"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 26(2016), No. 2, 185-196

ON PAIRWISE s-COMPACT SPACES

AJOY MUKHARJEE, ARUP ROY CHOUDHURY AND M. K. BOSE

Abstract. We introduce and study the notion of pairwise s-compact spaces in bitopological spaces. The notion of pairwise s-compactness is stronger than the notion of pairwise compactness.

1. Introduction

Due to asymmetric nature of a quasi-metric space, there exists two topologies on a quasi-metric space which was first observed by Kelly [6]. On this observation, Kelly [6] introduced the notion of bitopological spaces. A set X endowed with two topologies \mathscr{P}_1 and \mathscr{P}_2 is called a bitopological space and it is denoted by $(X, \mathscr{P}_1, \mathscr{P}_2)$. Dochviri [4] introduced the notion of $(\mathscr{P}_i, \mathscr{P}_j)$ semi-compactness in a bitopological space: a bitopological space $(X, \mathscr{P}_1, \mathscr{P}_2)$ is said to be $(\mathscr{P}_i, \mathscr{P}_j)$ semi-compact $(i, j \in \{1, 2\}, i \neq j)$ if every $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open cover of X has a finite subcover. A cover of a bitopological space $(X, \mathscr{P}_1, \mathscr{P}_2)$ is $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open if each member of the cover is $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open. Balasubramanian [1] also studied the notion of $(\mathscr{P}_i, \mathscr{P}_j)$ semi-compactness in the same fashion as of Dochviri [4].

Keywords and phrases: Pairwise s-cover, pairwise s-compact, natural, (*) open function, (*) continuous function.

(2010) Mathematics Subject Classification: 54E55

According to Balasubramanian [1], the bitopological space $(X, \mathcal{P}_1, \mathcal{P}_2)$ is pairwise semi-compact if it is both $(\mathcal{P}_1, \mathcal{P}_2)$ semi-compact and $(\mathcal{P}_2, \mathcal{P}_1)$ semi-compact. The notion of pairwise semi-compactness is defined by considering covers consisting of only $(\mathcal{P}_i, \mathcal{P}_j)$ semi-open sets. So there can not exists a relation between pairwise compactness [5] and pairwise semi-compactness due to Dochviri [4] and Balasubramanian [1].

But the term 'pairwise semi-compactness' envisages that the pairwise semi-compactness should be implied by the notion of pairwise compactness. In this paper, we introduce a notion of pairwise s-compactness (Definition 1.13) in such a way that there exists a relation between pairwise compactness and pairwise s-compactness (see Fig. 1).

Unless otherwise mentioned, X stands for the bitopological space $(X, \mathcal{P}_1, \mathcal{P}_2)$ and Y stands for the bitopological space $(Y, \mathcal{Q}_1, \mathcal{Q}_2)$. (\mathcal{T}) intA (resp. (\mathcal{T}) clA) denotes the interior (resp. closure) of a set A in a topological space (X, \mathcal{T}) . For a topological space (X, \mathcal{T}) and $A \subset X$, we write (A, \mathcal{T}_A) to denote the subspace on A of (X, \mathcal{T}) . So the relative bitopological space for $(X, \mathcal{P}_1, \mathcal{P}_2)$ corresponding to $A \subset X$ is $(A, \mathcal{P}_{1A}, \mathcal{P}_{2A})$. Always $i, j \in \{1, 2\}$ and whenever i, j appear together, $j \neq i$. Throughout the paper, \mathbb{N} denotes the set of natural numbers and \mathbb{R} , the set of real numbers.

To make the article as self-contained as possible, we recall the following known definitions.

Definition 1.1 (Fletcher, Hoyle III and Patty [5]). A collection \mathscr{U} of X is pairwise open if $\mathscr{U} \subset \mathscr{P}_1 \cup \mathscr{P}_2$ and for each $i \in \{1, 2\}$, $\mathscr{U} \cap \mathscr{P}_i$ contains a nonempty set. \mathscr{U} is said to be a pairwise open cover of X if \mathscr{U} covers X.

Definition 1.2 (Fletcher, Hoyle III and Patty [5]). A bitopological space $(X, \mathcal{P}_1, \mathcal{P}_2)$ is pairwise compact if every pairwise open cover of X has a finite subcover.

Definition 1.3 (Mukharjee and Bose [8]). A bitopological space X is said to be nearly pairwise compact if for each pairwise open cover \mathscr{U} of X there exists a finite subcollection $\mathscr{V} \subset \mathscr{U}$ such that $\{(\mathscr{P}_i) \operatorname{int}((\mathscr{P}_j) \operatorname{cl} V) \mid V \in \mathscr{V} \cap \mathscr{P}_i, i \in \{1,2\}\}$ covers X.

Definition 1.4 (Maheshwari et al. [7] and Bose [2]). A subset A of a bitopological space X is said to be $(\mathcal{P}_i, \mathcal{P}_j)$ semi-open if there exists a (\mathcal{P}_i) open set G such that $G \subset A \subset (\mathcal{P}_j)$ clG.

The complement of a $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open set is called a $(\mathscr{P}_i, \mathscr{P}_j)$ semi-closed set. In other words, a subset A of X is $(\mathscr{P}_i, \mathscr{P}_j)$ semi-closed if and only there exists a (\mathscr{P}_i) closed set F such that (\mathscr{P}_j) int $F \subset A \subset F$.

Definition 1.5 (Romaguera and Marin [11], p. 237). Let $(X, \mathcal{P}_1, \mathcal{P}_2)$ and $(Y, \mathcal{Q}_1, \mathcal{Q}_2)$ be two bitopological spaces. A function $f: (X, \mathcal{P}_1, \mathcal{P}_2) \to (Y, \mathcal{Q}_1, \mathcal{Q}_2)$ is said to be open if $f: (X, \mathcal{P}_1) \to (Y, \mathcal{Q}_1)$ and $f: (X, \mathcal{P}_2) \to (Y, \mathcal{Q}_2)$ are open.

Definition 1.6 (Swart[12], p. 136). Let $(X, \mathcal{P}_1, \mathcal{P}_2)$ and $(Y, \mathcal{Q}_1, \mathcal{Q}_2)$ be two bitopological spaces. A function $f: (X, \mathcal{P}_1, \mathcal{P}_2) \to (Y, \mathcal{Q}_1, \mathcal{Q}_2)$ is said to be continuous if $f: (X, \mathcal{P}_1) \to (Y, \mathcal{Q}_1)$ and $f: (X, \mathcal{P}_2) \to (Y, \mathcal{Q}_2)$ are continuous.

Definition 1.7 (Bose [2]). Let $(X, \mathcal{P}_1, \mathcal{P}_2)$ and $(Y, \mathcal{Q}_1, \mathcal{Q}_2)$ be two bitopological spaces. A function $f: X \to Y$ is said to be semi-open if for each (\mathcal{P}_i) open set A in X, f(A) is a $(\mathcal{Q}_i, \mathcal{Q}_j)$ semi-open set in Y.

Definition 1.8 (Bose [2]). Let $(X, \mathcal{P}_1, \mathcal{P}_2)$ and $(Y, \mathcal{Q}_1, \mathcal{Q}_2)$ be two bitopological spaces. A function $f: X \to Y$ is said to be semi-continuous if for each (\mathcal{Q}_i) open set A in Y, $f^{-1}(A)$ is a $(\mathcal{P}_i, \mathcal{P}_j)$ semi-open set in X.

In the sequel, we use the following theorems.

Theorem 1.9 (Bose [2]). Let $(X, \mathcal{P}_1, \mathcal{P}_2)$ and $(Y, \mathcal{Q}_1, \mathcal{Q}_2)$ be two bitopological spaces. If $f: X \to Y$ is open and semi-continuous then the inverse image $f^{-1}(B)$ of each $(\mathcal{Q}_i, \mathcal{Q}_j)$ semi-open set B in Y is a $(\mathcal{P}_i, \mathcal{P}_j)$ semi-open set in X.

Theorem 1.10 (Bose [2]). Let $(X, \mathcal{P}_1, \mathcal{P}_2)$ and $(Y, \mathcal{Q}_1, \mathcal{Q}_2)$ be two bitopological spaces. If $f: X \to Y$ is continuous and semi-open then f(B) is $(\mathcal{Q}_i, \mathcal{Q}_j)$ semi-open in Y if B is $(\mathcal{P}_i, \mathcal{P}_j)$ semi-open in X.

We now introduce the following definitions.

Definition 1.11. A collection \mathscr{V} of subsets of a bitopological space X is said to be pairwise s-open if each member of \mathscr{V} is $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open for some $i \in \{1, 2\}$ and for each $i \in \{1, 2\}$, \mathscr{V} contains a nonempty $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open set. \mathscr{V} is called a pairwise s-cover of X if it covers X.

Definition 1.12. A collection \mathscr{F} of subsets of a bitopological space X is said to be pairwise s-closed if $\{X - F \mid F \in \mathscr{F}\}$ is pairwise s-open.

Definition 1.13. A bitopological space X is said to be pairwise s-compact if each pairwise s-cover of X has a finite subcover.

Obviously, a pairwise s-compact space is a pairwise compact space.

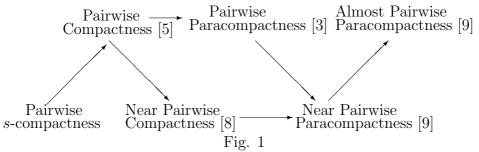
Example 1.14. Let $a, b \in \mathbb{R}$ with b > a + 1. We define

$$\begin{array}{lcl} \mathscr{P}_1 & = & \{\emptyset, \mathbb{R}, (-\infty, a], (-\infty, b]\}, \\ \\ \mathscr{P}_2 & = & \{\emptyset, \mathbb{R}, [a, \infty), [b, \infty)\}. \end{array}$$

The bitopological space $(\mathbb{R}, \mathscr{P}_1, \mathscr{P}_2)$ is pairwise compact but the space is not pairwise s-compact.

Note. We define pairwise s-compactness (Definition 1.13) on considering pairwise s-covers of X. So it may appear that it should be called 'pairwise semi-compact' rather than 'pairwise s-compact'. Generally the word 'semi' is used as a prefix of a notion to mean a weaker notion e.g. 'semi-open sets' which are weaker than open sets. The notion of 'pairwise s-compactness' is stronger than the notion of 'pairwise compactness'. Using the concept of an s-cover which is a cover consisting of semi-open sets, Prasad and Yadav [10] introduced and studied a notion of s-compactness in topological spaces and we see that the notion of s-compactness is stronger than compactness. Hence follows the reasons of naming so the notion introduced in Definition 1.13.

The relevance and importance of the study of pairwise s-compactness follows from the implication relations epitomized in the following diagram of pairwise s-compactness with some other covering properties of bitopological settings. The implications are not reversible.



Note: An arrow between two notions of a bitopological space stands to mean 'implies that'.

2. The Characterizations of Pairwise s-compactness

Theorem 2.1. If X is pairwise s-compact and F is a proper $(\mathscr{P}_j, \mathscr{P}_i)$ semi-closed subset of X, then each $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open cover of F has a finite subcover.

Proof. Let $\mathscr{U} = \{U_{\alpha} \mid \alpha \in A\}$ be a $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open cover of F. Then $\mathscr{U} \cup \{X - F\}$ is a pairwise s-cover of X. Since X is pairwise s-compact, $\mathscr{U} \cup \{X - F\}$ has a finite subcover \mathscr{V} for X. Now a finite subcover for F can be obtained from \mathscr{V} easily.

Lemma 2.2. Let A be (\mathscr{P}_i) open for each $i \in \{1, 2\}$ in a bitopological space $(X, \mathscr{P}_1, \mathscr{P}_2)$. If G is $(\mathscr{P}_{iA}, \mathscr{P}_{jA})$ semi-open in $(A, \mathscr{P}_{1A}, \mathscr{P}_{2A})$, then G is $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open in $(X, \mathscr{P}_1, \mathscr{P}_2)$.

Proof. Let G be $(\mathscr{P}_{iA}, \mathscr{P}_{jA})$ semi-open in $(A, \mathscr{P}_{1A}, \mathscr{P}_{2A})$. Then there exists a (\mathscr{P}_{iA}) open set H such that $H \subset G \subset (\mathscr{P}_{jA})$ clH. Since H is (\mathscr{P}_{iA}) open in $(A, \mathscr{P}_{1A}, \mathscr{P}_{2A})$ and A is (\mathscr{P}_{i}) open for each $i \in \{1, 2\}$ in $(X, \mathscr{P}_{1}, \mathscr{P}_{2})$, H is (\mathscr{P}_{i}) open in $(X, \mathscr{P}_{1}, \mathscr{P}_{2})$. Also we have (\mathscr{P}_{iA}) cl $H = A \cap (\mathscr{P}_{i})$ cl $H \subset (\mathscr{P}_{i})$ clH and hence the result follows.

Lemma 2.3. Let A be a (\mathscr{P}_i) open subset of a bitopological space $(X, \mathscr{P}_1, \mathscr{P}_2)$. If G is $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open in $(X, \mathscr{P}_1, \mathscr{P}_2)$ then $A \cap G$ is $(\mathscr{P}_{iA}, \mathscr{P}_{jA})$ semi-open in $(A, \mathscr{P}_{1A}, \mathscr{P}_{2A})$.

Proof. Let G be $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open in $(X, \mathscr{P}_1, \mathscr{P}_2)$. Then there exists a (\mathscr{P}_i) open set H such that $H \subset G \subset (\mathscr{P}_j)$ clH. So $A \cap H \subset A \cap G \subset A \cap A \cap (\mathscr{P}_j)$ clH $\subset A \cap (\mathscr{P}_j)$ cl($A \cap (\mathscr{P}_j)$ clH) = $A \cap (\mathscr{P}_j)$ cl($A \cap H$) = (\mathscr{P}_{jA}) cl($A \cap H$). Since $A \cap H$ is (\mathscr{P}_{iA}) open in $(A, \mathscr{P}_{1A}, \mathscr{P}_{2A})$, it follows that $A \cap G$ is $(\mathscr{P}_{iA}, \mathscr{P}_{jA})$ semi-open in $(A, \mathscr{P}_{1A}, \mathscr{P}_{2A})$. ▮

Theorem 2.4. If X is pairwise s-compact and $A \subset X$ is (\mathscr{P}_i) closed for some $i \in \{1, 2\}$ and (\mathscr{P}_i) open for each $i \in \{1, 2\}$, then A is pairwise s-compact.

Proof. Let $\mathcal{U}^{(A)} = \{U_{\alpha}^{(A)} \mid \alpha \in \Delta\}$ be a pairwise s-cover of $(A, \mathcal{P}_{1A}, \mathcal{P}_{2A})$. Since A is (\mathcal{P}_i) open for each $i \in \{1, 2\}$, by Lemma 2.2, $U_{\alpha}^{(A)}$ is $(\mathcal{P}_i, \mathcal{P}_j)$ semi-open in $(X, \mathcal{P}_1, \mathcal{P}_2)$ if $U_{\alpha}^{(A)}$ is $(\mathcal{P}_{iA}, \mathcal{P}_{jA})$ semi-open in $(A, \mathcal{P}_{1A}, \mathcal{P}_{2A})$. So $\mathcal{U}^{(A)} \cup \{X - A\}$ is a pairwise s-cover of $(X, \mathcal{P}_1, \mathcal{P}_2)$. By pairwise s-compactness of X, we obtain a finite subcover $\mathcal{V}^{(X)}$ of $\mathcal{U}^{(A)} \cup \{X - A\}$. So $\mathcal{V}^{(X)} - \{X - A\}$ is a finite subcover of $\mathcal{U}^{(A)}$. ■

Theorem 2.5. Let $(X, \mathcal{P}_1, \mathcal{P}_2)$ be a bitopological space and $A \subset X$ be (\mathcal{P}_i) open for each $i \in \{1, 2\}$. Then A is pairwise s-compact if and

only if each pairwise s-cover of A with respect to $(X, \mathcal{P}_1, \mathcal{P}_2)$ has a finite subcover for A.

Proof. Let A be pairwise s-compact and $\mathscr{U} = \{U_{\alpha} \mid \alpha \in \Delta\}$ be a pairwise s-cover of A with respect to $(X, \mathscr{P}_1, \mathscr{P}_2)$. For definiteness, let U_{α} be $(\mathscr{P}_j, \mathscr{P}_i)$ semi-open in X. Then by Lemma 2.3, $A \cap U_{\alpha}$ is $(\mathscr{P}_{jA}, \mathscr{P}_{iA})$ semi-open in A. So $\mathscr{U}^{(A)} = \{A \cap U_{\alpha} \mid \alpha \in \Delta\}$ is a pairwise s-cover of A with respect to $(A, \mathscr{P}_{1A}, \mathscr{P}_{2A})$. By pairwise s-compactness of A, we obtain a finite subcover $\mathscr{V}^{(A)}$ of $\mathscr{U}^{(A)}$. Let $\mathscr{V}^{(A)} = \{A \cap U_{\alpha_k} \mid k \in \{1, 2, \dots, n\}\}$. Then $A = \bigcup_{k=1}^n (A \cap U_{\alpha_k}) \subset \bigcup_{k=1}^n U_{\alpha_k}$.

Conversely, let $\mathscr{G} = \{G_{\alpha} \mid \alpha \in I\}$ be a pairwise s-cover of A with respect to $(A, \mathscr{P}_{1A}, \mathscr{P}_{2A})$. Then by Lemma 2.2, U_{α} is $(\mathscr{P}_i, \mathscr{P}_j)$ semiopen in X if U_{α} is $(\mathscr{P}_{iA}, \mathscr{P}_{jA})$ semi-open in A. So we obtain a finite subcover $\mathscr{H} = \{G_{\alpha_k} \mid k \in \{1, 2, ..., m\}\}$ of \mathscr{G} for A.

Let \mathscr{U} be a pairwise s-cover of $(X, \mathscr{P}_1, \mathscr{P}_2)$. Then for each $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open set $U \in \mathscr{U}$, there exists a (\mathscr{P}_i) open set G such that $G \subset U \subset (\mathscr{P}_j)$ clG. So it follows that $\mathscr{G} = \{G \mid U \in \mathscr{U}, G \subset U \subset (\mathscr{P}_j)$ clG, $i, j \in \{1, 2\}, i \neq j\}$ is a pairwise open collection of $(X, \mathscr{P}_1, \mathscr{P}_2)$ but \mathscr{G} may not be a pairwise open cover of X. We use the term 'pairwise open collection associated to \mathscr{U} ' for \mathscr{G} .

Theorem 2.6. A bitopological space X is pairwise s-compact if X is pairwise compact and if for each pairwise s-cover \mathscr{U} of X there exists a pairwise open collection associated to \mathscr{U} that is a cover of X.

Proof. Let \mathscr{U} be a pairwise s-cover of X. By hypothesis, we have a pairwise open cover \mathscr{G} associated to \mathscr{U} . So for each $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open set $U \in \mathscr{U}$, there exists a (\mathscr{P}_i) open set $G \in \mathscr{G}$ such that $G \subset U \subset (\mathscr{P}_j)$ clG. Since X is pairwise compact, \mathscr{G} has a finite subcover and hence \mathscr{U} has a finite subcover. Thus X is pairwise s-compact.

Theorem 2.7. Let X be pairwise s-compact. Then for each pairwise open collection \mathcal{G} associated to a pairwise s-cover of X there exists a finite subcollection $\mathcal{H} \subset \mathcal{G}$ such that $\{(\mathcal{P}_j)clH \mid H \in \mathcal{H} \cap \mathcal{P}_i, i \in \{1,2\}, i \neq j\}$ covers X.

Proof. Let \mathscr{U} be a pairwise s-cover of X and \mathscr{G} be a pairwise open collection associated to \mathscr{U} . Since X is pairwise s-compact, there exists a finite subcover $\mathscr{V} = \{V_k \mid k \in \{1, 2, ..., n\}\}$ of \mathscr{U} . Now for each $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open set $V_k \in \mathscr{V}$, there exists a (\mathscr{P}_i) open set $G_k \in \mathscr{G}$ such that $G_k \subset V_k \subset (\mathscr{P}_j)$ cl G_k . So $\mathscr{G}_n = \{G_k \mid k \in \{1, 2, ..., n\}\}$ is a

finite subcollection of \mathscr{G} . Since \mathscr{V} is a subcover of \mathscr{U} , it follows that $\{(\mathscr{P}_j)\operatorname{cl} G_k \mid G_k \in \mathscr{G}_n \cap \mathscr{P}_i, i \in \{1,2\}\}$ covers X.

Definition 2.8. Let A be a $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open set in X. A is said to be (\mathscr{P}_i) covered if there exist (\mathscr{P}_i) open sets G and H such that $G \subset A \subset H \subset (\mathscr{P}_j)$ clG. A is said to be (\mathscr{P}_i) uncovered if $G \subset A \subset (\mathscr{P}_j)$ clG for some (\mathscr{P}_i) open set G, then $G \subset (\mathscr{P}_i)$ int $((\mathscr{P}_j)$ cl $G) \subset A \subset (\mathscr{P}_i)$ clG.

In Example 1.14, (c, ∞) where a < c < b is a $(\mathscr{P}_2, \mathscr{P}_1)$ semi-open set and it is (\mathscr{P}_2) uncovered.

Example 2.9. For $b \in \mathbb{R}$, we define

$$\begin{split} \mathscr{P}_1 &= & \{\emptyset, \mathbb{R}, \mathbb{R} - \{b\}, (-\infty, b), (b, \infty,)\}, \\ \mathscr{P}_2 &= & \{\emptyset, \mathbb{R}, (b, \infty)\} \bigcup \left\{ \left(b + \frac{1}{n}, \infty\right) \mid n \in \mathbb{N} \right\}. \end{split}$$

In the bitopological space $(\mathbb{R}, \mathscr{P}_1, \mathscr{P}_2)$, $[b + \frac{1}{n}, \infty)$ is a $(\mathscr{P}_2, \mathscr{P}_1)$ semi-open set covered by a (\mathscr{P}_2) open set.

Theorem 2.10. Let $(X, \mathcal{P}_1, \mathcal{P}_2)$ be a bitopological space and each $(\mathcal{P}_i, \mathcal{P}_j)$ semi-open set $(i, j \in \{1, 2\}, i \neq j)$ in X is (\mathcal{P}_i) uncovered. Then X is pairwise s-compact if for each pairwise s-cover \mathcal{A} of X there exists a pairwise open cover associated to \mathcal{A} and X is nearly pairwise compact.

Proof. Let $\mathscr{A} = \{A_{\alpha} \mid \alpha \in \Delta\}$ be a pairwise s-cover of X and let $\mathscr{G} = \{G_{\beta} \mid \beta \in B\}$ be a pairwise open cover associated to \mathscr{A} . Since each $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open set $A_{\alpha} \in \mathscr{A}$ is (\mathscr{P}_i) uncovered, there exists a (\mathscr{P}_i) open set $G_{\beta(\alpha)} \in \mathscr{G}$ such that $G_{\beta(\alpha)} \subset (\mathscr{P}_i)$ int $((\mathscr{P}_j) \operatorname{cl} G_{\beta(\alpha)}) \subset A_{\alpha} \subset (\mathscr{P}_j) \operatorname{cl} G_{\beta(\alpha)}$. Since \mathscr{G} is a pairwise open cover of X and X is nearly pairwise compact, there exists a finite subcollection $\mathscr{G}_m = \{G_{\beta_k} \mid k \in \{1, 2, \dots, m\}, \beta_k \in B\}$ such that $\{(\mathscr{P}_i)$ int $((\mathscr{P}_j)\operatorname{cl} G_{\beta_k}) \mid G_{\beta_k} \in \mathscr{G}_m \cap \mathscr{P}_i, i \in \{1, 2\}\}$ covers X. For each $G_{\beta_k} \in \mathscr{G}_m \cap \mathscr{P}_i$, there exists a $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open set $A_{\alpha_k} \in \mathscr{A}$ such that (\mathscr{P}_i) int $((\mathscr{P}_j)\operatorname{cl} G_{\beta_k}) \subset A_{\alpha_k}$. So $\{A_{\alpha_k} \mid k \in \{1, 2, \dots, m\}, \alpha_k \in \Delta\}$ is a finite subcover of \mathscr{A} . \blacksquare

Definition 2.11. A bitopological space X is said to be natural if there exist a (\mathscr{P}_1) open set $G \neq X$ and a (\mathscr{P}_2) open set $H \neq X$ such that $(\mathscr{P}_2) \operatorname{cl} G \cup (\mathscr{P}_1) \operatorname{cl} H = X$.

The bitopological space of Example 2.9 is natural.

Theorem 2.12. A pairwise s-compact space is natural if there exists a pairwise open collection associated to some pairwise s-cover.

Proof. Let $(X, \mathcal{P}_1, \mathcal{P}_2)$ be pairwise s-compact and \mathscr{U} be a pairwise s-cover of X. Suppose \mathscr{G} is a pairwise open collection associated to \mathscr{U} and \mathscr{G} is not a cover of X. For each $G \in \mathscr{G} \cap \mathscr{P}_i$, it follows that $G \neq X$, and there exists a $U \in \mathscr{U}$ such that $G \subset U \subset (\mathscr{P}_j) \operatorname{cl} G$. Since X is pairwise s-compact, there exists a finite subcover $\mathscr{U}_n = \{U_1, U_2, \ldots, U_n\}$ of \mathscr{U} . As $\mathscr{G}_n = \{G_1, G_2, \ldots, G_n\}$ is a subcollection of \mathscr{G} , \mathscr{G}_n is not a cover of X. But $\{(\mathscr{P}_j)\operatorname{cl} G_k \mid G_k \in \mathscr{G}_n \cap \mathscr{P}_i, i \in \{1, 2\}\}$ is a cover of X. We put $A = \bigcup\{G_k \mid G_k \in \mathscr{G}_n \cap \mathscr{P}_1\}$ and $B = \bigcup\{G_k \mid G_k \in \mathscr{G}_n \cap \mathscr{P}_2\}$. Obviously, $A \in \mathscr{P}_1, B \in \mathscr{P}_2$ and $A, B \neq X$. Also $(\mathscr{P}_2)\operatorname{cl} A = (\mathscr{P}_2)\operatorname{cl}(\bigcup\{G_k \mid G_k \in \mathscr{G}_n \cap \mathscr{P}_1\}) = \bigcup\{(\mathscr{P}_2)\operatorname{cl} G_k \mid G_k \in \mathscr{G}_n \cap \mathscr{P}_1\}$ and $(\mathscr{P}_1)\operatorname{cl} B = \bigcup\{(\mathscr{P}_1)\operatorname{cl} G_k \mid G_k \in \mathscr{G}_n \cap \mathscr{P}_2\}$. So we have $(\mathscr{P}_2)\operatorname{cl} A \cup (\mathscr{P}_1)\operatorname{cl} B = X$. ■

Theorem 2.13. A bitopological space X is pairwise s-compact if and only if each pairwise s-closed collection of subsets of X with finite intersection property has a nonempty intersection.

Proof. Firstly, let X be pairwise s-compact and $\mathscr{F} = \{F\alpha \mid \alpha \in A\}$ be a pairwise s-closed collection of subsets of X with finite intersection property i.e. for each finite subcollection \mathscr{E} of \mathscr{F} , $\bigcap \{E \mid E \in \mathscr{E}\} \neq \emptyset$. If possible, let $\bigcap \{F \mid F \in \mathscr{F}\} = \emptyset$. Then $\mathscr{G} = \{X - F\alpha \mid \alpha \in A\}$ is a pairwise s-cover of X. So there exists a finite subcover $\mathscr{G}_n = \{X - F_{\alpha_k} \mid \alpha_k \in \Delta, k \in \{1, 2, \dots, n\}\}$ of \mathscr{G} . Thus we get $X - \bigcup \{X - F_{\alpha_k} \mid \alpha_k \in \Delta, k \in \{1, 2, \dots, n\}\} = \emptyset$ which in turn implies that $\bigcap \{F_{\alpha_k} \mid \alpha_k \in \Delta, k \in \{1, 2, \dots, n\}\} = \emptyset$, a contradiction.

Conversely, let $\mathscr{U} = \{U\beta \mid \beta \in B\}$ be a pairwise s-cover of X. If possible, let \mathscr{U} does not have a finite subcover. So for any finite subcollection \mathscr{V} of \mathscr{U} , we have $\bigcup \{G \mid G \in \mathscr{V}\} \neq X$ which in turn implies that $\bigcap \{X - G \mid G \in \mathscr{V}\} \neq \emptyset$. Hence $\mathscr{F} = \{X - U\beta \mid \beta \in B\}$ is a pairwise s-closed collection of subsets of X with finite intersection property. Accordingly, we have $\bigcap \{X - U\beta \mid \beta \in B\} \neq \emptyset \Rightarrow X - \bigcap \{X - U\beta \mid \beta \in B\} \neq X \Rightarrow \bigcup \{U\beta \mid \beta \in B\} \neq X$, a contradiction. \blacksquare

3. Preservation Theorems on Pairwise s-compactness

Theorem 3.1. Pairwise s-compactness is preserved under semi-continuous, open and onto mappings.

Proof. Let $(X, \mathcal{P}_1, \mathcal{P}_2)$ and $(Y, \mathcal{Q}_1, \mathcal{Q}_2)$ be two bitopological spaces, and let $f: X \to Y$ be a semi-continuous, open and onto mapping.

Suppose $\mathscr{U}^{(Y)} = \{U_{\alpha} \mid \alpha \in A\}$ is a pairwise s-cover of Y. By Theorem 1.9, $\mathscr{U}^{(X)} = \{f^{-1}(U\alpha) \mid \alpha \in A\}$ is a pairwise s-cover of X. Since X is pairwise s-compact, there exists a finite subcover $\mathscr{V}^{(X)} = \{f^{-1}(U_{\alpha_k}) \mid \alpha_k \in A, k = 1, 2, \dots, n\}$ of $\mathscr{U}^{(X)}$ for X. Now we have

$$Y = f(X)$$

$$= f\left(\bigcup_{k=1}^{n} \left\{ f^{-1}(U_{\alpha_k}) \mid k \in \{1, 2, \dots, n\} \right\} \right)$$

$$= \bigcup_{k=1}^{n} \left\{ f\left(f^{-1}(U_{\alpha_k})\right) \mid k \in \{1, 2, \dots, n\} \right\}$$

$$= \bigcup_{k=1}^{n} \left\{ U_{\alpha_k} \mid k \in \{1, 2, \dots, n\} \right\} \text{ (since } f \text{ is onto)}.$$

Therefore Y is pairwise s-compact.

Theorem 3.2. Assume that there exists a continuous and semi-open mapping $f: X \to Y$ such that f(X) = Y. Then X is pairwise s-compact if Y is pairwise s-compact.

Proof. Let $\mathscr{U}^{(X)} = \{U\alpha \mid \alpha \in \Delta\}$ be a pairwise s-cover of X. By Theorem 1.10, $f(U_{\alpha})$ is $(\mathscr{Q}_i, \mathscr{Q}_j)$ semi-open in Y if U_{α} is $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open in X. So $\mathscr{U}^{(Y)} = \{f(U\alpha) \mid \alpha \in \Delta\}$ is a pairwise s-cover of Y. Since Y is pairwise s-compact, we obtain a finite subcover $\mathscr{V}^{(Y)} = \{f(U_{\alpha_k}) \mid \alpha_k \in \Delta, k \in \{1, 2, \dots, n\}\}$ of $\mathscr{U}^{(Y)}$ for Y. Since Y = f(X), it follows that $\mathscr{V}^{(X)} = \{U_{\alpha_k} \mid \alpha_k \in \Delta, k \in \{1, 2, \dots, n\}\}$ is a finite subcover of $\mathscr{U}^{(X)}$ for X. \blacksquare

Theorem 3.3. Assume that there exists a semi-open mapping $f: X \to Y$ such that f(X) = Y. Then X is pairwise compact if Y is pairwise s-compact.

Proof. Similar to the proof of Theorem 3.2. ■

Definition 3.4. Let $(X, \mathscr{P}_1, \mathscr{P}_2)$ and $(Y, \mathscr{Q}_1, \mathscr{Q}_2)$ be two bitopological spaces. A function $f: (X, \mathscr{P}_1, \mathscr{P}_2) \to (Y, \mathscr{Q}_1, \mathscr{Q}_2)$ is said to be (*)open if for each $(\mathscr{P}_i, \mathscr{P}_j)$ semi-open set A in X, f(A) is (\mathscr{Q}_i) open in Y.

It follows that every (*)open function is an open function.

Definition 3.5. Let $(X, \mathcal{P}_1, \mathcal{P}_2)$ and $(Y, \mathcal{Q}_1, \mathcal{Q}_2)$ be two bitopological spaces. A function $f: (X, \mathcal{P}_1, \mathcal{P}_2) \to (Y, \mathcal{Q}_1, \mathcal{Q}_2)$ is said to be (*)continuous if the inverse image $f^{-1}(A)$ of each $(\mathcal{Q}_i, \mathcal{Q}_j)$ semi-open set A in Y is (\mathcal{P}_i) open in X.

It follows that every (*) continuous function is a continuous function.

We consider the bitopological space of Example 2.9. Let $f : \mathbb{R} \to \mathbb{R}$ be the identity mapping. Then the function is both open and continuous. But the function is neither (*)open nor (*)continuous.

Theorem 3.6. Assume that there exists a (*) open mapping $f: X \to Y$ such that f(X) = Y. Then X is pairwise s-compact if Y is pairwise compact.

Proof. Similar to the proof of Theorem 3.2. ■

Theorem 3.7. Assume that there exists a (*) continuous mapping $f: X \to Y$ such that f(X) = Y. Then Y is pairwise s-compact if X is pairwise compact.

Proof. Similar to the proof of Theorem 3.1. ■

Acknowledgement. The authors are grateful to the referee for careful reading the paper, and for providing some valuable suggestions and corrections towards the improvement of clarity and quality of the paper.

References

- [1] S. Balasubramanian, **Pairwise semi compact and pairwise semi Lindelöff spaces**, Sci. Magna 5 (2009), 62–71.
- [2] S. Bose, Semi open sets, semi continuity and semi open mappings in bitopological spaces, Bull. Calcutta Math. Soc. 73 (1981), 237–246.
- [3] M. K. Bose, A. Roy Choudhury, and A. Mukharjee, **On bitopological para-** compactness, Mat. Vesnik 60 (2008), 255–259.
- [4] I. Dochviri, On some properties of semi-compact and S-closed bitopological spaces, Proc. A. Razmadze Math. Inst. 123 (2000), 15–22.
- [5] P. Fletcher, H. B. Hoyle III, and C. W.Patty, **The comparison of topologies**, Duke Math. J. 36 (1969), 325–331.
- [6] J. C. Kelly, **Bitopological spaces**, Proc. Lond. Math. Soc. (3) 13 (1963), 71–89.
- [7] S. N. Maheshwari, and R. Prasad, **Semi open sets and semi continuous** functions in bitopological spaces, Math. Notae 26 (1977/78), 29–37.
- [8] A. Mukharjee and M. K. Bose, **On nearly pairwise compact spaces**, Kyungpook Math. J. 53 (1), 125–133.
- [9] A. Mukharjee, A. Roy Choudhury, and M. K.Bose, **On nearly pairwise** paracompact spaces, Southeast Asian Bull. Math. 40 (2) (2016), 213–223.
- [10] R. Prasad and R. S. Yadav, On s-compact spaces, Indian J. Math. 24 (1982), 209–214.
- [11] S. Romaguera and J. Marin, On the bitopological extension of the Bing metrization theorem, J. Austral. Math. Soc. (Series A) 44 (1988), 233–241.
- [12] J. Swart, Total disconnectedness in bitopological spaces and product bitopological spaces, Indag. Math. 33 (1971), 135–145.

Ajoy Mukharjee, Department of Mathematics, St. Joseph's College, Darjeeling, W. Bengal- $734\ 104,\ \mathrm{INDIA}$

E-mail address: ajoyjee@gmail.com

Arup Roy Choudhury, Department of Mathematics, Malda College, Malda, W. Bengal
- $732\ 101,\ \mathrm{INDIA}$

E-mail address: roychoudhuryarup@yahoo.co.in

M. K. Bose, Department of Mathematics, University of North Bengal, Siliguri, W. Bengal- 734 013, INDIA

E-mail address: manojkumarbose@yahoo.com