"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 27(2017), No. 1, 21-32

STRONGLY GENERALIZED (WEAKLY) δ -SUPPLEMENTED MODULES

FIGEN ERYILMAZ

Abstract.In this paper, we introduce strongly generalized (weakly) δ -supplemented modules. We call a module strongly generalized (weakly) δ -supplemented (briefly δ -SGS (δ -SWGS)) if every submodule containing the δ -radical has a (weak) δ -supplement. The first part of this paper investigates various properties of δ -SGS modules. We prove that δ -SGS modules are closed under factor modules and finite sums. Using these modules, we show that a ring R is δ -semiperfect if and only if every left R-module is a δ -SGS module. The second part of this paper establishes some properties of δ -SWGS modules.

1. Introduction and preliminaries

Throughout this paper, R will be an associative ring with identity and all modules will be unital left R-modules unless otherwise specified. Let M be an R-module. By $N \subseteq M$ we mean that N is a submodule of M. Recall that a submodule $N \subseteq M$ is called small, denoted by $N \ll M$, if $N + L \neq M$ for all proper submodules L of M. Furthermore a submodule L of M is said to be essential in M, denoted by $L \subseteq M$, if $L \cap K \neq 0$ for each nonzero submodule $K \subseteq M$. By Rad(M) we denote the sum of all small submodule of M. A module M is said to be singular if $M \cong \frac{N}{L}$ for some module N and a submodule $L \subseteq N$ with $L \subseteq N$.

Keywords and phrases: δ -small submodule, (weak) δ -supplement, generalized (weak) δ -supplement, δ -semiperfect ring.

(2010) Mathematics Subject Classification: 16D10,16L30,16D90.

As a generalization of small submodules, δ -small submodules were introduced in [13]. According to [13], a submodule L of M is called δ -small in M, denoted by $L \ll_{\delta} M$, if for any submodule N of M with $\frac{M}{N}$ singular, M = N + L implies M = N. The sum of all δ -small submodules of a module M is denoted by $\delta(M)$. It is easy to see that every small submodule of a module M is δ -small in M, so $Rad(M) \subseteq \delta(M)$ and $Rad(M) = \delta(M)$ if M is singular. Also any non-singular semisimple submodule of M is δ -small in M and δ -small submodules of a singular module are small submodules. For more detailed discussion on δ -small submodules we refer to [13].

Let K, N be submodules of a module M. Then N is called a δ -supplement of K in M, if N+K=M and $N\cap K\ll_{\delta}N$. N is called a weak δ -supplement of K in M, if N+K=M and $N\cap K\ll_{\delta}M$. A module M is called δ -supplemented if every submodule of M has a δ -supplement in M. Also M is called weakly δ -supplemented (briefly δ -WS)if every submodule of M has a weak δ -supplement in M [3, 11].

Let M be an R-module and let N and K be any submodules of M with M=N+K. If $N\cap K \leq \delta(N)$ $(N\cap K \leq \delta(M))$ then N is called a generalized (weak) δ -supplement of K in M. Following [7], M is called a generalized δ -supplemented module (briefly δ -GS module) if every submodule N of M has a generalized δ - supplemented K in M. In [7], an R-module M is called generalized weakly δ -supplemented (briefly δ -GWS module) (δ -WGS module in [7]) if every submodule K of M has a generalized weak δ -supplement N in M. Some properties of these modules were given in [5].

In [1], the authors studied strongly radical supplemented (briefly srs) modules. They were called a module strongly radical supplemented if every submodule containing the radical has a supplement. Motivated by this definition, we study strongly generalized (weakly) δ -supplemented modules.

2. Main results

In this section, we will define strongly generalized δ -supplemented modules as a generalization δ -GS-modules and srs-modules by using Zhou's radical and investigate some properties of these modules.

Definition 2.1. Let M be a module and N be a submodule of M which contains $\delta(M)$. If N has a δ -supplement in M, then M is called strongly generalized δ -supplemented (δ -SGS) module.

Proposition 2.1. Every homomorphic image of a δ -SGS module is a δ -SGS module.

Proof. Let M be a δ -SGS module and $L \subseteq N \subseteq M$ with $\delta(M/L) \subseteq N/L$. By virtue of [11, Proposition 4.2], $(\delta(M) + L)/L \subseteq \delta(M/L)$ and $\delta(M) \subseteq N$. Since M is a δ -SGS module and $N \subseteq M$, we have that N has a δ -supplement K in M. Then (K + L)/L is a δ -supplement of N/L in M/L by [4, Proposition 2.7(4)]. Hence, M/L is a δ -SGS module. ■

Proposition 2.2. If M is a δ -SGS module, then $M/\delta(M)$ is semisimple.

Proof. As a result of Proposition 2.1, we can conclude that $M/\delta\left(M\right)$ is a δ -SGS module. Since $\delta\left(M/\delta\left(M\right)\right)=0$, we get that $M/\delta\left(M\right)$ is δ -supplemented. Because, every submodule of $M/\delta\left(M\right)$ is a direct summand, $M/\delta\left(M\right)$ is semisimple. \blacksquare

To prove the finite sum of δ -SGS modules is a δ -SGS module, we need the following lemma.

Lemma 2.1. Let M be a module, M_1 and N be a submodules of M with $\delta(M) \subseteq N$. If M_1 is a δ -SGS module and $M_1 + N$ has a δ -supplement in M, then N has a δ -supplement in M.

Proof. Let L be a δ -supplement of $M_1 + N$ in M. Since $\delta(M_1) \subseteq \delta(M) \subseteq N$, we have $\delta(M_1) \subseteq (L+N) \cap M_1$. Then $(L+N) \cap M_1$ has a δ -supplement K in M_1 because M_1 is a δ -SGS module. Therefore, we have

$$M = M_1 + N + L = K + [((L + N) \cap M_1)] + N + L = (K + N) + L.$$

Since $K + N \subseteq M_1 + N$, we can conclude that L is also a δ -supplement of K + N in M. Therefore, according to [4, Proposition 2.7(1)], K + L is a δ -supplement of N in M.

Proposition 2.3. Let $M = M_1 + M_2$, where M_1 and M_2 are δ -SGS modules. Then M is a δ -SGS module.

Proof. Suppose that $N \subseteq M$ with $\delta(M) \subseteq N$. It is easy to see that $M_1 + M_2 + N$ has the trivial δ -supplement 0 in M. Therefore, $M_1 + N$ has a δ -supplement in M by Lemma 2.1. Applying lemma once more, we obtain a δ -supplement for N in M.

Corollary 2.1. Every finite sum of δ -SGS modules is a δ -SGS module.

Recall that a module M is called δ -radical if $M = \delta(M)$ and $P_{\delta}(M)$ denotes the sum of all δ -radical submodules of M, i.e., $P_{\delta}(M) = \sum \{U \subseteq M\delta(U) = U\}[8].$

Lemma 2.2. Let M be a module with $M = \delta(M)$. Then M is a δ -SGS module.

Proof. Clearly, M has the trivial δ -supplement 0 in M. Since $M = \delta(M)$ is the unique submodule containing the δ -radical, we can conclude that M is a δ -SGS module.

Corollary 2.2. $P_{\delta}(M)$ is a δ -SGS module for any module M.

Proof. For any module M, it is well known that $\delta(P_{\delta}(M)) = P_{\delta}(M)$. Then, the result follows by Lemma 2.2.

The examples below show that δ -SGS modules need not to be δ -supplemented and supplemented.

Example 2.1. Let $R = \mathbb{Z}$ and $M = \bigoplus_{i=1}^{\infty} M_i$ with each $M_i = \mathbb{Z}_{p^{\infty}}$ (the Prüfer group), where p is a prime number. Then M is a δ -SGS module because $\delta(M) = \bigoplus_{i=1}^{\infty} \delta(M_i) = \bigoplus_{i=1}^{\infty} M_i = M$. On the other hand, M is not δ -supplemented as shown in Example 2.14 [3].

Example 2.2. Consider the \mathbb{Z} -module \mathbb{Q} . Since $\delta(\mathbb{Q}) = \mathbb{Q}$, \mathbb{Q} is a δ -SGS module but \mathbb{Q} is not supplemented by [14, Theorem 3.1]

Proposition 2.4. Let M be a module with $\delta(M) \ll_{\delta} M$. In this case, M is δ -supplemented if and only if M is a δ -SGS module.

Proof. In one direction, the statement is obvious. Suppose that M is a δ -SGS module and N a submodule of M. Then $N+\delta(M)$ has a δ -supplement L in M. Hence $M=N+\delta(M)+L$ and $(N+\delta(M))\cap L\ll_{\delta} L$. Since $\delta(M)\ll_{\delta} M$, we have M=N+L. If we consider Lemma 1.3(a) in [13], then we obtain that $N\cap L\subseteq (N+\delta(M))\cap L\ll_{\delta} L$, i.e. $N\cap L\ll_{\delta} L$. Therefore N has a δ -supplement L in M and M is δ -supplemented. \blacksquare

Proposition 2.5. If M is a δ -SGS module and δ (M) is δ - supplemented, then M is δ -supplemented.

Proof. Let N be a submodule of M. Being a δ -SGS module of M implies that, $\delta(M) + N$ has a δ -supplement in M. Since $\delta(M)$ is δ -supplemented, N has a δ -supplement in M by virtue of [11, Lemma 3.4]. Hence M is a δ -supplemented.

Proposition 2.6. Let M be a module and $U, V \subseteq M$. If V is a δ -supplement of U in M and $\delta(V) \subseteq U$, then $\delta(V) \ll_{\delta} V$.

Proof. Suppose that $T+\delta(V)=V$ for some $T\subseteq V$ with V/T singular. Then $M=U+V=U+\delta(V)+T=U+T$. Since V is a δ -supplement of U in M, we have T=V by Lemma 2.1 of [4]. Therefore $\delta(V)\ll_{\delta}V$.

Proposition 2.7. Let M be a module and $\delta(M) \subseteq U \subseteq M$. If V is a δ -supplement of U in M, then $\delta(V) \ll_{\delta} V$.

Proof. Since $\delta(M) \subseteq U$, we have $\delta(V) \subseteq U$. Then $\delta(V) \ll_{\delta} V$ by Proposition 2.6.

Corollary 2.3. Let M be a module and let $N \subseteq M$ be such that $\delta(M) \subseteq N$. Suppose that M = N + L for some $L \subseteq M$. In this case, L is a δ -supplement of N in M if and only if L is a generalized δ -supplement of N and $\delta(L) \ll_{\delta} L$.

A submodule N of a module M is said to be *cofinite* if M/N is finitely generated. An R-module M is called *cofinitely* δ -supplemented, if each cofinite submodule of M has a δ -supplement in M. By this small note, we can write the following which shows the relation between δ -SGS modules and cofinitely δ -supplement modules.

Proposition 2.8. Let M be a module and $M/\delta(M)$ is finitely generated. In this case, if M is cofinitely δ -supplemented, then M is a δ -SGS module.

Proof. Let N be a submodule of M with $\delta(M) \subseteq N$. Note that $[M/\delta(M)]/[N/\delta(M)] \cong M/N$ is finitely generated, and so N is a cofinite submodule of M. Since M is cofinitely δ -supplemented, N has a δ -supplement in M. Therefore M is a δ -SGS module.

Now we characterize the rings over which all(finitely generated) modules are δ -SGS modules.

Corollary 2.4. For a ring R, the following statements are equivalent.

- (i) R is δ -semiperfect.
- (ii) $_RR$ is a $\delta-{\rm SGS}$ module.
- (iii) Every finitely generated left R-module is a δ -SGS module.

Proof. For every finitely generated module M, we have $\delta(M) \ll_{\delta} M$ [9, Lemma 2.1]. On the other hand, according to [3, Theorem 3.3], R

is δ —semiperfect if and only if every finitely generated R—module is δ —supplemented. In view of this fact and Proposition 2.4, the implications (i) \Leftrightarrow (ii) \Leftrightarrow (iii) are obvious.

Example 2.3. Let
$$F$$
 be a field, $I = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ and

$$R = \{(x_1, x_2,, x_n, x, x, ...) \mid n \in \mathbb{N}, x_i \in M_2(F), x \in I\},\$$

with component-wise operations, R is a ring. By example 4.3 in [13], R is a δ -perfect and so δ -semiperfect. By implication, ${}_RR$ is a δ -SGS-module.

It is clear that every srs-module is a δ -SGS-module. But the following example shows that the converse is not true in general.

Example 2.4. Let $Q = \prod_{i=1}^{\infty} F_i$, where each $F_i = \mathbb{Z}_2$. Let R be the subring of Q generated by $\bigoplus_{i=1}^{\infty} F_i$ and 1_Q . Then R is δ -semiperfect and so ${}_RR$ is a δ -SGS module. If we consider Corollary 2.5 in [1], then ${}_RR$ is not a srs-module because R is not semiperfect.[13, Example 4.1]

Proposition 2.9. Let M be a module and K be a submodule of M. If K and M/K are δ -SGS modules and K has a δ -supplement L in P for every submodule with $K \subseteq P \subseteq M$, then M is a δ -SGS module.

Proof. Let N be a submodule of M with $\delta(M) \subseteq N$. It is easy to see that $\delta(M/K) = (\delta(M) + K)/K \subseteq (N+K)/K$. Since M/K is a δ -SGS module, we can conclude that (N+K)/K has a δ -supplement in M/K. This means that there exists a submodule V/K of M/K such that (N+K)/K + V/K = M/K and $[(N+K)/K] \cap [V/K] \ll_{\delta} V/K$. Since $K \subseteq V$, we can say K has a δ -supplement in V. Therefore V = K + L and $K \cap L \ll_{\delta} L$ for some $L \subseteq V$. Now we have

$$M = N + V = N + (K + L) = (N + K) + L.$$

Suppose that M=(N+K)+L' for some $L'\subseteq L$. Then M/K=(N+K)/K+(L'+K)/K. However V/K is a δ -supplement of (N+K)/K in M/K and $(L'+K)/K\subseteq V/K$. By Lemma 2.1 of [4], we get (L'+K)/K=V/K and so L'+K=V. Since L is a δ -supplement of K in V, we have L'=L by Lemma 2.1 in [4]. Therefore, L is a δ -supplement of N+K in M and N has a δ -supplement in M by the same lemma. As a result, M is a δ -SGS module.

2.1. Strongly Generalized Weakly δ -Supplemented Modules.

Definition 2.2. Let M be a module and N be a submodule of M which contains $\delta(M)$. If N has a weak δ -supplement in M, then M is called strongly generalized weakly δ -supplemented (δ -SGWS) module.

Proposition 2.10. Let M be a δ -SGWS module which contains its δ -radical as a δ -small submodule. Then, M is δ -WS module.

Proof. Let $U \subseteq M$. By the hypothesis, $\delta(M) + U$ has a weak δ –supplement V in M. Then, $M = (\delta(M) + U) + V$ and $(\delta(M) + U) \cap V \ll_{\delta} M$. Since $\delta(M) \ll_{\delta} M$, we obtain that M = U + V. Clearly $U \cap V \subseteq (\delta(M) + U) \cap V$. Applying [13, Lemma1.3(a)] we get the result $U \cap V \ll_{\delta} M$. Therefore, V is a weak δ –supplement of U in M. Hence M is weakly δ –supplemented. \blacksquare

A module M is said to be δ -coatomic if every proper submodule K of M is contained in a maximal submodule N with M/N singular. Every δ -coatomic module has a δ -small radical [Lemma 2.3(2), 2].

Corollary 2.5. Let M be a δ -coatomic module. Then, M is a δ -SGWS module if and only if it is weakly δ -supplemented.

Recall that a module M over an arbitrary ring is said to be δ -local if $\delta(M) \ll_{\delta} M$ and $\delta(M)$ is a maximal submodule of M [10].

Corollary 2.6. Let M be a δ -local module. Then, M is a δ -SGWS module if and only if it is δ -WS module.

We will call a module M is cofinitely weak $\delta-$ supplemented (or briefly $\delta-CWS$ -module) if every cofinite submodule of M has a weak $\delta-$ supplement.

Proposition 2.11. Let M be a δ -CWS module with cofinite radical. Then M is a δ -SGWS module.

Proof. Let U be a submodule of M with $\delta(M) \subseteq U$. Note that

$$[M/\delta(M)]/[U/\delta(M)] \cong M/U$$

is finitely generated, and so U is a cofinite submodule of M. Applying our assumption, we conclude that M is a δ -SGWS module.

Proposition 2.12. Every homomorphic image of a δ -SGWS module is a δ -SGWS module.

Proof. Let $f: M \to N$ be a homomorphism and L be a submodule of f(M) with $\delta(f(M)) \subseteq L$. Then $\delta(M) \subseteq f^{-1}(L)$. By our assumption, $f^{-1}(L)$ has a weak δ -supplement K in M. Therefore $f^{-1}(L) + K = M$ and $f^{-1}(L) \cap K \ll_{\delta} M$. It follows that L + f(K) = f(M). Note that $f(f^{-1}(L) \cap K) = L \cap f(K) \ll_{\delta} f(M)$. This means that L has a weak δ -supplement in M. This completes the proof. \blacksquare

To prove that a finite sum of δ -SGWS modules is a δ -SGWS module, we use the following lemma.

Lemma 2.3. Let M be a module and M_1 , N be submodules of M with $\delta(M) \subseteq N$. If $M_1 + N$ has a weak δ -supplement L in M and $M_1 \cap (N + L)$ has a weak δ -supplement V in M_1 , then V + L is a weak δ -supplement of N in M.

Proof. By the hypothesis, we have $M = (M_1 + N) + L$ and $(M_1 + N) \cap L \ll_{\delta} M$. Since V is a weak supplement of $M_1 \cap (N + L)$ in M_1 , we can write $M_1 = [M_1 \cap (N + L)] + V$ and $V \cap (N + L) \ll_{\delta} M_1$. Then

$$M = (M_1 + N) + L = [(M_1 \cap (N + L) + V) + N] + L = N + (V + L)$$

and by [13, Lemma 1.3 (a), (b)]

$$N \cap (V+L) \subseteq (N+V) \cap L + (N+L) \cap V$$

 $\subseteq (M_1+N) \cap L + (N+L) \cap V \ll_{\delta} M.$

Hence V+L is a weak $\delta-$ supplement of N in M.

Proposition 2.13. Let $M = \sum_{i=1}^{n} M_i$, where each M_i is a δ -SGWS module. Then M is a δ -SGWS module.

Proof. Suppose that n=2, that is $M=M_1+M_2$. Let $\delta\left(M\right)\subseteq N\subseteq M$. Then M_1+M_2+N has the trivial weak δ -supplement 0 in M. Since $\delta(M_2)\subseteq \delta(M)\subseteq N$, we have $\delta(M_2)\subseteq M_2\cap(M_1+N)$. It follows from hypothesis that $M_2\cap(M_1+N)$ has a weak δ -supplement L in M_2 . By Lemma 2.3, L is also weak δ -supplement of M_1+N in M. Note that $\delta(M_1)\subseteq M_1\cap(N+L)$. Since $M_1\cap(N+L)$ has a weak δ -supplement V in M_1 . Again applying the Lemma 2.3, V+L is a weak δ -supplement of N in M. The proof is completed by induction on N.

Lemma 2.4. Let M be a module. Suppose that K is a δ -small submodule of M. Then, M is a δ -SGWS module if and only if M/K is a δ -SGWS module.

Proof. Necessity follows from Proposition 2.12. Conversely suppose that M/K is a δ-SGWS module. Let $\delta(M) \subseteq N \subseteq M$. Since K is a δ-small submodule of $M, K \subseteq \delta(M)$ and so $K \subseteq N$. By assumption, M/K = (N/K) + (L/K) and $(N/K) \cap (L/K) = (N \cap L) / K \ll_{\delta} M / K$ for some submodule L/K of M/K. Then we get M = N + L. Since $K \ll_{\delta} M$, by [13, Lemma 1.3(a)], $N \cap L \ll_{\delta} M$. Thus M is a δ-SGWS module. \blacksquare

Let M and N be R-modules. An epimorphism $f: M \to N$ is called a δ -cover if $Kerf \ll_{\delta} M$ [11]. Recall that an epimorphism $f: M \to N$ is called a generalized δ -cover if $Kerf \leq \delta(M)$ and M is called a generalized δ -cover of N with an epimorphism $f: M \to N$. Using Lemma 2.4, we obtain the following result.

Corollary 2.7. Every generalized δ -cover of a δ -SGWS module is a δ -SGWS.

Proposition 2.14. Let $0 \to K \to M \to M/K \to 0$ be a short exact sequence. If K and M/K are δ -SGWS modules and K has a weak δ -supplement in M, then M is a δ -SGWS module.

Proof. Without restriction of generality, we will assume that $K \subseteq M$. Let L be a weak δ-supplement of K in M, i.e., M = K + L and $K \cap L \ll_{\delta} M$. Then we get the decomposition $M/(K \cap L) = K/(K \cap L) \oplus L/(K \cap L)$. By Lemma 2.4, it suffices to prove that $M/(K \cap L)$ is δ-SGWS. $K/(K \cap L)$ is a δ-SWGS module as a homomorphic image of K. On the other hand $L/(K \cap L) \cong M/K$ is δ-SWGS. Thus $M/(K \cap L)$ is δ-SGWS module according to Proposition 2.13. ■

Next we consider linearly compact modules. Let M be a module. A coset of M is subset of the form $m+N=\{m+x:\ x\in N\}$, for some $m\in M$ and submodule N of M. A non-empty collection $\{C_i:i\in I\}$ of cosets of M has the finite intersection property if $\bigcap_{i\in F} C_i$ is non-empty for every finite subset F of I. The module M is called linearly compact if $\bigcap_{i\in I} C_i$ is non-empty for every non-empty collection $\{C_i:i\in I\}$ of cosets the finite intersection property [6].

Corollary 2.8. Let M be a module and K be a linearly compact submodule of M. Then, M is a δ -SGWS module if and only if M/K is a δ -SGWS module.

Proof. By [12, 41.10(1)], K has a weak δ -supplement in every extension. Since every weak supplement is weak δ -supplement. Applying Proposition 2.14, the proof follows.

REFERENCES

- [1] E.Büyükaşık, E.Türkmen, **Strongly Radical Supplemented Modules**, Ukrainian Math. J., 63,8(2012), 1306-1313.
- [2] M.T. Koşan, A. Harmancı, Generalizations of coatomic modules, Cent. Eur. J. Math. 3,2(2005), 273-281.
- [3] M.T. Koşan, δ -lifting and δ -supplemented modules, Algebra Colloq.,14,1(2007), 53-60.
- [4] M.J. Nematollahi, On δ supplemented modules, Tarbiat Moallem University, 20^{th} Seminar on Algebra, 155-158, 2009.
- [5] E. Öztürk, Ş.Eren, A note on generalized weakly $\delta-$ supplemented modules, Algebra Letters, 3,(2015), 515-525.
- [6] P.F.Smith, Finitely generated supplemented modules are amply supplemented, Arab. J. Sci. Eng. Sect. C Theme Issues, 25,2(2000), 69-79.
- [7] Y. Talebi, B. Talaee, On generalized δ supplemented modules, Vietnam J. Math., 37,4(2009), 515-525.
- [8] Y. Talebi, Generealizations of D_{11} and D_{11}^+ modules, Asian-Eur. J. Math., 2,2(2009), 285–293.
- [9] R. Tribak, Finitely generated δ supplemented modules are amply δ supplemented, Bull. Aust. Math. Soc., 86,(2012), 430-439.
- [10] R. Tribak, On δ -local modules and amply δ -supplemented modules, J. Algebra Appl., 12,2(2013), 1-14.
- [11] Y.Wang, δ -small submodules and δ supplemented modules, Int. J. Math. Math. Sci., Article ID 58132(2007), 8 pp.
- [12] R. Wisbauer, Foundations of Modules and Rings, Gordon and Breach, 1991.
- [13] Y. Zhou, Generalizations of perfect, semiperfect and semiregular rings, Algebra Colloq., 7,3(2000), 305-318.
- [14] H. Zöschinger, Komplementierte moduln über Dedekindringen, J. Algebra, 29(1974), 42-56.

STRONGLY GENERALIZED (WEAKLY) $\delta-\text{SUPPLEMENTED}$ MODULES $\ 31$

Ondokuz Mayıs University, Department of Mathematics Education

Address: Kurupelit, Atakum, Samsun, TURKEY

e-mail: fyuzbasi@omu.edu.tr