) and tomato culture. Investigations were carried out during 2011-2014 years in Central Zone (forest - steppe) of the Republic of Moldova in the tomato agrocenosis, which were sowed with strips of nectariferous plants a (c. Bacioi, SRL AGROBRIO and on experimental fields of the IGFPP of the ASM). Accounts were carried out and in adjacent strips to tomato field, cultivated with nectariferous plants of Apiaceae (Anethum graveolens, Coriandrum sativum, Foeniculum vulgare). During investigations the following methods were used. Thread method [2] of square area- entomophage number attributed to an area unit, method for accounting entomophages from 4 parcels by 25 plants [3]. Visual method [4].

Monitoring of the parasite entomophages was also carried out with the help of colored yellow traps. Taxonomic identification of the faunistic material were provided under the laboratory conditions. The quantitative account of the percentage relationship of entomophages was calculated proceeding from the total member of the captured insects in the bag, but the quality index – by species number in the whole composition of entomophages [1, 3]

RESULTS AND DISCUSSION

Investigations carried out on plants of nectariferous species (Anethum graveolens, Coriandrum sativum, Foeniculum vulgare) of some groups taxonomic of predor entomophages have observed presence of the following families: (Chrysopidae, Syrphidae, Cantaridae,) and among the parasite entomophages – fam. Tachindae). It was established that on (Anethum graveolens), crop the inflorescent phase began at first decade of July and lasted tile first decade of August, and on culture (Coriandrum sativum) – since second decade of July till the first half of august 2014 (Table 1).

Table 1. Taxonomic composition of the entomophage species depistated in the strips with nectariferous species (*Anethum graveolens, Coriandrum sativum*), adjacent to the tomato field

Taxonomic groups	Anethum graveolens (%)	Coriandrum sativum (%)
Fam. Chrysopidae	17	25
Chrysopa carnea Steph.	+	+
Chrysopa perla L.	+	+
Chrysopa formosa Br.	-	+
Fam. Syrphidae	42	34
Sphaerophoria scripta L.	+	+
Syrphus ribesii L.	+	+
Syrphus corollae F.	+	+
Paragus tibialis Fallen	+	+
Epistrophe balteata F.	+	-
Fam. Tachindae	25	17
Compsylura consinnata Mg Ichn.	+	+
Tachina grossa Lim.	+	+
Tachina larvarum L.	+	-
Fam. Cantaridae	9	9
Cantaharis lateralis L.	+	+

It was stated, that on nectariferous species (Anethum graveolens) an important number of entomophages (42%) of Syrphidae and Tachindae (25%) families was depistated. On strip with (Coriandrum sativum) were depistated ca 59% of entomophages, which bilong to Syrphidae and Chrysopidae families. In the agrocenosis of tomato field it was stated, that Chrysopa carnea (fam. Chrysopidae) is the edificator species. During the vegetation period entomophage species Syrphus corollae, Epistrophe balteata, were found, (Syrphidae,) at second half of summer species Sphaerophoria scripta.being added. demonstrated, that in period of July-August months species Syrphus ribesii is dominated. At the same time it was stated that fam. Tachindae is represented by species Compsylura consinnata and Tachina larvarum (Fig. 1).

Of diagram it can be revealed, that on dill culture at inflorescent stage the predominant insects were *Tachindae* - 44,4%, *Coccinellidae* - 33,3%, *Syrphidae* - 22,0%. On coriander plants at this period were found *Syrphidae* - 40%, *Coccinellidae* - 20 %, *Tachindae* - 40%. In tomato agrocenosis were *Tachindae* - 50%, *Syrphidae* - 25%, *Coccinellidae* - 25% (Table 2).

From this is clear, that maximum dynamics curve of some natural entomophages in nectariferous plants strips was registered at inflorescence stage. So for Tachindae 6,9%, Syrphidae 12,8%, Chrysopidae 15,8% and Cantaridae 5,6%. Simul - taneously, in tomato field agrocenosis at a distance of 50 m from nectariferous plants strips the following number at a distance of 50 m from nectariferous plants strips the following number of insects was registered: Tachindae 4,6%, at 100m distance -2,6%, 200m-1,9% and at 300 m distance-1,0%. At the distance of 50 m an the tomato field from nectariferous cultures Syrphidae – 7,9%,100m- 4,9%, 200 m, - 3,6%, and at 300m distance – 1,3% were registered. The dynamics of entomophage species of Chrysopidae family in agroecosystem of tomato field at a distance of 50m from nectariferous plants strips was found to be 12.8%, at 100 m - 7.9% at 200 m - 9.4%, and at the distance of 300m - 1,98%. Entomophage species of Cantaridae family on tomato field at a distance of 50m of necariferous plants strips the following quantity was found to be 2,3%, at 100 m - 1,6%, at 200 m - 1.0% and at 300 m distance -0.3%. Because of increasing entomophage number, the aphid colonies on tomato field were reduced from 47% to16% (Table 3).

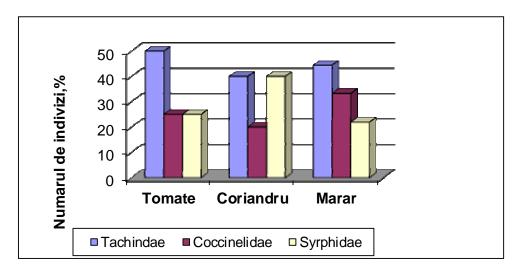


Fig. 1. Actual number of entomophages in nectariferous plants strips and on tomato field.

Table 2. Dynamics and spreading radius of entomophages in nectariferous plants strips to agrocenosis of tomato field

neu							
Entomophage	On nectariferous	Distance of 50 m	Distance of 100 m	Distance of 200 m	Distance of 300 m		
taxonomic groups	plants strips at	from nectariferous	from nectariferous	from nectariferous	from nectariferous		
	inflorescence stage,	plants	plants	plants	plants		
	(%)	(%)	(%)	(%)	(%)		
Chrysopidae	15,8	10,8	7,2	4,6	1,98		
Syrphidae	12,8	7,9	4,9	3,6	1,3		
Tachindae	6,9	4,6	2,6	1,9%	1,0		
Cantaridae	5,6	2,3	1,6	0,9	0,3		

Table 3. Ratio between *Aphidoidea* pests and entomophage groups on tomato field in dependence on distance from nectariferous species strips

Taxonomic groups	Distance of 100 m (%)	Distance of 200 m (%)	Distance of 300 m (%)
Pests of Aphidoidea family	17,0	36,0%	47,0%
Entomophages of <i>Chrysopidae Syrphidae</i> , <i>Coccinellidae</i> families	57,0	25,0%	18,0%

CONCLUSIONS

For zooimprovement and nutrition of entomophages the strips of nectariferous plants and aromatic are sowd with rows of 50cm and at interval between rows of 100m or as a band with a width of 1m in the vegetable fields.

Due to biological efficeiency of Aphidiidae and predator entomophages of (Syrphdae), (Coccinellidae), (Chrysopidae), families. Nabidae, Anthocoridae, Orius niger Wolff, Miridae, and (Aranei), (Lycosidae), (Araneidae), families, which from May to August have reduced the aphid colonies on tomatoes from 47% to 16%.

The phenotological observations carried out have stated, that maximal dynamics of the entomophage majority was registeres on nectariferous plants at the inflorescence stage during 15-17 days on dill, coriander 12-14, fenhel -8-10 days.

ABSTRACT

Cultivation of entomozones, microreservations with nectariferous and aromatic plants which contain in their pollen glucides and extrafloral nectar in adjancecy with agroecosystems of anual agricultural crops and cnoses of perenial plantations increases biological reproduction of entomophages by 3-5 times, and longevity in case of minimal quantities of food.

REFERENCES

 MEINANDER M. 1962 - The Neuroptera and Neuroptera of Eastern Fennoscandia. Fauna Fennica Helsinki, v 13. P.1-96;

- TJEDER B. Neuroptera, 1966. Planiptnnia, The lacewinegs of Sonther Africa, 5 family Chrysopidae, South African, Animal Life Uppsala, p. 228-534;
- 3. COSTAMAGNA C., ALEJANDRE, LANDIS A, DOUGLAS, 2006 Predators exert top down control of soybean aphid across a gradient of agricultural management systems. Ecological Applications, 16, (4). p. 16 28;
- 4. VITION P., 2014 Rolul culturilor de cîmp furagere şi nectarifere în dinamica entomofagilor Ministerul Agriculturii şî Industriei Alimentare al Republicii Moldova Academiea de Ştinţe a Moldovei Institutul de Cercetări pentru Culturile de Cîmp "Selecţiea" Materialele Conferinéi Ştinţifice-practice consacrate aniversării a 70–a a fondării I.C.C.C. "Selecţiea" Rezultatele şi perspectivile cercetărilor la cultura plantelor de cîmp Bălţi, 20 iunie 2014 Chişinău, 2014. p. 354–459;
- 5. ВИТИОН П., 2014 Сукцессия энтомофагов в нектараносных и овощных культур. Защита растений и экологическая устойчивость агробиоценозов. Материалы Международной научной конференции. г. Алматы, Стр. 51-53.

AUTHOR'S ADDRESS

VITION PANTELEI - The Institute of Genetics, Physiology and Plant Protection of the ASM Republic of Moldova, e-mail: vitionpantelei@yahoo.com