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A RELATED FIXED POINT THEOREM FOR
THREE PAIRS OF MAPPINGS ON COMPLETE
METRIC SPACES

R.K. JAIN, BHUPENDRA AND BRIAN FISHER

Abstract. In this paper we prove a related fixed point theorem for
three pairs of mappings, on three complete metric spaces, satisfying
rational type contractive conditions.

Dedicated to Professor Valeriu Popa on the Occasion of His 80th
Birthday

1. INTRODUCTION AND PRELIMINARIES

The first related fixed point theorem was proved in [2] for a pair of
mappings on two complete metric spaces.

Fisher and Murthy [3] proved the following related fixed point the-
orem for two pairs of mappings on two complete metric spaces.

Theorem 1.1. Let (X,d;) and (Y,dy) be complete metric spaces,
let A, B be mappings of X into Y and let S, T be mappings of Y into
X satisfying the inequalities

Keywords and phrases: complete metric space, common fixed
point, related fixed point theorem.
(2010) Mathematics Subject Classification: 47H10, 54H25

113



114

R.K. JAIN, BHUPENDRA AND BRIAN FISHER

di(SAz,TBx') < cmax{d(x,2),d;(z,SAz),

di(2',TBx"),dy(Ax, Bx')},

do(BSy, ATy") < cmax{ds(y,y'), ds(y, BSy),

do(y', ATY'), dy (Sy, Ty')}

forall x,x’" in X and y,y" in'Y, where 0 < ¢ < 1. If one of the map-
pings A, B,S and T is continuous, then SA and T B have a unique
common fixed point uw in X and BS and AT have a unique fixed point
vin Y. Further, Au = Bu=v and Sy =Ty = u.

See also [1], [4], [5] and [6].

We now prove a related fixed point theorem for three pairs of map-
pings on three complete metric spaces. The mappings satisfy a system
of three contractive conditions, where for each pair of mappings on the
same metric space the distance between the images is bounded by an
expression involving distances in all three spaces.

2. MAIN RESULT

Theorem 2.1. Let (X,dy), (Y,ds) and (Z,d3) be complete metric
spaces. Let A, B be mappings of X into Y, let C,D be mappings
of Y into Z and let E,F be mappings of Z into X satisfying the

mequalities

/ /
0(ECAz, FDB:) < AEBT:0:Y)
dy(BECy, AFDy') < ¢

d3(CAFz,DBE?) < ¢
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forall x,z" in X, y,y/ in'Y and z, 2" in Z such that ¢, (x,2’,y,y") # 0,
92y, Y, 2,2") #0 and g3(z,7',z,2") # 0, where 0 < ¢ < 1 and

fl(xa l’l, Y, y,) =
= max{d,(x,2")d,(EC Az, FDBz'), dy(x, EC Az)d, («', F D Bz'),
di(z, FDBz')d,(2', EC Ax), d; (2, 2")d, (ECy, F Dy'),
dl (l’, E0y>d1 ([E,7 FDy,)v dl (l’, FDy,)dl (l’/, Ecy)}a
f2<y7ylvz72/) =
= max{da(y,y')d2( BECyY, AFDY'), ds(y, BECy)da(y', AFDY'),
dy(y, AF Dy )ds(y', BECYy), da(y, ' )do( BE2, AF?'),
do(y, BE2)do(y', AFZ"), do(y, AF2")dy(y', BEZ)},
f3(za Zlv xz, xl) =
= max{ds3(z,2")d3s(DBEz, CAF?'),d3(z, DBEz)ds(', CAF?'),
d3(z,CAFz')d3(z', DBEz),ds(z, 2')d3(C Az, DBx'),
d3(z,CAx)ds(Z', DBx'), d3(z, DBx")d3(2', C Ax)},
gi(z, 2 y,y) = max{di(ECAz, FDBx'),di(ECy, F DY),
do(BECy, AFDy'),ds(C Az, DB1')},
92(y7 ?le Z, Z,) - maX{dZ(BECya AFDy,): dQ(BEZa AFZ/)7
d3(DBEz,CAFZ'),d,(ECy, FDy')},
g3(z, 7 x,2") = max{ds(DBEz,CAF?'),ds(C Az, DB1'),
di(ECAx, FDBz'),dy(BEz, AFz')}.
If A and C are continuous or B and D are continuous, then EC A
and FDB have a unique common fized point u in X, BEC and AFD
have a unique common fixed point v in Y and CAF and DBE have
a unique common fized point w in Z. Furthermore, Au = Bu = v,
Cv=Dv=w and Fw = Fw = u.
Proof.

Existence of fixed points.
Note that the system of equalities

Au=Bu=v,Cv=Dv=wand Fw = Fw =u
implies
ECAu = FDBu=u,

BECv = AFDv=wv and
CAFw = DBFEw=w.
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Let x = xg be an arbitrary point in X. We define the sequences
{z,} in X, {y,} in Y and {z,} in Z inductively by
Yon—1 = ATon_2, 2on-1 = ClYan_1, Ton-1 = Ezpp_1,
Yon = By 1, 2on = DYyan, Ton = Fz2,

form=1,2,....
First we take © = Zn, 2’ = Zon_1, ¥ = Yon—1, ¥ = Yon, 2 = Zon—1
and 2’ = 2y, in inequalities (1), (2) and (3).

We have
CAxs, = 2941, DBToy, 1 = 2op,
ECysn1 = zop1, FDysn = Tap,
BEzn 1 = yon-1, AF 22, = Yoni1,
hence

ECAQ?QH = Ton+i, FDBxanl = Tap,
BEcan_l = Yon, AFDan = Yon+1,
DBEzy,_1 = 2o, CAF 2y, = Zon+1-
It follows that

(4) fi(@on, Ton—1, Yon—1,Y2n) = di(Ton—1, T2n) max{di(Ton, T2n-1),
d1($2n,x2n+1)}7
J2(Yon—1,Yon, 2on—1, 22n) =  do(Y2n—1, Y2n)d2(Y2n, Yon+1),
f3(22n-1, 220, Ton, Ton—1) = d3(zan-1, 22n)d3(22n, Z2n+1),

and

(5) 91(T2n, Ton—1, Yon—1, Yon) = Mmax{d(Ton_1, T2n), d1(T2n, Tony1),
da(Y2ns Yant1)s d3(22n, 22n41) }

(6) 92(Y2n—1,Yon, Z2n—1, 22n) = maX{d1(£E2n—1,$2n),d2(92n,y2n+1),
ds(2on, 2on+1) }

(7) 93(220—1, 220, Tan, T2n—1) = max{di(Tan, Tant1), d2(Y2n, Y2n+1),

d3(Z2m Z2n+1)}-

If g1(zan, Tan—1, Yon—1,Y2n) # 0, by inequality (1) we get
(8) dy (Ton, Tant1) < cdy (Ton—1, Ton)

as maX{dl(QCQm x2n—1)7 d1($2n,$2n+1)} < 91($2n7$2n—1, Yon—1, yzn)-
If go(Y2n—1,Yon, Z2n—1, 22n) 7 0, by inequality (2) we obtain
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(9) da (Yo, Yont1) < cda(Yan—1, Yon),

as da(Yan, Yont1) < G2(Y2n—1,Y2n, Z2n—1, 22n)-
Similarly, if g3(22,_1, 220, Ton, Ton—1) 7 0, then inequality (3) implies

(10) d3(22n, 22n+1) < CdS(Zanla ZQn)-

Now we take = wan, ¥’ = Zon—1, ¥ = Yon—1, ¥ = Yon, 2 = 2201
and 2’ = zy, in inequalities (1), (2) and (3). We have

f1(T2n; Tant 1, Yant1, Yan) = di(Tan, Tong1) max{di (Tan, Tony1),
di(T2nt1, Tant2)
Jo(Yont1:Yon, 22041, 220) = d2(Yn, Y2n+1)da(Yont1, Yont2),
f3(22n-1, 220, Ton, Tan—1) = d3(2an, 22n11)d3(22n 41, Z2n42),
and

g1 (xzm Ton+1, Y2n+1, y2n) = maX{dl (xzn, 372n+1), dy ($2n+1, $2n+2),

(11) d2(Yan+1, Yan+2), d3(22n41, 220+2) }
92(Y2n+1, Yons 22041, 220) = max{di(Van, T2n41), d2(Y2n+1, Y2n+2),
(12) ds(22n+1, Zont2) }
93(22n+1, Zony L2n, 932n+1) = maX{d1($2n+1, 5172n+2)> d2(y2n+17 y2n+2)a
(13) d3(Z2nt1, Z2n42) }-

If g1(Zon; Tont1, Yont1, Y2n) 7 0, by inequality (1) we get
(14) dy (Tons1, Tant2) < cdy (Ton, Tani1) -

If go(Yon—1, Yon, Zon—1, 22n) # 0, by inequality (2) we obtain
(15) d2(Yant1, Yant2) < cda(Yan, Yont1)-

Finally, if g3(z2n_1, 22n, Ton, Tan—1) # 0, inequality (3) implies

(16) ds(22n+1, 22n+2) < cds(22n, Z2n+1)-

Case 1.

Assume that for every n > 1 all six num-
bers g1 (l’2n, Ton—1, Y2n—1, yzn), g1 (Izn, Ton+1, Y2n+1, yzn)7
g2(y2n_1, Yon, Z2n—1, Z2n)7 92(y2n+1, Yon, Z2n+1, Z2n)7

93(Z2n—1, Z2n, Ton, Ton—1) and g3(Zant1, Z2n, Ton, Tans1) are not zero.
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By (8) and (14), di (xpi1, Tnio) < cdy (2, Tpyq) for every n >
We get inductively dy (z,, Tni1) < "y (z1,29) for every n >
hence

n—1

di (Tp, Tpap) <1+t 471 < 1C — 0,

—c
since 0 < ¢ < 1. Then {z,} is a Cauchy sequence in the complete

metric space (X, d;), therefore it is convergent in X. Let u := lim z,.
n—oo

Similarly, using (9) and (15), then using (10) and (16) we conclude
that {y,} and {z,} are Cauchy sequences in the complete metric spaces
(Y,dy) and (Z,d3), respectively, therefore are convergent. Let v :=

lim y, and w := lim z,.
n—oo n—oo

Subcase 1.1. Now we suppose that A and C' are continuous. Then

(17) v = lim Yo,y = lim Az, = Au,
n—oo n—oo
w = lim Zon—1 — lim Cygn_l =Cw
n—oo n—oo

and therefore

(18) nh—>HOlo fl(uaxQTLfl;Uaan) - O;
(19) lim f2(U,Z/2mw7Z2n) = 0,
n—oo
(20) lim f3<w722n7uax2n71) = 0.
n—oo
Moreover,

(21> Y}LI&gl(uwa%l—lvU?y?n) = max{dl(Ew,u),dg(BEw,v)},

(22) JLT{}O92(U,QQn,w722n) = T}Lflgo93(w72’2n,1t,$2n+1)=

max{d;(Ew,u), ds(BEw,v),
d3(DBEw,w)}
Assume that at least one of the distances dj(Ew,u) and
do(BEw,v) is positive. Then by (21) and (22) it follows that

hmn%oo g1 <u7 Lop—1,7, y2n) 7é 0 and hmn%oo 92(U7 Yon, W, ZQn) =
limy, 00 g3(W, 2op, U, Tony1) # 0, respectively. By inequality (1) and
by equations (17) and (18), we obtain

di(Ew,u) = lim dy(ECAu, FDBxg, 1) =0
n—oo

which gives Fw = u and EC Au = u.
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Similarly, by inequality (2) and by equations (17) and (19) we obtain
dy(Bu,v) = lim dy( BECv, AF Dys,) = 0,
n—oo
which gives Bu = v and BECv = v.

So, assuming that di(Fw,u) > 0 or dy(BEw,v) > 0 we obtain
Fw = u and BEw = v, a contradiction. It follows that di(Ew,u) =0
and dy(BEw,v) = 0, hence
(23) FEw =wu and Bu = v.

Furthermore,
ECAu = v and BECv = v.

If d3(DBEw,w) > 0, then applying inequality (3) and equations
(17) and (20) we get

d3(Dv,w) = lim d3(DBEw,CAFz,) =0,
n—oo

which gives Dv = w and DBFEw = w, a contradiction. It follows that
d3(DBEw,w) = 0 and hence

(24) DBEw = w, i.e. Dv=w.

It remains to prove that Fw = u and FDBu = u, AFDv = v,
CAFw = w. Using (17), (23) and (24), we see that Fw = u implies
FDBu = FDv=Fw=u, AFDv = AFw = Au = v and CAFw =
CAu = Cv = w. So, it suffices to prove that Fw = u.

We consider inequality (1) with x = 2’ = v and y = v, ¢ = yo,. We
have

lim fy(u, u,v,ys,) = 0.
n—00
and
g1(u,u,v,y2,) = max{d;(ECAu, FDBu),d;(ECv, F Dys,),
dy(BECv, AF Dys,),ds(CAu, DBu)} =
= max{d;(u, Fw),d;(u, xs,),
do (v, Yont1), ds3(w,w)}.
Then lim ¢1(u, u, v, ya,) = di(u, Fw). If we assume that d; (u, Fw) >
0, apprll;i;fg inequality (1) we get d; (u, Fw) = dy (EC'Au, FDBu) < 0,

a contradiction. It follows that d;(u, Fw) = 0, as required.

Subcase 1.2. Suppose that B and D are continuous. The proof is
analogous to that from Subcase 1.1.
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Case 2.
Now we analyse the case where there exists m > 1 such
that at least one of the six numbers ¢1(Zon, Zan_1, Yon—1,Yon),

a1 (x2n7 Lon+1; Yan+1, yZn); gQ(an—h Yon, Z2n—1, 22n)7
92(y2n+1, Yony Z2n+1, Z2n), gS(ZZn—la Zony Lon, $2n—1) and
93(Z2n41, Z2n, Ton, Tany1) IS zero.

Subcase 2.1.a. Suppose that for some n we have

gl($2n,$2n71,y2n71,y2n) = 0. By (5),

Ton—1 = Ton = Tont1 = U, Yon = Yont+1 =1 U, Zon = Zopy1 = W.
Using the definitions of the sequences {x,}, {y,} and {z,} we see that
(25) Au = Bu=v, Cv=Dv=wand Fw = Fw = u.

Then

(26) ECAu = FDBu = u,
BECv = AFDv=wv,
CAFw = DBEw=w

and the claim follows, except for the uniqueness.

Subcase 2.1.b. Suppose that for some n we have
91(Ton, Tant1, Yoni1, Yon) = 0. This is similar to Subcase 2.1.a. Us-
ing (11) we get

Top = Topt1l = Tony2 = U,  Yopi41 = Y242 1 U 5 22p41 = 22n42 =1 W.

Using the definitions of the sequences {z,}, {y,} and {z,} we obtain
(25) and then (26) is a consequence of (25).

Subcase 2.2.a. Suppose that for some n we have
g2(y2n717y2n,2’2n71, Z2n) = 0. By (6)7

Lop—1 = Lop =2 U, Yon = Yopt+1 =V ,22n = Z2n41 = W.

According to these equalities and to (4) and (5),

f1($2mx2n—1,y2n—17y2n) = 0 and 91($2n,$2n—1,y2n—1,y2n) =
dy (o, Tons1), respectively. If dy (za,,z2,41) > 0, applying in-
equality (1) with x = 9,1, @ = T, and ¥y = Yop_1, ¥ = Yo, We
get

dy (Tant1, Ton) = di (EC Azen, FDBxs, 1) <0,

a contradiction. It follows that xs, = x3,.1, which allows us to go
back to Subcase 2.1.a.
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Subcase 2.2.b. Suppose that for some n we have

92(Yon+1, Yon, Zant1, 22n) = 0. Using (12) we get

Lon = Ton+1 = Uy Yont1 = Yont2 =1 U Zop41 = Rop42 =0 W.
This is similar to Subcase 2.2.a. Note that (4) and (5) show

that fi(72n, Tont1; Yont1,Yon) = 0 and g1(@an, Toni1; Yont1, Yon) =
d; (l’2n+1,$2n+2)> respectively. If d; ($2n+1>$2n+2) > 0, applying in-
equality (1) with = = 29,, ' = 29,41 and ¥y = Yops1, ¥ = Yo, we
get

dy (Ton+1, Tony2) = di (EC Az, FDBxg,1q) <0,

a contradiction. It follows that x9, = x2,.1, which allows us to go
back to Subcase 2.1.b.

Subcase 2.3.a. Suppose that for some n we have

93(22n-1, Z2n, Ton, Ton—1) = 0. By (7),
Ton = Top+1 =1 U, Yo = Yontl =1V,  Z2n = R2p41 =0 W.

Using the definitions of the sequences {z,}, {y,} and {z,} we see

that
Au=v, Cv=Dv=w and Fw = Fw = u.

Then FCAu = u, AFDv =v and CAFw = w.

If suffices to prove that Bu = v, since this and the above equalities
imply FDBu =u, BECv =v and DBEw = w.

Note that Bu = Bxo, 11 = Yonio and v = yYop1a.

Recall that, by (12), we have
92(Yont1, Yon, Zont1, Z2n) = maX{d1(9€2m Tont1), A2 (Yont1, Yont2), d3(2oni1, 22n+2)}-
But f2(y2n+1, Yon, Z2n+1, Zzn) = dz(yzm y2n+1)dz(y2n+1, y2n+2) and hence

f2(Y2nt1; Yon, 2on+1, 22n) = 0.

If da (Yon+1, Yont2) > 0, then go(Yant1, Yon, 22n+1, 22n) # 0 and by in-
equality (2) we obtain ds (Yont2, Yoni1) = do (BECYsp i1, AF Dysy,) <

0, a contradiction. Then yo,10 = Yo,41, i.6. Bu = .
Subcase 2.3.b. Suppose that for some n we have

93(22n+172’2m952m$2n+1) = 0. By (13),
Top+1 = Top42 = U, Yop41 = Yop42 =2 U, Zon41 = Z2p42 —: W.

As in Subcase 2.3.a., using the definitions of the sequences {x,},
{yn} and {z,} we see that

Bu=v, Cv=Dv=wand Fw = Fw = u.
Then FDBu = u, BECv =v and DBEw = w.
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If suffices to prove that Au = v, since this and the above equalities
imply EFCAu = u, AFDv =v and CAFw = w.

Note that Au = A$2n+2 = Yon+3 and v = Yon+2.

As a consequence of (6), we get

92(y2n+1, Yon+2, Z2n+1, 22n+2) = maX{dl ($2n+1, $2n+2), dz(y2n+2, y2n+3),

ds (Zzn+2, Z2n+3)}~

But fz(y2n+1,y2n+2,22n+1,22n+2) = dz(yzmy2n+1)d2(y2n+1,y2n+2) =
0. If do(yoni2,yY2nsr3) > 0, then using inequality (2) we obtain

d2 (y2n+2ay2n+3) = d2 (BECy2n+1,AFDy2n+2) S 0, a contradiction.
Then yo,13 = Yanio, i.e. Au=v.
This completes the proof of the Existence part.

Uniqueness of fixed points

To prove uniqueness, suppose that EFC A and FDB have a second
common fixed point ' # w in X. Then, applying inequality (1), we
have

dl(u,u’) = dl(EC’Au,FDBu’)
c(fl(uau/av7v))

B (gl(u’ul7vvv)

. AR
max{d;(u,u'),ds(Au, Bu'), ds(C Au, DBu')}

< cdy(u,u).

We obtain a contradiction since ¢ < 1. The fixed point u must therefore
be unique.

We can prove similarly that v is the unique common fixed point of
AFEC and BF D and w is the unique common fixed point of CAE and
DBF, using inequalities (2) and (3), respectively.
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