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A RELATED FIXED POINT THEOREM FOR
THREE PAIRS OF MAPPINGS ON COMPLETE

METRIC SPACES

R.K. JAIN, BHUPENDRA AND BRIAN FISHER

Abstract. In this paper we prove a related fixed point theorem for
three pairs of mappings, on three complete metric spaces, satisfying
rational type contractive conditions.

Dedicated to Professor Valeriu Popa on the Occasion of His 80th
Birthday

1. Introduction and preliminaries

The first related fixed point theorem was proved in [2] for a pair of
mappings on two complete metric spaces.

Fisher and Murthy [3] proved the following related fixed point the-
orem for two pairs of mappings on two complete metric spaces.

Theorem 1.1. Let (X, d1) and (Y, d2) be complete metric spaces,
let A,B be mappings of X into Y and let S, T be mappings of Y into
X satisfying the inequalities
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d1(SAx, TBx′) ≤ cmax{d1(x, x′), d1(x, SAx),

d1(x
′, TBx′), d2(Ax,Bx′)},

d2(BSy,ATy′) ≤ cmax{d2(y, y′), d2(y,BSy),

d2(y
′, ATy′), d1(Sy, Ty

′)}

for all x, x′ in X and y, y′ in Y , where 0 ≤ c < 1. If one of the map-
pings A,B, S and T is continuous, then SA and TB have a unique
common fixed point u in X and BS and AT have a unique fixed point
v in Y . Further, Au = Bu = v and Sy = Ty = u.

See also [1], [4], [5] and [6].
We now prove a related fixed point theorem for three pairs of map-

pings on three complete metric spaces. The mappings satisfy a system
of three contractive conditions, where for each pair of mappings on the
same metric space the distance between the images is bounded by an
expression involving distances in all three spaces.

2. Main result

Theorem 2.1. Let (X, d1), (Y, d2) and (Z, d3) be complete metric
spaces. Let A,B be mappings of X into Y , let C,D be mappings
of Y into Z and let E,F be mappings of Z into X satisfying the
inequalities

d1(ECAx, FDBx′) ≤ c
f1(x, x

′, y, y′)

g1(x, x′, y, y′)
,(1)

d2(BECy,AFDy′) ≤ c
f2(y, y

′, z, z′)

g2(y, y′, z, z′)
,(2)

d3(CAFz,DBEz′) ≤ c
f3(z, z

′, x, x′)

g3(z, z′, x, x′)
(3)
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for all x, x′ in X, y, y′ in Y and z, z′ in Z such that g1(x, x
′, y, y′) 6= 0,

g2(y, y
′, z, z′) 6= 0 and g3(z, z

′, x, x′) 6= 0, where 0 ≤ c < 1 and

f1(x, x
′, y, y′) =

= max{d1(x, x′)d1(ECAx, FDBx′), d1(x,ECAx)d1(x
′, FDBx′),

d1(x, FDBx′)d1(x
′, ECAx), d1(x, x

′)d1(ECy, FDy′),

d1(x,ECy)d1(x
′, FDy′), d1(x, FDy′)d1(x

′, ECy)},
f2(y, y

′, z, z′) =

= max{d2(y, y′)d2(BECy,AFDy′), d2(y,BECy)d2(y
′, AFDy′),

d2(y, AFDy′)d2(y
′, BECy), d2(y, y

′)d2(BEz,AFz′),

d2(y,BEz)d2(y
′, AFz′), d2(y, AFz′)d2(y

′, BEz)},
f3(z, z

′, x, x′) =

= max{d3(z, z′)d3(DBEz,CAFz′), d3(z,DBEz)d3(z
′, CAFz′),

d3(z, CAFz′)d3(z
′, DBEz), d3(z, z

′)d3(CAx,DBx′),

d3(z, CAx)d3(z
′, DBx′), d3(z,DBx′)d3(z

′, CAx)},
g1(x, x

′, y, y′) = max{d1(ECAx, FDBx′), d1(ECy, FDy′),

d2(BECy,AFDy′), d3(CAx,DBx′)},
g2(y, y

′, z, z′) = max{d2(BECy,AFDy′), d2(BEz,AFz′),

d3(DBEz,CAFz′), d1(ECy, FDy′)},
g3(z, z

′, x, x′) = max{d3(DBEz,CAFz′), d3(CAx,DBx′),

d1(ECAx, FDBx′), d2(BEz,AFz′)}.

If A and C are continuous or B and D are continuous, then ECA
and FDB have a unique common fixed point u in X, BEC and AFD
have a unique common fixed point v in Y and CAF and DBE have
a unique common fixed point w in Z. Furthermore, Au = Bu = v,
Cv = Dv = w and Ew = Fw = u.

Proof.
Existence of fixed points.
Note that the system of equalities

Au = Bu = v, Cv = Dv = w and Ew = Fw = u

implies

ECAu = FDBu = u,

BECv = AFDv = v and

CAFw = DBEw = w.
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Let x = x0 be an arbitrary point in X. We define the sequences
{xn} in X, {yn} in Y and {zn} in Z inductively by

y2n−1 = Ax2n−2, z2n−1 = Cy2n−1, x2n−1 = Ez2n−1,

y2n = Bx2n−1, z2n = Dy2n, x2n = Fz2n

for n = 1, 2, . . . .
First we take x = x2n, x′ = x2n−1, y = y2n−1, y

′ = y2n, z = z2n−1
and z′ = z2n in inequalities (1), (2) and (3).

We have

CAx2n = z2n+1, DBx2n−1 = z2n,

ECy2n−1 = x2n−1, FDy2n = x2n,

BEz2n−1 = y2n−1, AFz2n = y2n+1,

hence

ECAx2n = x2n+1, FDBx2n−1 = x2n,

BECy2n−1 = y2n, AFDy2n = y2n+1,

DBEz2n−1 = z2n, CAFz2n = z2n+1.

It follows that

f1(x2n, x2n−1, y2n−1, y2n) = d1(x2n−1, x2n) max{d1(x2n, x2n−1),(4)

d1(x2n, x2n+1)},
f2(y2n−1, y2n, z2n−1, z2n) = d2(y2n−1, y2n)d2(y2n, y2n+1),

f3(z2n−1, z2n, x2n, x2n−1) = d3(z2n−1, z2n)d3(z2n, z2n+1),

and

g1(x2n, x2n−1, y2n−1, y2n) = max{d1(x2n−1, x2n), d1(x2n, x2n+1),(5)

d2(y2n, y2n+1), d3(z2n, z2n+1)}
g2(y2n−1, y2n, z2n−1, z2n) = max{d1(x2n−1, x2n), d2(y2n, y2n+1),(6)

d3(z2n, z2n+1)},
g3(z2n−1, z2n, x2n, x2n−1) = max{d1(x2n, x2n+1), d2(y2n, y2n+1),(7)

d3(z2n, z2n+1)}.

If g1(x2n, x2n−1, y2n−1, y2n) 6= 0, by inequality (1) we get

(8) d1 (x2n, x2n+1) ≤ cd1 (x2n−1, x2n) ,

as max{d1(x2n, x2n−1), d1(x2n, x2n+1)} ≤ g1(x2n, x2n−1, y2n−1, y2n).
If g2(y2n−1, y2n, z2n−1, z2n) 6= 0, by inequality (2) we obtain
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(9) d2(y2n, y2n+1) ≤ cd2(y2n−1, y2n),

as d2(y2n, y2n+1) ≤ g2(y2n−1, y2n, z2n−1, z2n).
Similarly, if g3(z2n−1, z2n, x2n, x2n−1) 6= 0, then inequality (3) implies

(10) d3(z2n, z2n+1) ≤ cd3(z2n−1, z2n).

Now we take x = x2n, x′ = x2n−1, y = y2n−1, y
′ = y2n, z = z2n−1

and z′ = z2n in inequalities (1), (2) and (3). We have

f1(x2n, x2n+1, y2n+1, y2n) = d1(x2n, x2n+1) max{d1(x2n, x2n+1),

d1(x2n+1, x2n+2)},
f2(y2n+1, y2n, z2n+1, z2n) = d2(y2n, y2n+1)d2(y2n+1, y2n+2),

f3(z2n−1, z2n, x2n, x2n−1) = d3(z2n, z2n+1)d3(z2n+1, z2n+2),

and

g1(x2n, x2n+1, y2n+1, y2n) = max{d1(x2n, x2n+1), d1(x2n+1, x2n+2),

d2(y2n+1, y2n+2), d3(z2n+1, z2n+2)}(11)

g2(y2n+1, y2n, z2n+1, z2n) = max{d1(x2n, x2n+1), d2(y2n+1, y2n+2),

d3(z2n+1, z2n+2)},(12)

g3(z2n+1, z2n, x2n, x2n+1) = max{d1(x2n+1, x2n+2), d2(y2n+1, y2n+2),

d3(z2n+1, z2n+2)}.(13)

If g1(x2n, x2n+1, y2n+1, y2n) 6= 0, by inequality (1) we get

(14) d1 (x2n+1, x2n+2) ≤ cd1 (x2n, x2n+1) .

If g2(y2n−1, y2n, z2n−1, z2n) 6= 0, by inequality (2) we obtain

(15) d2(y2n+1, y2n+2) ≤ cd2(y2n, y2n+1).

Finally, if g3(z2n−1, z2n, x2n, x2n−1) 6= 0, inequality (3) implies

(16) d3(z2n+1, z2n+2) ≤ cd3(z2n, z2n+1).

Case 1.
Assume that for every n ≥ 1 all six num-

bers g1(x2n, x2n−1, y2n−1, y2n), g1(x2n, x2n+1, y2n+1, y2n),
g2(y2n−1, y2n, z2n−1, z2n), g2(y2n+1, y2n, z2n+1, z2n),
g3(z2n−1, z2n, x2n, x2n−1) and g3(z2n+1, z2n, x2n, x2n+1) are not zero.
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By (8) and (14), d1 (xn+1, xn+2) ≤ cd1 (xn, xn+1) for every n ≥ 1.
We get inductively d1 (xn, xn+1) ≤ cn−1d1 (x1, x2) for every n ≥ 1,
hence

d1 (xn, xn+p) ≤ cn−1
(
1 + c + .. + cp−1

)
≤ cn−1

1− c
→ 0,

since 0 ≤ c < 1. Then {xn} is a Cauchy sequence in the complete
metric space (X, d1), therefore it is convergent in X. Let u := lim

n→∞
xn.

Similarly, using (9) and (15), then using (10) and (16) we conclude
that {yn} and {zn} are Cauchy sequences in the complete metric spaces
(Y, d2) and (Z, d3), respectively, therefore are convergent. Let v :=
lim
n→∞

yn and w := lim
n→∞

zn.

Subcase 1.1. Now we suppose that A and C are continuous. Then

v = lim
n→∞

y2n+1 = lim
n→∞

Ax2n = Au,(17)

w = lim
n→∞

z2n−1 = lim
n→∞

Cy2n−1 = Cv

and therefore

lim
n→∞

f1(u, x2n−1, v, y2n) = 0,(18)

lim
n→∞

f2(v, y2n, w, z2n) = 0,(19)

lim
n→∞

f3(w, z2n, u, x2n−1) = 0.(20)

Moreover,

lim
n→∞

g1(u, x2n−1, v, y2n) = max{d1(Ew, u), d2(BEw, v)},(21)

lim
n→∞

g2(v, y2n, w, z2n) = lim
n→∞

g3(w, z2n, u, x2n+1) =(22)

max{d1(Ew, u), d2(BEw, v),

d3(DBEw,w)}

Assume that at least one of the distances d1(Ew, u) and
d2(BEw, v) is positive. Then by (21) and (22) it follows that
limn→∞ g1(u, x2n−1, v, y2n) 6= 0 and limn→∞ g2(v, y2n, w, z2n) =
limn→∞ g3(w, z2n, u, x2n+1) 6= 0, respectively. By inequality (1) and
by equations (17) and (18), we obtain

d1(Ew, u) = lim
n→∞

d1(ECAu, FDBx2n−1) = 0

which gives Ew = u and ECAu = u.
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Similarly, by inequality (2) and by equations (17) and (19) we obtain

d2(Bu, v) = lim
n→∞

d2(BECv,AFDy2n) = 0,

which gives Bu = v and BECv = v.
So, assuming that d1(Ew, u) > 0 or d2(BEw, v) > 0 we obtain

Ew = u and BEw = v, a contradiction. It follows that d1(Ew, u) = 0
and d2(BEw, v) = 0, hence

(23) Ew = u and Bu = v.

Furthermore,
ECAu = u and BECv = v.

If d3(DBEw,w) > 0, then applying inequality (3) and equations
(17) and (20) we get

d3(Dv,w) = lim
n→∞

d3(DBEw,CAFz2n) = 0,

which gives Dv = w and DBEw = w, a contradiction. It follows that
d3(DBEw,w) = 0 and hence

(24) DBEw = w, i.e. Dv = w.

It remains to prove that Fw = u and FDBu = u, AFDv = v,
CAFw = w. Using (17), (23) and (24), we see that Fw = u implies
FDBu = FDv = Fw = u, AFDv = AFw = Au = v and CAFw =
CAu = Cv = w. So, it suffices to prove that Fw = u.

We consider inequality (1) with x = x′ = u and y = v, y′ = y2n. We
have

lim
n→∞

f1(u, u, v, y2n) = 0.

and

g1(u, u, v, y2n) = max{d1(ECAu, FDBu), d1(ECv, FDy2n),

d2(BECv,AFDy2n), d3(CAu,DBu)} =

= max{d1(u, Fw), d1(u, x2n),

d2(v, y2n+1), d3(w,w)}.
Then lim

n→∞
g1(u, u, v, y2n) = d1(u, Fw). If we assume that d1(u, Fw) >

0, applying inequality (1) we get d1 (u, Fw) = d1 (ECAu, FDBu) ≤ 0,
a contradiction. It follows that d1(u, Fw) = 0, as required.

Subcase 1.2. Suppose that B and D are continuous. The proof is
analogous to that from Subcase 1.1.
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Case 2.
Now we analyse the case where there exists n ≥ 1 such

that at least one of the six numbers g1(x2n, x2n−1, y2n−1, y2n),
g1(x2n, x2n+1, y2n+1, y2n), g2(y2n−1, y2n, z2n−1, z2n),
g2(y2n+1, y2n, z2n+1, z2n), g3(z2n−1, z2n, x2n, x2n−1) and
g3(z2n+1, z2n, x2n, x2n+1) is zero.

Subcase 2.1.a. Suppose that for some n we have
g1(x2n, x2n−1, y2n−1, y2n) = 0. By (5),

x2n−1 = x2n = x2n+1 =: u, y2n = y2n+1 =: v, z2n = z2n+1 =: w.

Using the definitions of the sequences {xn}, {yn} and {zn} we see that

(25) Au = Bu = v, Cv = Dv = w and Ew = Fw = u.

Then

ECAu = FDBu = u,(26)

BECv = AFDv = v,

CAFw = DBEw = w

and the claim follows, except for the uniqueness.
Subcase 2.1.b. Suppose that for some n we have

g1(x2n, x2n+1, y2n+1, y2n) = 0. This is similar to Subcase 2.1.a. Us-
ing (11) we get

x2n = x2n+1 = x2n+2 =: u, y2n+1 = y2n+2 : v , z2n+1 = z2n+2 =: w.

Using the definitions of the sequences {xn}, {yn} and {zn} we obtain
(25) and then (26) is a consequence of (25).

Subcase 2.2.a. Suppose that for some n we have
g2(y2n−1, y2n, z2n−1, z2n) = 0. By (6),

x2n−1 = x2n =: u, y2n = y2n+1 =: v , z2n = z2n+1 =: w.

According to these equalities and to (4) and (5),
f1(x2n, x2n−1, y2n−1, y2n) = 0 and g1(x2n, x2n−1, y2n−1, y2n) =
d1 (x2n, x2n+1), respectively. If d1 (x2n, x2n+1) > 0, applying in-
equality (1) with x = x2n−1, x′ = x2n and y = y2n−1, y′ = y2n we
get

d1 (x2n+1, x2n) = d1 (ECAx2n, FDBx2n−1) ≤ 0,

a contradiction. It follows that x2n = x2n+1, which allows us to go
back to Subcase 2.1.a.
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Subcase 2.2.b. Suppose that for some n we have
g2(y2n+1, y2n, z2n+1, z2n) = 0. Using (12) we get

x2n = x2n+1 =: u, y2n+1 = y2n+2 =: v, z2n+1 = z2n+2 =: w.

This is similar to Subcase 2.2.a. Note that (4) and (5) show
that f1(x2n, x2n+1, y2n+1, y2n) = 0 and g1(x2n, x2n+1, y2n+1, y2n) =
d1 (x2n+1, x2n+2), respectively. If d1 (x2n+1, x2n+2) > 0, applying in-
equality (1) with x = x2n, x′ = x2n+1 and y = y2n+1, y′ = y2n we
get

d1 (x2n+1, x2n+2) = d1 (ECAx2n, FDBx2n+1) ≤ 0,

a contradiction. It follows that x2n = x2n+1, which allows us to go
back to Subcase 2.1.b.

Subcase 2.3.a. Suppose that for some n we have
g3(z2n−1, z2n, x2n, x2n−1) = 0. By (7),

x2n = x2n+1 =: u, y2n = y2n+1 =: v, z2n = z2n+1 =: w.

Using the definitions of the sequences {xn}, {yn} and {zn} we see
that

Au = v, Cv = Dv = w and Ew = Fw = u.

Then ECAu = u, AFDv = v and CAFw = w.
If suffices to prove that Bu = v, since this and the above equalities

imply FDBu = u, BECv = v and DBEw = w.
Note that Bu = Bx2n+1 = y2n+2 and v = y2n+2.
Recall that, by (12), we have

g2(y2n+1, y2n, z2n+1, z2n) = max{d1(x2n, x2n+1), d2(y2n+1, y2n+2), d3(z2n+1, z2n+2)}.
But f2(y2n+1, y2n, z2n+1, z2n) = d2(y2n, y2n+1)d2(y2n+1, y2n+2) and hence

f2(y2n+1, y2n, z2n+1, z2n) = 0.

If d2 (y2n+1, y2n+2) > 0, then g2(y2n+1, y2n, z2n+1, z2n) 6= 0 and by in-
equality (2) we obtain d2 (y2n+2, y2n+1) = d2 (BECy2n+1, AFDy2n) ≤
0, a contradiction. Then y2n+2 = y2n+1, i.e. Bu = v.

Subcase 2.3.b. Suppose that for some n we have
g3(z2n+1, z2n, x2n, x2n+1) = 0. By (13),

x2n+1 = x2n+2 =: u, y2n+1 = y2n+2 =: v, z2n+1 = z2n+2 =: w.

As in Subcase 2.3.a., using the definitions of the sequences {xn},
{yn} and {zn} we see that

Bu = v, Cv = Dv = w and Ew = Fw = u.

Then FDBu = u, BECv = v and DBEw = w.
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If suffices to prove that Au = v, since this and the above equalities
imply ECAu = u, AFDv = v and CAFw = w.

Note that Au = Ax2n+2 = y2n+3 and v = y2n+2.
As a consequence of (6), we get

g2(y2n+1, y2n+2, z2n+1, z2n+2) = max{d1(x2n+1, x2n+2), d2(y2n+2, y2n+3),

d3(z2n+2, z2n+3)}.

But f2(y2n+1, y2n+2, z2n+1, z2n+2) = d2(y2n, y2n+1)d2(y2n+1, y2n+2) =
0. If d2(y2n+2, y2n+3) > 0, then using inequality (2) we obtain
d2 (y2n+2, y2n+3) = d2 (BECy2n+1, AFDy2n+2) ≤ 0, a contradiction.
Then y2n+3 = y2n+2, i.e. Au = v.

This completes the proof of the Existence part.

Uniqueness of fixed points
To prove uniqueness, suppose that ECA and FDB have a second

common fixed point u′ 6= u in X. Then, applying inequality (1), we
have

d1(u, u
′) = d1(ECAu, FDBu′)

≤ c
(f1(u, u

′, v, v))

(g1(u, u′, v, v)

= c
[d1(u, u

′)]2

max{d1(u, u′), d2(Au,Bu′), d3(CAu,DBu′)}
≤ cd1(u, u

′).

We obtain a contradiction since c < 1. The fixed point u must therefore
be unique.

We can prove similarly that v is the unique common fixed point of
AEC and BFD and w is the unique common fixed point of CAE and
DBF , using inequalities (2) and (3), respectively.
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