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CONSTRUCTIVE ORDERED ALGEBRAIC
STRUCTURES
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Abstract. Ordered algebraic structures are examined within the
framework of Bishop-style constructive mathematics. In the construc-
tive approach, the partial order is replaced by the classically equiva-
lent, but constructively stronger, notion of co-order. While one could
define an ordered algebraic structure by requiring certain properties of
monotonicity of the algebraic operations, the constructive counterpart
of strong monotonicity could be more appropriate for a constructive
examination.

1. INTRODUCTION

Although linearly ordered algebraic structures have been thoroughly
investigated in constructive mathematics ([7] or [9] for example), this
is far from being the case when the linear order is replaced by a partial
order relation. However, one can find a natural constructive definition
of ordered vector spaces (first presented in [1]), as well as a more
detailed examination of these structures [2]. On the other hand, no-
ticeable efforts towards a constructive theory of ordered semigroups
have been done by Romano and several co-authors [6, 13].
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Classically, an algebraic ordered structure is an algebraic structure
which is endowed with a partial order relation which is compatible in
a certain way with the algebraic operations. This compatibility can
be expressed by the monotonocity of the operations. For example,
an ordered vector space is a vector space with a partial order which
is invariant under addition and multiplication by positive scalars. In
other words, for each vector v and each scalar a« > 0, the addition to
v and the multiplication by « are increasing operations. Our aim is to
define the constructive counterpart of an ordered algebraic structure
by using the notion of strong monotonicity of the operations with
respect to a co-order relation, the natural constructive replacement of
partial order.

Our investigation of order is done in a constructive manner based
on the strict interpretation of existence as computability. In construc-
tive mathematics, the impossibility of nonexistence does not imply
existence. More precisely, we work in Bishop-style constructive math-
ematics (BISH) which, roughly speaking, is nothing else than mathe-
matics carried out with intuitionstic logic. Every theorem of BISH is
valid in classical mathematics and also in other varieties of construc-
tive mathematics. The basic ideas of doing mathematics in this way
are presented in Bishop’s seminal book [4] and in the revised edition
[5]. Further information on the varieties of constructive mathematics
can be found in [8, 14]. For a constructive development of algebra,
one might consult [11].

When working in BISH, the logical connectives and quantifiers
should be interpreted in a different manner. For example, to prove
PV @ we need either a proof of P or a proof of (). The strict use
of intuitionistic logic entails serious restrictions which aim to protect
our proofs from non-constructive logical principles such as the law
of excluded middle P V —P. Moreover, we cannot apply the weak
law of the excluded middle =P V ——=P or the double negation
principle =—P = P. We can show that a certain proposition P is non-
constructive by using a Brouwerian example, that is, we prove that
P implies some non-constructive principle. The next three sources
of non-constructivism, the so-called omniscience principles, are fre-
quently used to produce Brouwerian examples.

e The limited principle of omniscience (LPO): for every
binary sequence (a,,) either a,, = 0 for all n, or else there exists
n such that a, = 1.
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e The weak limited principle of omniscience (WLPO):
for every binary sequence (a,,) either a, = 0 for all n, or it is
contradictory that a,, = 0 for all n.

e The lesser limited principle of omniscience (LLPO): if
(ay) is a binary sequence containing at most one term equal to
1, then either ay, = 0 for all n, or else as,.1 = 0 for all n.

We also did not accept in BISH the following logical principle.

e Markov’s principle (MP): if (a,) is a binary sequence and
=¥n (a, = 0), then there exists n such that a, = 1.
More details on non-constructive principles can be found in [10].

One of the main advantages of the constructive approach is the pos-
sibility of revealing distinctions between classically equivalent propo-
sitions. Thus, a major task is to give appropriate definitions which
should be classically equivalent to the classical ones. By using appro-
priate constructive definitions we could prove one or more constructive
counterparts of a classical theorem.

2. BASIC DEFINITIONS AND NOTATIONS

When working constructively, besides the peculiar interpretation of
the logical operations, we should clarify the notions of set and func-
tion. Thus, to define a set we need to describe how we construct
its elements and to determine when two elements are equal. There-
fore each set comes has an equality =, which is nothing else than an
equivalence relation. However, it would be more appropriate to have a
method to prove that two elements are distinct. Consequently, we will
consider each set S equipped with an apartness relation #, that is,
an irreflexive, symmetric, and cotransitive relation:

Vo,y € S (x £y = ~(z=vy));

Vr,y € S (v #y=y#a);
Ve,y,z € S(x#y= (x#2Vy#2).

In addition, we will consider the apartness of each set as tight, that
is,

Vo,y €S (n(x#y) =z =y)
Contrary to the classical case, the converse implication does not hold

in BISH; if it were valid in general, then MP would hold.
To construct a function f from (A, =1,#;) to (B =2, #2), we need
an algorithm which, applied to an element x of the set A, produces an
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element f(z) € B. Each function is extensional, that is,

Vi, 20 € A (21 =1 2 = f(x1) =2 f(22)).

However, we have more computational information when we deal with
strongly extensional functions. Let us consider the sets with apartness
(A,=1,#1) and (B, =3, #2). A function f: A — B is called strongly
extensional if

VIl,IQ €A (f(l'l) 7&2 f(l'g) = I 7é1 Ig).

Although strong extensionality is classically equivalent to extension-
ality, we cannot expect to prove that each extensional function is
strongly extensional. As pointed out in [14], for a constructive ap-
proach to algebraic structures, it would be suitable to consider strongly
extensional algebraic operations. By defining a co-ordered semigroup
as a set with an associative strongly increasing operation, we obtain
the strong extensionality of the semigroup operation. We will deal in
a similar way with other algebraic structures.

The Cartesian product of the sets (A, =1,#1) and (B, =g, #2) is
the set (A x B,=,#) with A x B={(a,b):a € A, b€ B},

(a1,b1) = (az,b2) < (a1 =1 by A ag =2 by);

(a1,b1) # (az,ba) < (a1 #1 b1 A az #9 by).

A binary relation on S is a subset of S x S.

When dealing with order, the use of partial order relations will be
replaced by a constructively stronger notion of co-order, based on von
Plato’s approach [12].

Definition 1. Let (S,=,#) be a set endowed with a binary relation
«. The relation % is called a partial co-order relation, or simply a
co-order, if it is cotransitive and

Ve,yeS(x#ye(xLyVyLe
In this case, we say that (S,=,#,£) is a co-ordered set.

Following [12], we say that z exceeds y whenever x £ y. Clearly,
a co-order is necessarily strongly irreflexive, © £ y = x # y, hence
irreflexive. One can easily verify (as in [12]) that we obtain a partial
order < and a strict partial order < as follows:

r<y=-(zLy);
c<yo @ <yre£y)
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We might write as usual, x > y instead of y <z and z > y if y < z.
A co-order relation £ on S is a linear order if it is asymmetric: for
all z,y € S, x £ y = —~(y £ x) which is equivalent to z £ y = = > y.

For an arbitrary co-ordered set (S,=,#, %), we cannot prove con-
structively any of the next four properties. It suffices to consider the
linear ordering of the real number set R to observe that each condi-
tion entails the non-constructive principle on the right-hand side. One
might consider the real numbers as constructed in [4] or presented ax-
iomatically in [7].

e Vr,yeS(zx<yVa<Ly); (LPO)
eVr,yeS(x<yV-(rLy)); (WLPO)
eVryeS(x<yVy<zV(@LyAyLx)); (LLPO)
e Vr,ye S (—(z<y)=zLy). (MP)

3. STRONGLY INCREASING ALGEBRAIC OPERATIONS

In classical mathematics, an ordered semigroup is a semigroup with
a partial order relation which is preserved by the semigroup operation.
In other words, a semigroup (5, -) with a partial order < is an ordered
semigroup if for each element z € S the right multiplication and the
left multiplication by x are increasing functions from S to S. Since the
partial order is too weak a notion for a constructive examination of
order, the partial order < will be replaced by a co-order relation «.
Correspondingly, the classical monotonicity of the algebraic operations
should be replaced by a stronger notion of monotonicity defined in [2].

Definition 2. Let (S1,=1,#1, %1) and (S2, =2, #2, £2) be co-ordered
sets and f a function from Sy to So. The function f is said to be:

e increasing if Vr,y € S (x <1y = f(x) <5 f(y));
e strongly increasing if Vz,y € S (f(y) €2 f(z) = y %1 2).

The notion of strongly decreasing function is defined correspond-
ingly:
Yo,y € 51 (f(y) £2 f(x) = o £1y).

As in the classical case, where a function is monotone whenever it is
increasing or decreasing, we say that f is strongly monotone if it is
strogly increasing or strongly decreasing. One can easily observe that
every strongly increasing function is increasing and strongly exten-
sional. However we cannot expect to prove constructively that every
increasing function is strongly increasing. We can prove that, provided
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Sy is a lattice, each strongly extensional increasing function is neces-
sarily strongly increasing. The proof and more details on monotonicity
can be found in Chapter 5 of [2].

We can use this notion of strong monotonicity to define co-ordered
algebraic structures; for the classical ordered structures we will use
the term 'weakly ordered’. For example, let us consider a semigroup
with apartness (S, =, #, ), endowed with a co-order relation £. Then
(S,=,#,-, %) is a co-ordered semigroup if for all z € S the right
multiplication R, and the left multiplication L, defined by R,(y) =
y-zand L,(y) = z -y are strongly increasing functions from S to
S. Thus we obtain the natural constructive definition of a co-ordered
semigroup:

Vo,y,z€S((x 24y -2Vz-aLz-y)=aLy),

as given, for example, in [6]. The semigroup (5, =, ) endowed with a
partial order relation < is a weakly ordered semigroup if for all
z € S the right multiplication R, and the left multiplication L. are
increasing functions from S to S. In other words, (S, =, -, <) satisfies
the classical definition:

Ve,y,z€ S(z<y=(x-z2<y-zVz-x<z-y)).

Since every strongly increasing function is increasing and strongly ex-
tensional, if S is a co-ordered semigroup then S is a weakly ordered
semigroup and the right and left multiplications are strongly exten-
sional. We will prove, as a consequence of the following theorem, that
the semigroup operation is strongly increasing, and therefore strongly
extensional, as a function from S x S to S.

Theorem 1. Let us consider the co-ordered sets (51,:1,7é1,j{1

), (Sg, =2, 7&2, ﬁg) and (Sg, =3, 7&3, fg) and the function f : Sl X Sg —
Ss. For each z € Sy and w € Sy, let us consider the functions
R,: S — S5, R.(z) = f(z,2) and L, : So — S, L,(y) = f(w,y).
Then the following conditions are equivalent:

(1) For all z € Sy and w € Sy, the functions R, and L., are strongly
INCTeasing.

(2) The function f is strongly increasing.

Proof. Denote by £ the product co-order on S; x Ss, that is,

V(ﬁhyl), (902,.@2) €5 ><S2((5U1,y1) ﬁ (xz,yz) = (5151 $1 2V ,{2 yz))-
(See Section 6.)
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We first prove (1) = (2). Assuming (1), we have to prove that

V(x1,91), (w2,92) € S1xSy (f(w1,91) £ f(22,92) = (21,91 f (22, 12))-

To this end, let us consider (xi,1), (z2,y2) € S1 X Sy such that
f(z1,11) %5 f(x2,y2). Then, it follows from the cotransitivity of &3
that f(z1,91) €3 f(@1,y2) or f(z1,92) €3 f(x2,y2). In the former case,
since L,, is strongly increasing, we obtain y; €5 yo. In the latter one,
since R,, is strongly increasing, $1 xo. Consequently, x; ﬁl Ty OT
Y1 %2 Y2, that is, (z1,91) £ (2, 92).

To prove (2) = (1), let z and w be arbitrary elements of Sy, respec-
tively So; we have to prove that the functions R, and L, are strongly
increasing. Let 1, a:Q be elements of S; such that R,(z1) ﬁg L (x9),
that is, f(z1,2) €3 f(zs,2). Since f is strongly increasing, it follows
that (xl, z) £ (@, 2) and, consequently, x1 £1 o or z %o z. The latter
is contradictory, so that x; $1 o which, in turn, entails that R, is
strongly increasing Similarly, we can prove that for all y;,y, in s,

w(t1) %3 Ly(yo) implies y; %o yo hence L, is a strongly increasing
mapping. O

Corollary 2. Let (S,=,#,-,£) be a semigroup endowed with a co-
order £. Then S is a co-ordered semigroup if and only if the semigroup
operation is a strongly increasing function from S x S to S, that is,

V(x1,72), (Y1,92) € S X S (w191 £ Ta-y2 = (21 £ 91 V 22 £ 12))
Proof. This is a direct consequence of Theorem 1. a
Lemma 3. If S is a co-ordered semigroup, then for all x,y, z,w € S

(zrzwtzy w=xLy).

Proof. If z-z-w £ z-y - w, then x - w £ y - w, which entails z £ y.O
For a commutative semigroup we have simpler conditions, using only
one-sided (right or left) multiplications.

Corollary 4. Let (S,=,#,-, %) a commutative semigroup. Then the
following conditions are equivalent.
(1) The semigroup S is a co-ordered semigroup
(2) For each z € S, the right mutiplication by z is strongly increas-
ing, that is,
Ve,yz€ S (x-z24y-z=x £Ly).
(3) For each z € S, the left mutiplication by z is strongly increasing,
that s,
Ve,yz€ S(zradz-y=aLy).
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Proof. The proof is straightforward. a

Since a monoid is a semigroup with an identity element, a co-
ordered monoid is a monoid (M,=,#,-, £) which is a co-ordered
semigroup with respect to the co-order.

Proposition 5. Let (M, =,#,-, %) a monoid with a co-order relation.
Then M is a co-ordered monoid if and only if

Ve,yzzwe M (z-z-wLzy-w=z£Ly).

Proof. Tt follows from Lemma 3 that each co-ordered monoid satisfies
the above condition. Conversely, let z,y, 2z be elements of M such
that -z € y-zor z-a £ z-y. If 1 is the identity element, then
lrxz-z4€1l-y-zorz-x-1<z-y-1and, as a consequence, z £ y. O

To illustrate these notions, let us consider the sets S and M of all the
continuous functions from R to the set {x € R : x > 1}, respectively
to {x € R : « > 1}, with the standard equality of functions and
the natural apartness f # g < v (f(z) # g(x)). Then M is a
co-ordered monoid and S is a co-ordered semigroup with respect to
the standard multiplication of functions and the co-order defined by

f£ge 3z (f(x) > g(z)).

4. CO-ORDERED GROUPS

We can define a weakly ordered group, respectively a co-ordered
group, as a group which is also a weakly ordered semigroup, respec-
tively a co-ordered semigroup, with respect to the group operation.

Definition 3. (i) Let (G,=,+) be a group and < a partial order on
G. Then (G,=,+,<) is a weakly ordered group if

Ve,y,2€ G (e <y= ((z+z<z4+y) ANz +2z<y+2)).

(i) Let (G,=,#,+) be a group with apartness endowed with a co-
order relation £. Then (G,=,#,+,£) is a co-ordered group if

Ve,y,2€ G((z+xLz+yVat+zLy+z)=>zLy).

Clearly, each co-ordered group is a weakly ordered group. Since
every co-ordered group is a co-ordered semigroup, the one-sided addi-
tions as well as the binary operation of addition are strongly increas-
ing, hence strongly extensional. Each co-ordered group is a co-ordered
monoid too, so we can apply Proposition 5 to give another equivalent
condition for a co-ordered group, respectively a co-ordered commuta-
tive group.
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Corollary 6. Let (G,=,#,-,%) a group with a co-order relation.
Then G is a co-ordered group if and only if

Ve,y,z,we Gz+r+w L z+y+w=z£Ly.

Proof. 1t easily follows from Proposition 5. a

When dealing with a group, the compatibility between the co-order
relation and the group operation can be expressed not only by using
the strong monotonocity, as in the case of semigroups and monoids,
but also by requiring the group operation to preserve the co-order.
Actually, this means that for each z the left and right addition with
—z is strongly increasing which is another way of asserting that G is
a co-ordered group.

Proposition 7. Let (G,=,#,+, %) be a group.
(i) The group G is a co-ordered group if and only if
Ve,y,z€GrLdy=(z+zLy+zAz+zLz+y)).
(i) If G is commutative, then G is a co-ordered group if and only if
Ve,yze GrLdy=a+z2zLy+=2)
and, in addition, if and only if
Ve,y,z€e GrLdy=z+x £ z+y).
Proof. (i) Assume that G is a co-ordered group and consider z,y € G
with € y. Then x+2z—2z £ y+2z—2z and it follows from the definition
that 42z € y+z. Similarly we can prove that z4+xz £ z+y. Conversely,
ifx+z<y+zthenz+2z—2<y+z— 2 Similarly, we can prove
that = £ y whenever z + 2 £ z + .

(ii) It easily follows from (i). O
We denote the identity element of the group G by 0.

Corollary 8. Let G be a co-ordered group. Then for all x,y € G

o tye—yf—a;

(i)x#Ay<exz—y#0.
Proof. (i) According to Proposition 7, the condition 2 £ y is equivalent
to 0 £ y — = which, in turn, is equivalent to —y € —z.

(ii) From the definition of co-order, z #y < x € y Vy £ . In the
former case x —y £ 0 and in the latter 0 £ = — y. 0

Corollary 9. Let x,y be elements of the co-ordered group G. Then
the function
f:G—=G, f(z)=—x

15 strongly decreasing.



130 MARIAN ALEXANDRU BARONI

Proof. 1t is an immediate consequence of Corollary 8. O

Let = be an element of the co-ordered group GG. Then z is said to
be positive if z > 0, that is, 0 < z. A negative element z is defined
correspodingly by the condition x < 0. Clearly, x is positive if and
only if —z is negative. We denote, as usual by G* and G~ the set of
the positive, respectively negative, elements of G.

Example 1. Let (G,=,#,+) a group with a strongly extensional ad-
dition. Then G is a co-ordered group with respect to the co-order £
defined byx £ y = x#y, v <y < x =y, and there is no element of
G with x <0V x > 0. Moreover, the functions

fr  G—=G, flx)=k-z; keZ"

are both strongly increasing and strongly decreasing.

5. CO-ORDERED RINGS

We now examine algebraic structures endowed with more than one
operation. For example, if we consider a ring, we should require an in-
creasing addition, therefore the ring should be a weakly ordered group
with respect to addition. Moreover, both right and left multiplica-
tions by positive elements should be increasing. We will define the
corresponding constructive counterpart, the co-ordered ring, to get
a strongly increasing addition, strongly increasing multiplications by
positive elements and, as expected, a strongly extensional binary op-
eration of multiplication. As usual, we will denote by 0 the additive
identity element of the ring.

Definition 4. (i) The ring (R,=,+,-, <) is a weakly ordered ring
if R is a weakly ordered group with respect to the addition + and

Ve,y,z€ R((x <yAN0<z)=(z-2<y-zAz-z<z-y)).

(ii) The ring (R,=,#,4+,, £) is a co-ordered ring if R is a co-
ordered group with respect to the addition and

Vo,ye R(z-y#0= (z#0Ay#0));
Ve,y,z€ R((z-x € z-yVae-z4y-2)= (0L zVaLy)).

We should notice that although x # 0 and y # 0 whenever x -y # 0,
this is not the case for

Ve,ye R(x-y=0=(x=0Vy=0)).

To prove this, it suffices to consider the ring of the real numbers with
the usual addition and multiplication. If this property were true, then
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LLPO would hold. Nevertheless the property of extensionality from
the definition of a co-ordered ring ensures the strong extensionality of
the multiplication.

Corollary 10. If R is a co-ordered ring, then the binary operations
are strongly extensional functions from R x R to R.

Proof. Since R is a co-ordered group, the addition is strongly exten-
sional. To prove that the multiplication satisfies the same property,
let (z,y) and (z,w) be elements of R x R such that -y # z-w. Then,
either x -y # x -w or x - w # z - w. In the former case, we obtain,
z-y—x-w £ 0hence z - (y —w) £ 0). It follows from the definition
of the co-ordered ring that y —w # 0 and, in turn, by applying Corol-
lary 8, y # w. In the latter case, we obtain in a similar way = # z.
Consequently, (z,y) # (z,w). O

Proposition 11. Let (R,=,#,+,) be a ring equipped with a co-order
& . Then the following conditions are equivalent.

(1) The ring R is a co-ordered ring.

(2) For all elements x,y of R, v-y # 0 = (x # 0Ay # 0) and

O0Lz-y=(0LzVv0Ly).

Proof. Assuming (1), we have to prove that 0 £ 2 - y entails 0 £ z or
0Ly 0L a y thenz- 0L x-y. It follows that 0 £ z or 0 £ .
Therefore (1) = (2).

Assume now (2) and let x,y, z € R with z-2 £ z-y. Then, according
to Corollary 8, 0 £ z - (y — z) hence 0 £ z or 0 £ y — x, the latter
being equivalent to x £ y. Similarly, from z-z £ y -z, we obtain 0 £ z
or x % y. Therefore (2) implies (1). O

For each element z of a ring, we will denote by L, andR, the left,
respectively the right, multiplication by z:

L.:R—R, L(x)=z-2; R,:R—R, R,(z)=1x"z.

Lemma 12. Let (R,=,#,+,-) be a ring with a coorder and assume
that (R,=,#,+,+) is a co-ordered group. Let us consider the following
properties.

(1) For each z > 0, L, is strongly increasing.

(2) For each z <0, L, is strongly decreasing.

(3) For each z > 0, R, is strongly increasing.

(4) For each z <0, R, is strongly decreasing.

(5) The function f : R* x Rt — R, f(z,y) = x -y is strongly
INCTeasing.



132 MARIAN ALEXANDRU BARONI

(6) The function g : R~ X R~ — R, g(x,y) = x -y is strongly
decreasing.

Then (1) < (2), (3) < (4), and (5) < (6).
=

(

Proof. To prove (1) (2) let x,y,z be elements of R such that
z < 0 and Ly(z) £ L.(y), thatlszxj{zyThen—z>O
and (— )(—x) ﬁ (—=2) - (—y) or, equivalently, L_,(—z) £ L_.(—y).
Acording to (1), —z £ —y, and, from Corollary 8, y £ x. Thus, L, is
strongly decreasing. Similarly, we can prove the converse implication.
The equivalence of (3) and (4) can be proved in a similar manner.

Let us now prove (5) = (6). To this end, let z,y, z,w be elements
of R~ such that g(z,y) € g(z,w)., that is, -y £ z - w or, equiv-
alently, (—x) - (—y) € (—=2) - (—w) which, in turn, is equivalent to
f(=z,—y) £ f(—z,—w). Since f is strongly increasing, we obtain
(—x,—y) £ (—z,—w) which is equivalent to —z £ —z or —y £ —w.
Therefore z ¢ x or w £ y, that is, (z,w) € (z,y) and, as a con-
sequence, ¢ is strongly decreasing. In a similar way, we prove the
converse implication. O

Proposition 13. Let (R,=,#,+,-) be a ring endowed with a co-order
relation £ such that (R, =, #,+) is a co-ordered group. Let us consider
the following conditions:

(1) The ring (R,=,#,+,-) is a co-ordered ring.

(2) For all elements x,y,z of R

(zrxfz-yVa-z4y-2)= (0L zVa Ly).

(3) For each z > 0, the multiplication functions L, and R, are
strongly increasing.

(4) The function f : Rt x R™ — R, f(z,y) = x -y is strongly
mcereasing.

(5) The ring R is weakly ordered.

Then each of the conditions (1)—(4) implies the next one.

Proof. Clearly, (1) implies (2). To prove (2) = (3), let z,y,z be
elements of R with z > 0 and z -2 £ z - y. Then, according to (2),
0 £ z or x £ y. The former is contradictory to z > 0, so that the
latter holds. Similarly, if z > 0 and -z £ y- z, then z £ y. Therefore
(2) = (3).

The implication (3) = (4) follows from Theorem 1. To prove (4) =
(5), let x,y, 2z be elements of R such that z > 0 and = < y, that is
y—x > 0. Assume that z-z £ z -y, that is 0 £ (z -y — x). Therefore
f(0,0) £ f(z,y — ). Since f is strongly increasing, (0,0) exceeds
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(2,y — w) with respect to the product co-order on RT x R™ which is
equivalent to 0 £ z or 0 £ y — , contradictory to the assumption
0<2AN0Ly—=x. O

As a consequence, the co-ordered rings satisfy the usual rules of
signs for weakly ordered rings:

(2>0Ay>0)V(@<0AYy<0) = (z-y>0);

((>0Ay<0)V(z<0Ay>0))= (z-y<0).

If the co-order is a linear order, then the conditions (1)-(4) from
Proposition 13 are equivalent, as it results from the following theorem.

Theorem 14. Let (R,=,#,+,-) be a ring that satisfies the condition
x-y#0=(x #0Ay #0) and assume that > is a linear order on
R. If (R,=,#,+,>) is a linearly co-ordered group, then the following
conditions are equivalent.

(1) The ring (R,=,#,+,+,>) is a co-ordered ring.

(2) For each z > 0, the multiplication functions L, and R, are
strongly increasing.

(3) For each z < 0, the multiplication functions L, and R, are
strongly decreasing.

(4) The function f : RT x Rt — RT defined by f(z,y) =z -y is
strongly increasing.

(5) The function g : R~ x R~ — Rt defined by f(x,y) =z -y is
strongly decreasing.

Proof. On the one hand, according to Proposition 13, (1) = (2) and
(2) = (4). On the other hand, (2) and (3) are equivalent, as well as
(4) and (5) (Lemma 12). It suffices to prove (4) = (1). To this end,
let z,y € R with x -y < 0. We have to prove that either x < 0 or else
y < 0. Since -y # 0, both  # 0 and y # 0. The co-order is linear, so
x # 0 is equivalent to x < 0V x > 0. We apply now the rules of signs;
ifz>0Ay>00rz<0Ay <0, then x-y > 0 which is contradictory
to z -y < 0. It follows that either z < 0 or else y < 0. O

We illustrate these notions by an example. Let us consider the
set (C[0,1],=,#, +, -, £) the set of all continuous functions from [0, 1]
to R, with the usual apartness f # ¢ < Jz (f(x) # g(x)), the
standard addition and multiplication of functions, and the natural
co-order defined by f £ ¢ < 3z (f(z) > g(z)). Then C[0,1] is a

co-ordered ring.
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6. APPLICATIONS

If A is a co-ordered algebraic structure, then we can organize the set
AS ={f:S — A} as a corresponding co-ordered algebraic structure.
The equality, apartness, and co-order relation on AS are defined by

f=g9eVres (f(x) =g@);
f# 9% 30eS(flx) #g(@);
ffgedwes(flz)£g).

It is straightforward to prove that we have obtained a tight apartness
and a co-order on the set A°. Further we obtain a partial order:

f<ge(fLg) evreS(f(z)£glx) e Vres(flz) <glr))

If % is a binary operation on A, then we can define a corresponding
operation on A® by

fxg:S—= A fxglx)=f(x)*g(x).

Clearly, if A is a semigroup, a monoid, or a group, then A° satisfies
the same property. Similarly, if A is a ring, then A® is a ring with the
corresponding operations.

Proposition 15. If S is an inhabited set with apartness, then the
following implications hold.

(i) If (A,=,#,-, %) is a co-ordered semigroup, then (A% =, #,- %)
s a co-ordered group.

(ii) If (A, =,%#,+, %) is a co-ordered group, then (A%, = #,- %) is
a co-ordered group.

(iil) If (A, =,#,+,- %) is a co-ordered ring, then (A%, =,#,-, &) is
a co-ordered ring.

Proof. (i) If f-g & f-h, then there exists € S such that f(z)-g(z) £
f(z) - h(x). Since A is a semigroup, it follows that g(x) £ h(z) hence
g % h. Similarly, g-f £ h-f entails g £ f. Therefore A% is a co-ordered
semigroup.

(ii) It follows from (i), taking into account that A is a group.

(iii) Since A is a co-ordered ring, then it is a co-ordered group with
respect to addition and, from (ii), A is also a co-ordered group. De-
note by 0 the zero function defined by 0(x) =0 for all z € S. Let f,g
be functions from S to A such that 0 £ f-g. Then there exists z € S
such that 0 £ f(z) - g(x). Since R is a co-ordered ring, 0 £ f(z) or

0 £ g(x). Therefore 0 £ f or 0 £ g.
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We have to prove the strong extensionality of the multiplication. To
this end, it suffices to prove that f - g # 0 entails f # 0 and g # 0.
If f-g# 0, then there is x € S such that f(z) - g(x) # 0 and, from
the strong extensionality of the multiplication on A, f(z) # 0 and
g(x) # 0 hence f # 0 and g # 0. O

We have already used the product co-order in order to examine
the strong monotonicity of algebraic operations. We will show that
the Cartesian product of n co-ordered semigroups is also a co-ordered
semigroup with respect to the product co-order. Similar results will
be proved for the other co-ordered algebraic structures studied in this
paper.

To this end, let us consider the co-ordered sets (.S;, =;, #;, £;), with
1 < ¢ < n. The standard equality and apartness on the Cartesian
product S = 57 x S5 x --- x S, are defined by

(331,.’1}2,"' 7':C7L) = <y17y27'” 7yn) < (V’l € {1727 7”} (xl =i yz))

(:E17'I27 T 7‘7;71) 7£ (y17y27 T 7yn) ~ (EIZ € {1727 T ’n} (xl 7&1 yz))
Since all the apartness relations #; are tight, it follows that
_'<<I'17 Lo, 71:71) 7é (y17 Y2, 7yn)) <~ (VZ € {17 27 e 7n} (xl i yl))7
hence the apartness on S is tight. The natural product co-order on
S is given by

(951,51027"' J‘n) ﬁ <y17y27'” 7yn) <~ (Eli € {172,"' 7n} (fUz ﬁz yz))
and the corresponding partial order < is the product order defined
by

(xhx% e 79377,) S (yl)y% e 7yn> <~ (VZ € {]—727 e ,TL} (xl SZ yz))
More details on product co-order can be found in [3].
Theorem 16. Consider the sets (Si,=1,#1,%1), (S2,=2,#2, %2
)y s (Sny=n, #n, %n) endowed with corresponding algebraic opera-
tions. Then the following properties hold.

(i) If Sy, Sa, -+ , S, are co-ordered semigroups, then S;xSyXx---X .S,
18 a co-ordered semigroup.

(i) If Si,Ss,- -+, S, are co-ordered groups, then Sy X Sg X «-- X S,
1S a co-ordered group.

(iii) If Sy, 52, -+, S, are co-ordered rings, then S; x Sg X --- X S,
1S a co-ordered ring.

Proof. To avoid cumbersome notation, we will consider without loss of
generality the case n = 2 and we will omit the indices for the algebraic
operation on S; and Sy and for the identity elements of the rings.
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(i) Thus, we define the product S; X Sa, =, #, %, £ of the semigroups
S1 and Sy with the product co-order and the usual binary operation
, defined by (z1,x2) * (y1,y2) = (21 - Y1,%2 - y2). As in the classical
case, the operation * is associative so that S; x S5 is a semigroup.

We now prove that S; x S5 is a co-ordered semigroup. To this end,
consider (x1,x2), (Y1,¥2), (21, 22) € S1 X Sy such that

(21, 22)% (21, 29) £ (21, 22) % (Y1, Y2) V (21, T2) * (21, 22) £ (Y1, y2) (21, 22),
that is,

(2’1 cX1,%2 " 962) ﬁ (21 *Y1, %2 yz) V ($1 T 21,T2 22) f (y1 T 21,Y2 22)-

In the former case, z1 - 21 €1 21 - Y1 V 22 - T2 %2 22 - Y. Since S; and
S, are co-ordered semigroups, it follows that ﬁl Y1 Or g ﬁQ Yo,
therefore (z1,11) £ (22,v2). In the latter case, we obtain in a similar
way the same conclusion.

(ii) The Cartesian product is a group and also a co-ordered semi-
group and therefore a co-ordered group.

(iii) If Sy and Sy are co-ordered rings, then it follows from (ii) that
S1 % Sy is a co-ordered group. Consider now (z1,x2), (y1,y2) in Sy X So
with (21, 22) (y1,y2) # (0,0). It follows that z1-y; #1 0 or z5-ys #2 0.
In the former case, x1 #; 0 and y; #; 0; in the latter, o #5 0 and
Y2 #2 0. As a consequence, (x1,x2) # (0,0) and (y1,y2) # (0,0).

Suppose now (0,0) % (z1,22)-(y1,y2), that is, (0,0) £ (@1-y1, T2-y2).
Consequently, 0 ﬁl x1-y; or 0 fg Zo - Yo. In the former case, 0 ﬁl 1
or 0 %1 y; and in the latter, 0 £ 25 or 0 €5 yo. Thus we obtain
(070) f (1111,:62) or (070) ﬁ (ylva)' O

To illustrate this theorem we consider R™ with the standard opera-
tions:

(T1, 22, ,xn) + (Y1, Y2, 5 Yn) = (X1 + Y1, T2+ Y2, -, Ty + Yn);

(@1, @2, @) * (Y1, Y2, Yn) = (T1Y1, T2Y2, *+ , TuYn);
Then (R", +) is a co-ordered group and (R", +, %) is a co-ordered ring.
If we consider the co-order on R defined in Example 1, we can define
a co-order relation on R x R by

(71,22) £ (22,92) & (21 # y1 V22 > 4a).
This co-order leads us to the partial order <:
(21, 72) < (w2,92) & 2(T1 #F Y1 Vo2 > 12) & (11 =y1 Axa < 42).

According to Theorem 16, R x R is a co-ordered group with respect
to this co-order too.
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Other co-ordered algebraic structures can be defined in a similar
manner, emphasizing the relation between the co-order and the strong
monotonicity of the algebraic operations.
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