# WATER QUALITY ALTERATION REFLECTED IN THE STRUCTURE OF FISH COMMUNITIES IN THE BASIN OF VEDEA RIVER (DANUBE TRIBUTARY, ROMANIA)

### Dorel Ureche, Camelia Ureche

**Key words:** water quality, alteration, fish communities, biodiversity, Vedea River

### INTRODUCTION

# The importance of the fish fauna for the assessment of the water quality is well known, as well as the advantages of using the fish for the assessment and monitoring the inland waters since they are among the most sensitive organisms to environmental changes. The deeper the changes in water quality, the greater the changes in the structure of fish communities.

This is the main reason for scientists to update the scientific data regarding the structure of the fish communities relative to the significant environmental changes in the last decades, mainly induced by the human activities.

In the last decade only few extensive studies were performed in the same area (Imecs & Nagy, 2016).

# MATERIAL AND METHODS

The present study was carried out in 2007 in the basin of Vedea River, on the main course of the river, and on some of its tributaries (Fig. 1). Our research aimed to update the scientific data regarding the structure of fish communities and to highlight the significant changes in fish communities as a result of the human activities impact.

The biological material was sampled by electrofishing from 20 sampling sites; it was determined and immediately released. The taxonomic analysis revealed the presence of 22 fish species in the study area, one of them being non-native (*Psedorasbora parva*).

An ecological analysis was made for the quantitative structure of the fish communities in the study area.

The hydro-chemical characteristics in sampling sites (temperature, pH, conductivity) are presented in the Table  $1\,$ .

The assessment of biodiversity was made based on some of the biodiversity indices (Margalef, Menhinick, Simpson, Shannon-Wiener), and evenness (equitability) (Table 2).

### RESULTS AND DISCUSSIONS

The frequency of fish species in the whole study area ranges between 5.00% and 80.00%. The highest value of the frequency (80.00%) has recorded by *Squalius cephalus*, and it is followed by *Alburnus alburnus*, (75.00%) and then by *Cobitis taenia* (70.00%), and then by *Gobio obtusirostris*, *Pseudorasbora parva*, *Barbus meridionalis*, and *Carassius gibelio* (65.00%) (Fig. 2).

### Vedea River

Vedea River is one of the left tributaries of the Danube. It springs from Cotmeana Platform and joins the Danube downstream Zimnicea town (Teleorman County). The total length of Vedea River from its source to its confluence with Danube is 224 km with a catchment area of 5,430 km², an average elevation of 166 m, and an average slope of 2‰.

## Vedea River'tributaries

Teleorman River has a 169 km length, with a catchment area of 1427 km<sup>2</sup>, an average elevation of 148 m, and an average slope of 2‰.

Cotmeana River has a 93 km length, with a catchment area of 498 km<sup>2</sup>, an average elevation of 306 m, and an average slope of 5‰.

Plapcea River has a 56 km length, with a catchment area of 354 km<sup>2</sup>, an average elevation of 246 m, and an average slope of 4‰.

Finaly, one of the sampling site is placed on Clanita stream, which is one of Teleorman River tributaries, having a 81 km length, with a catchement area of 267 km<sup>2</sup>, an average elevation of 112 m, and an average slope of 2‰.

The fish community in the study area includes 22 species, three of them being the most common and recording the highest values of frequency: Squalius cephalus (80%), Alburnus alburnus (75%), and Cobitis taenia (70%). They are followed by Gobio obtusirostris, Pseudorasbora parva, Barbus meridionalis, and Carassius gibelio, with a frequency of 65%. However, the most abundant species are by far Squalius cephalus (22.41%), Rhodeus amarus (17.28%), and Barbus meridionalis (14.86%).

Regarding the fish stocks we found that the numerical stock of fish species in sampling sites ranged between 0.3 and 3070.2 ind./100 m<sup>2</sup>.

By far, Squalius cephalus is the dominant fish species, both in terms of numerical stock and frequency. The highest value of numerical stock was recorded in Teleorman tributary, Vitanesti village side

Analyzing the numerical stock of the fish species in sampling sites, we found that the highest value was recorded in Vedea River, downstream Buzesti bridge (1871.2 ind./100 m<sup>2</sup>), followed by Vedea, upstream Floru village bridge (1550.8 ind./100 m<sup>2</sup>).

The best represented fish species are Squalius cephalus (21.43 ind./100 m<sup>2</sup>), Rhodeus amarus (16.52 ind./100 m<sup>2</sup>), and Barbus meridionalis (14.21 ind./100 m<sup>2</sup>).

It can be seen that both in Vedea River and the tributaries in the study area, *Squalius cephalus* is an eudominant and euconstant species, and this finding leads to the conclusion that the study area overlaps on the European chub zone (Fig. 3).

Comparing Vedea River with the tributaries in the study area it can be seen that in both areas 18 fish species were identified, meaning that the species richness is comparable.

In Vedea River eight of the 18 fish species have recorded numerical stock values which exceed 1 ind./100 m². These are Squalius cephalus (16.50), Gobio obtusirostris (11.44), Barbus meridionalis (8.25), Carassius gibelio (6.54), Alburnus alburnus (3.43), Cobitis taenia (2.53), Sabanejewia romanica (2.27), and Pseudorasbora parva (2.08) (Fig. 3).

On the other hand, in the study tributaries, ten of the 18 fish species have recorded numerical stock values which exceed 1 ind./100 m<sup>2</sup>. From this point of view *Rhodeus amarus* is better represented then in Vedea River (38.59), and it is followed by the *Squalius cephalus* (26.75), *Alburnus alburnus* (17.86), *Carassius gibelio* (17.10) and others (Fig. 4).

Overall, regarding to the fish stocks in the whole studied area we found that the numerical stock of fish species ranged between 0.13 and 234.81 ind./100 m<sup>2</sup>, the highest value being recorded by *Squalius cephalus*, Figure 5 presents numerical stock of the most common fish species in in the whole study area (Fig. 5).




Fig.1. Sampling sites on the studied rivers: Plapcea (1), Vedea (2; 5-11; 18-20), Cotmeana (3,4), Teleorman (12, 13, 15-17), and Clanita (14)

Table 1. Biotope variables and hydro-chemical characteristics in sampling sites in the study area

| No. | STREAM / SAMPLING SITE                         | No.<br>sp. | Geographical parameters |          |             | Hydrochemical parameters |     |                     |
|-----|------------------------------------------------|------------|-------------------------|----------|-------------|--------------------------|-----|---------------------|
|     |                                                |            | Lat (N)                 | Long (E) | Alt.<br>(m) | Water<br>Temp.<br>(°C)   | pН  | Conductiv.<br>µs/cm |
| 1   | Plapcea, downstream Sinesti bridge             | 8          | 44.27611                | 24.40094 | 156         | 29.7                     | 6.8 | 466                 |
| 2   | Vedea, downstream Buzesti bridge               | 5          | 44.27424                | 24.42906 | 145         | 26.5                     | 6.9 | 554                 |
| 3   | Cotmeana, upstream Falfani village             | 3          | 44.37226                | 24.45726 | 204         | 23.5                     | 6.7 | 808                 |
| 4   | Cotmeana, downstream Martalogi bridge          | 6          | 44.30400                | 24.47111 | 169         | 21.7                     | 7.2 | 744                 |
| 5   | Vedea, upstream Floru village bridge           | 8          | 44.23156                | 24.45149 | 131         | 32.4                     | 7.3 | 2270                |
| 6   | Vedea, Barza village side                      | 2          | 44.19050                | 24.46779 | 118         | 34.5                     | 6.8 | 5010                |
| 7   | Vedea, upstream Valeni bridge                  | 6          | 44.14489                | 24.47393 | 114         | 35.6                     | 6.7 | 4210                |
| 8   | Vedea, Vedea village side                      | 7          | 44.05391                | 25.03524 | 70          | 33.8                     | 7.3 | 2620                |
| 9   | Vedea, upstream Mavrodin bridge                | 6          | 44.01621                | 25.13365 | 43          | 32.6                     | 7.6 | 1772                |
| 10  | Vedea, upstream Alexandria bridge              | 10         | 43.58861                | 25.20146 | 41          | 32.1                     | 7.8 | 1483                |
| 11  | Vedea, upstream Teleorman-Vedea confluence     | 6          | 43.51791                | 25.25916 | 28          | 31.8                     | 8.2 | 1345                |
| 12  | Teleorman, downstream Tatarastii de Sus bridge | 10         | 44.24417                | 25.07314 | 113         | 26.8                     | 7.9 | 725                 |
| 13  | Teleorman, Perii Brosteni village side         | 10         | 44.11990                | 25.14928 | 71          | 29.4                     | 7.2 | 822                 |
| 14  | Clanita, upstream Clanita-Teleorman confluence | 6          | 44.03041                | 25.23629 | 51          | 24.5                     | 7.6 | 753                 |
| 15  | Teleorman, Vitanesti village side              | 11         | 44.00380                | 25.24590 | 45          | 23.4                     | 7.3 | 904                 |
| 16  | Teleorman, Purani village side                 | 12         | 43.58651                | 25.26011 | 40          | 30.5                     | 7.6 | 931                 |
| 17  | Teleorman, upstream Teleorman-Vedea confluence | 15         | 43.51698                | 25.26503 | 29          | 27.9                     | 8.2 | 998                 |
| 18  | Vedea, downstream Bragadiru village            | 11         | 43.43703                | 25.31805 | 21          | 29.8                     | 7.9 | 1143                |
| 19  | Vedea, downstream Pietrosani village           | 2          | 43.42152                | 25.39674 | 19          | 32.5                     | 8.7 | 1414                |
| 20  | Vedea, upstream Vedea-Danube confluence        | 4          | 43.41299                | 25.31288 | 18          | 33.9                     | 7.8 | 1130                |

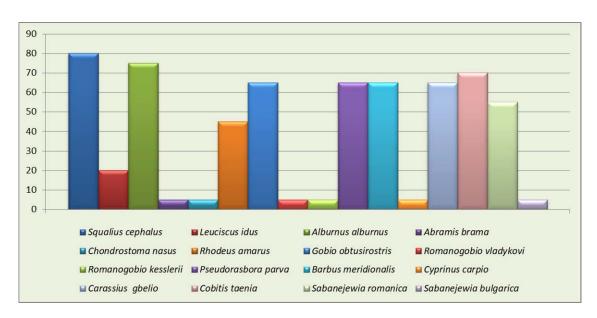



Fig. 2. The frequency of fish species in the study area

The biodiversity is quite high, during the study period, 22 fish species being identified, with an amount of 5944 individuals. One of the 22 fish species is non-native (*Pseudorasbora parva*).

The biodiversity assessment was made by using indices for species richness (Margalef, Menhinick), for the biodiversity of a habitat (Simpson). We used also Shannon-Wiener index (to

measure the degree of organization or disorganization of the study systems), and eveness (equitability) to measure of the relative abundance of the different species making up the richness of an area.

Table 2 presents the biodiversity indices and equitability for the fish communities in the study area.

Analyzing the table 2 it can be seen that the highest diversity was recorded in two of the sampling sites: 17 (15 species) and 16 (12 species), both of them placed on Teleorman tributary. According to Margalef index, the highest species richness was recorded in three of the sampling sites, one of them placed on Vedea River, and the others on Teleorman tributary.

The Simpson index suggests the best situation for the sampling sites 13, 15, and 16, where the proportion of the total that occurs in each species (Table 2).

Having in mind all the biodiversity indices we can consider the fish communities in sampling sites 13, 15, and 16 seem to be the best balanced, even if the number of fish species is the highest in the sampling site 17.

In a recent study in Vedea River catchment (including 12 sampling sites on the main course of Vedea River) which was conducted in 2015, only 19 fish species were detected (Imecs & Nagy 2016), relative to 22 fish species in 2007. This finding should lead to the conclusion that the environmental conditions have undergone significant and unfavorable changes for fish fauna.

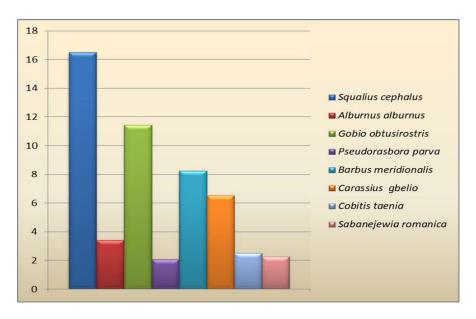



Fig. 3. Numerical stock of the dominant fish species in Vedea River

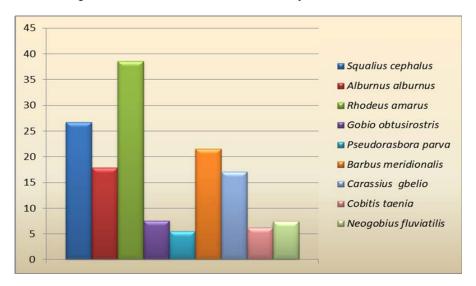



Fig. 4. Numerical stock of the dominant fish species in Vedea River tributaries

Regarding the presence of some fish species of community interest, the following considerations are necessary:

- 1. In our research study which has been performed in 2007 we could detect the presence of *Romanogobio kesslerii* in only one of the sampling sites but with a very low abundance.
- 2. Only 11 fish species were detected in both studies (2007 and 2015). This means that the

probability of detecting all fish species is very low even if we have used electrofishing.

3. However, if some fish species could not be detected in the recent studies, this means that the environmental conditions are not appropriate for them but for others, less sensitive to this kind of changes.

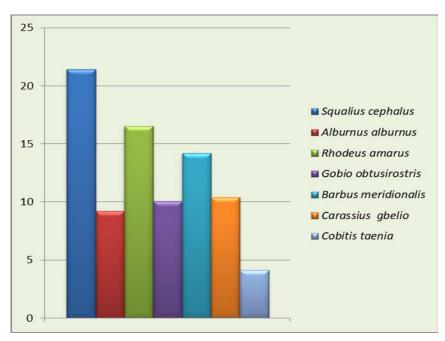



Fig. 5. Numerical stock of the most common fish species in the whole study area (ind./100 m<sup>2</sup>)

| T 11 1   | D. 1.  | ٠,     | . 1.    | 1     | 4 1     |        |
|----------|--------|--------|---------|-------|---------|--------|
| Table 2. | Biodiv | ersity | indices | in fr | ie smax | z area |
|          |        |        |         |       |         |        |

| No. of sampling site | No. of species | Margalef | Menhinick | Simpson<br>(S-1) | Shannon-<br>Wiener (H') | Evenness ( ) |
|----------------------|----------------|----------|-----------|------------------|-------------------------|--------------|
| 1                    | 8              | 2,895    | 0,494     | 0,771            | 0,728                   | 0,350        |
| 2                    | 5              | 1,550    | 0,256     | 0,568            | 0,421                   | 0,262        |
| 3                    | 3              | 0,815    | 0,178     | 0,540            | 0,370                   | 0,337        |
| 4                    | 6              | 1,905    | 0,292     | 0,549            | 0,396                   | 0,221        |
| 5                    | 8              | 2,620    | 0,369     | 0,523            | 0,511                   | 0,246        |
| 6                    | 2              | 3,322    | 1,414     | 1,000            | 0,301                   | 0,434        |
| 7                    | 6              | 2,469    | 0,583     | 0,773            | 0,666                   | 0,372        |
| 8                    | 7              | 2,598    | 0,490     | 0,702            | 0,601                   | 0,309        |
| 9                    | 6              | 2,401    | 0,545     | 0,628            | 0,499                   | 0,279        |
| 10                   | 10             | 3,446    | 0,494     | 0,655            | 0,643                   | 0,279        |
| 11                   | 6              | 2,958    | 0,857     | 0,671            | 0,568                   | 0,317        |
| 12                   | 10             | 3,259    | 0,416     | 0,777            | 0,717                   | 0,311        |
| 13                   | 10             | 3,298    | 0,432     | 0,815            | 0,807                   | 0,350        |
| 14                   | 6              | 1,943    | 0,310     | 0,749            | 0,658                   | 0,367        |
| 15                   | 11             | 3,823    | 0,541     | 0,842            | 0,858                   | 0,358        |
| 16                   | 12             | 4,643    | 0,784     | 0,838            | 0,859                   | 0,346        |
| 17                   | 15             | 4,832    | 0,534     | 0,773            | 0,798                   | 0,295        |
| 18                   | 11             | 4,785    | 0,992     | 0,745            | 0,739                   | 0,308        |
| 19                   | 2              | 0,446    | 0,151     | 0,342            | 0,227                   | 0,328        |
| 20                   | 4              | 2,881    | 1,206     | 0,745            | 0,539                   | 0,389        |

### **CONCLUSIONS**

Taxonomic analysis highlighted 22 fish species, one of them being non-native. The most common species in the whole study area are *Squalius cephalus* (80%), *Alburnus alburnus* (75%), *and Cobitis taenia* (70%).

The numerical stock of fish species in sampling sites ranged between 0.13 and 234.81 ind./100 m<sup>2</sup>, the highest value being recorded by *Squalius cephalus* in Vedea River, upstream Floru village.

After the analysis of the biodiversity indices we can conclude that the fish communities in sampling sites 13, 15, and 16 seem to be the best balanced.

### ABSTRACT

The study was carried out in 2007 in Vedea River catchment area, including three of its tributaries (Plapcea, Cotmeana. Teleorman), and one of Teleorman River tributary (Clanita). Our research aims to contribute to the knowledge update by analyzing the structure of the fish communities in this area, and also to assess the state of fish communities from the ecological point of view.

Comparing the structure of fish communities in our study with that of a recent study in Vedea River catchment area we could highlight the main differences between the structures of fish communities in the two period.

# REFERENCES

 BĂNĂDUC D., BĂNĂDUC ANGELA, 2014 -The "Porțile de Fier/Iron Gates" Nature Park (Romania) some Danube northern tributaries fish fauna Transylvanian Review of Systematical and Ecological Research, Special Issue, 16:165-170;

- 2. BĂNĂDUC D., BĂNĂDUC ANGELA, LENHARDT MIRJANA, GUTI G., 2014 "Porțile de Fier"/"Iron Gates" Gorges area (Danube) fish fauna, Transylvanian Review of Systematical and Ecological Research, Special Issue, 16:169-194;
- 3. BĂNĂRESCU P., 1964 Fauna R.P.R., Pisces-Osteichthyes, XIII, Ed. Acad., București.
- BĂNĂRESCU P., 1968 Lista revizuită a speciilor de peşti din România, Bul. Inst. Cerc. Pisc., 3: 53-62;
- 5. CIOLAC A. 2004 Migration of fishes in Romanian Danube River (N° 1), Applied Ecology and Environmental Research, 2(1): 143–163;
- FROESE, R. AND D. PAULY. Editors. 2014 -FishBase. World Wide Web electronic publication. www.fishbase.org, version (06/2018);
- MECS I., NAGY A.-A., 2016 Data concerning the fish fauna of the ROSCI 0386 Vedea River Natura 2000 site (Romania), Rom. J. Biol. – Zool., 61, (1–2): 75–90;
- 8. KOTTELAT M., FREYHOF J., 2007 Handbook of European Freshwater Fishes, Kottelat, Cornol, Switzerland and Freyhof, Berlin, Germany;
- 9. URECHE D., URECHE CAMELIA, 2015 Research regarding the fish communities in Bahna, Topolnita and Blahnita (Danube tributaries, Romania), Studii și Cercetări Științifice, Biologie, 24 (2): 67-72.

### **AUTHORS' ADDRESS**

URECHE DOREL, URECHE CAMELIA - University "Vasile Alecsandri" of Bacau, Faculty of Sciences, Department of Biology, Ecology and Environmental Protection, 157 Marasesti Street, 600115 Bacau, Romania, e-mail: dureche@ub.ro; urechec@ub.ro