"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 30 (2020), No. 2, 153 - 164

DUAL JET GEOMETRICAL OBJECTS OF MOMENTA IN THE TIME-DEPENDENT HAMILTON GEOMETRY

MIRCEA NEAGU, ALEXANDRU OANĂ

Abstract. The aim of this paper is to obtain on the dual 1-jet space $J^{1*}(\mathbb{R}, M)$ the main geometrical objects used in the dual jet geometry of time-dependent Hamiltonians. We talk about distinguished (d-) tensors, time-dependent semisprays, nonlinear connections and their mathematical connections.

1. Introduction

According to Olver's opinion [6], we recall that the 1-jet spaces and their duals are the fundamental ambient mathematical spaces used in the study of classical and quantum field theories in their Lagrangian and Hamiltonian approaches (see also [3]). For this reason, the studies of Miron [4] and Atanasiu ([1], [2]) led to the development of the Hamilton geometry of cotangent bundles exposed by Miron, Hrimiuc, Shimada and Sabău in the monograph [5]. We emphasize that, via the Legendre duality of the Hamilton spaces with the Lagrange spaces, the preceding authors have shown in [5] that the theory of Hamilton spaces has the same symmetry as the Lagrange geometry, giving thus a geometrical framework for the Hamiltonian theory of Analytical Mechanics.

Keywords and phrases: dual 1-jet space, d-tensors, time-dependent semisprays of momenta, nonlinear connections, adapted bases.

(2010) Mathematics Subject Classification: 53B40, 53C60, 53C07.

According to this physical and geometrical context, suggested by the cotangent bundle framework of the Miron et al., this paper is devoted to exposing a particular case of the time-dependent covariant Hamilton geometry studied in [3] on dual 1-jet spaces (in the sense of d-tensors, time-dependent semisprays of momenta and nonlinear connections), which is a natural dual jet extension of the Hamilton geometry on the cotangent bundle from [5].

2. The dual 1-jet space

In our geometrical study we start with a smooth real manifold M^n of dimension n, whose local coordinates are $(x^i)_{i=\overline{1,n}}$. Let us also consider the dual 1-jet vector bundle (i.e., the time-dependent phase space of momenta)

$$J^{1*}(\mathbb{R}, M) \equiv \mathbb{R} \times T^*M \to \mathbb{R} \times M,$$

whose local coordinates are denoted by (t, x^i, p_i^1) , where the coordi-

nates p_i^1 have the physical meaning of momenta. The coordinate transformations $(t, x^i, p_i^1) \longleftrightarrow (\tilde{t}, \tilde{x}^i, \tilde{p}_i^1)$ induced from $\mathbb{R} \times M$ on the dual 1-jet space $J^{1*}(\mathbb{R}, M)$ are given by

(1)
$$\begin{cases} \tilde{t} = \tilde{t}(t) \\ \tilde{x}^{i} = \tilde{x}^{i}(x^{j}) \\ \tilde{p}_{i}^{1} = \frac{\partial x^{j}}{\partial \tilde{r}^{i}} \frac{d\tilde{t}}{dt} p_{j}^{1}, \end{cases}$$

where $d\tilde{t}/dt \neq 0$ and $\det(\partial \tilde{x}^i/\partial x^j) \neq 0$. It follows that, in our dual jet geometrical approach, we use a "relativistic" time t.

By comparison, in the cotangent Hamiltonian approach from [5], the authors use the trivial bundle $\mathbb{R} \times T^*M \to T^*M$, whose coordinates are (t, x^i, p_i) . In this context, the changes of coordinates are given by

$$\begin{cases} \tilde{t} = t \\ \tilde{x}^i = \tilde{x}^i (x^j) \\ \tilde{p}_i = \frac{\partial x^j}{\partial \tilde{x}^i} p_j, \end{cases}$$

emphasizing the absolute character of the time t. In such a context, a time dependent Hamiltonian is a real valued function H on $\mathbb{R} \times T^*M$, which is also called *rheonomic*, or *non-autonomous* Hamiltonian. A

geometrization of these Hamiltonians was realized by Miron, Atanasiu and their co-workers in the works [1], [2], [4] and [5].

Now, doing a transformation of coordinates (1) on $J^{1*}(\mathbb{R}, M)$, we obtain the following results:

Proposition 1. The elements of the local natural basis of vector fields

$$\left\{\frac{\partial}{\partial t}, \frac{\partial}{\partial x^i}, \frac{\partial}{\partial p_i^1}\right\} \subset \mathcal{X}(J^{1*}(\mathbb{R}, M))$$

transform by the rules

$$\frac{\partial}{\partial t} = \frac{d\tilde{t}}{dt} \frac{\partial}{\partial \tilde{t}} + \frac{\partial \tilde{p}_{j}^{1}}{\partial t} \frac{\partial}{\partial \tilde{p}_{j}^{1}},$$

$$\frac{\partial}{\partial x^{i}} = \frac{\partial \tilde{x}^{j}}{\partial x^{i}} \frac{\partial}{\partial \tilde{x}^{j}} + \frac{\partial \tilde{p}_{j}^{1}}{\partial x^{i}} \frac{\partial}{\partial \tilde{p}_{j}^{1}},$$

$$\frac{\partial}{\partial p_{i}^{1}} = \frac{\partial x^{i}}{\partial \tilde{x}^{j}} \frac{d\tilde{t}}{dt} \frac{\partial}{\partial \tilde{p}_{j}^{1}};$$

Proposition 2. The elements of the local natural basis of covector fields

$$\{dt, dx^i, dp_i^1\} \subset \mathcal{X}^*(J^{1*}(\mathbb{R}, M))$$

transform by the rules

(3)
$$dt = \frac{dt}{d\tilde{t}}d\tilde{t},$$

$$dx^{i} = \frac{\partial x^{i}}{\partial \tilde{x}^{j}}d\tilde{x}^{j},$$

$$dp_{i}^{1} = \frac{\partial p_{i}^{1}}{\partial \tilde{t}}d\tilde{t} + \frac{\partial p_{i}^{1}}{\partial \tilde{x}^{j}}d\tilde{x}^{j} + \frac{\partial \tilde{x}^{j}}{\partial x^{i}}\frac{dt}{d\tilde{t}}d\tilde{p}_{j}^{1}.$$

3. Time-dependent semisprays of momenta

As in the book [5], a central role in our dual jet geometrical study is played by d-tensors.

Definition 3. A geometrical object $T = \left(T_{1j(1)(l)\dots}^{1i(k)(1)\dots}(t,x^r,p_r^1)\right)$ on the dual 1-jet space $J^{1*}(\mathbb{R},M)$, whose local components change according to the rules

$$T_{1j(1)(l)\dots}^{1i(k)(1)\dots} = \tilde{T}_{1q(1)(s)\dots}^{1p(r)(1)\dots} \frac{dt}{d\tilde{t}} \frac{\partial x^i}{\partial \tilde{x}^p} \left(\frac{\partial x^k}{\partial \tilde{x}^r} \frac{d\tilde{t}}{dt} \right) \frac{d\tilde{t}}{dt} \frac{\partial \tilde{x}^q}{\partial x^j} \left(\frac{\partial \tilde{x}^s}{\partial x^l} \frac{dt}{d\tilde{t}} \right) \dots$$

with respect to a transformation of coordinates (1) on $J^{1*}(\mathbb{R}, M)$, is called a **d-tensor** or a **distinguished tensor field** on $J^{1*}(\mathbb{R}, M)$.

Remark 4. The placing between parentheses of certain indices of the local components $T_{1j(1)(l)...}^{1i(k)(1)...}$ is necessary for clearer future contractions.

Example 5. If $H: J^{1*}(\mathbb{R}, M) \to \mathbb{R}$ is a Hamiltonian function depending on the momenta p_i^1 then the local components

$$G_{(1)(1)}^{(i)(j)} = \frac{1}{2} \frac{\partial^2 H}{\partial p_i^1 \partial p_j^1}$$

represent a d-tensor field $\mathbb{G} = \left(G_{(1)(1)}^{(i)(j)}\right)$ which is called the **vertical** fundamental metrical d-tensor produced by H.

Example 6. The distinguished tensor $\mathbb{C} = \left(\mathbb{C}_{(i)}^{(1)}\right)$, where $\mathbb{C}_{(i)}^{(1)} = p_i^1$, is called the **Liouville-Hamilton d-tensor field of momenta** on the dual 1-jet space $J^{1*}(\mathbb{R}, M)$.

Example 7. If $h_{11}(t)$ is a semi-Riemannian metric on \mathbb{R} , then the geometrical object $\mathbb{L} = \left(L_{(j)11}^{(1)}\right)$, where $L_{(j)11}^{(1)} = h_{11}p_j^1$, is called the momentum Liouville-Hamilton d-tensor associated with the metric $h_{11}(t)$.

Example 8. Using the preceding metric $h_{11}(t)$, the distinguished tensor $\mathbb{J} = \left(J_{(1)1j}^{(i)}\right)$, where $J_{(1)1j}^{(i)} = h_{11}\delta_j^i$, is called the **d-tensor of** h-normalization on the dual 1-jet space $J^{1*}(\mathbb{R}, M)$.

It is obvious that any d-tensor on $J^{1*}(\mathbb{R}, M)$ is a tensor field on $J^{1*}(\mathbb{R}, M)$. Conversely, the opposite is not true. As examples, we construct two tensors on $J^{1*}(\mathbb{R}, M)$, which are not d-tensors on $J^{1*}(\mathbb{R}, M)$.

Definition 9. A global tensor G on $J^{1*}(\mathbb{R}, M)$, locally expressed by

$$G_{1} = p_{i}^{1} dx^{i} \otimes \frac{\partial}{\partial t} - 2G_{1(j)i}^{(1)} dx^{i} \otimes \frac{\partial}{\partial p_{j}^{1}},$$

is called a **temporal semispray** on the dual 1-jet space $J^{1*}(\mathbb{R}, M)$.

Taking into account that the temporal semispray G is a global tensor on $J^{1*}(\mathbb{R}, M)$, by a direct calculation, we obtain

Proposition 10. (i) Under a transformation of coordinates (1) the local components $G_{(j)i}^{(1)}$ of the global tensor $G_{(j)i}$ change according to the rules

(4)
$$2\widetilde{G}_{1(k)r}^{(1)} = 2G_{1(j)i}^{(1)} \frac{d\widetilde{t}}{dt} \frac{\partial x^{i}}{\partial \widetilde{x}^{r}} \frac{\partial x^{j}}{\partial \widetilde{x}^{k}} - \frac{\partial x^{i}}{\partial \widetilde{x}^{r}} \frac{\partial \widetilde{p}_{k}^{1}}{\partial t} p_{i}^{1}.$$

(ii) Conversely, to give a temporal semispray on $J^{1*}(\mathbb{R}, M)$ is equivalent to give a set of local functions $G = \left(G_{1(j)i}^{(1)}\right)$ which transform by the rules (4).

Example 11. If $H_{11}^1(t) = (h^{11}/2)(dh_{11}/dt)$ is the Christoffel symbol of a semi-Riemannian metric $h_{11}(t)$ of the temporal manifold \mathbb{R} , then the local components

(5)
$$G_{1(j)k}^{(1)} = \frac{1}{2} H_{11}^1 p_j^1 p_k^1$$

represent a temporal semispray $\overset{0}{G}$ on the dual 1-jet space $J^{1*}(\mathbb{R}, M)$, which is called the **canonical temporal semispray associated** with the metric $h_{11}(t)$.

A second example of tensor on the dual 1-jet space $J^{1*}(\mathbb{R}, M)$, which is not a distinguished tensor, is given by

Definition 12. A global tensor G_2 on $J^{1*}(\mathbb{R}, M)$, locally expressed by

$$G_{2} = \delta_{i}^{j} dx^{i} \otimes \frac{\partial}{\partial x^{j}} - 2G_{2(j)i}^{(1)} dx^{i} \otimes \frac{\partial}{\partial p_{j}^{1}},$$

is called a **spatial semispray** on the dual 1-jet space $J^{1*}(\mathbb{R}, M)$.

Like in the case of a temporal semispray, we can prove without difficulties the following statement:

Proposition 13. To give a spatial semispray on $J^{1*}(\mathbb{R}, M)$ is equivalent to give a set of local functions $G = \left(G_{2(j)i}^{(1)}\right)$ which transform by the rules

(6)
$$2\widetilde{G}_{2(s)k}^{(1)} = 2G_{2(j)i}^{(1)} \frac{d\widetilde{t}}{dt} \frac{\partial x^i}{\partial \widetilde{x}^k} \frac{\partial x^j}{\partial \widetilde{x}^s} - \frac{\partial x^i}{\partial \widetilde{x}^k} \frac{\partial \widetilde{p}_s^1}{\partial x^i}.$$

Example 14. If $\gamma_{jk}^i(x)$ are the Christoffel symbols of a semi-Riemannian metric $\varphi_{ij}(x)$ of the spatial manifold M, then the local components

(7)
$$G_2^{(1)} = -\frac{1}{2} \gamma_{jk}^i p_i^1$$

define a spatial semispray $\overset{0}{\overset{}{G}}$ on the dual 1-jet space $J^{1*}(\mathbb{R}, M)$, which is called the **canonical spatial semispray associated with the metric** $\varphi_{ij}(x)$.

Definition 15. A pair $G = \begin{pmatrix} G, G \\ 1 \end{pmatrix}$, consisting of a temporal semispray G and a spatial semispray G, is called a **time-dependent** semispray of momenta on the dual 1-jet space $J^{1*}(\mathbb{R}, M)$.

4. Nonlinear connections and adapted bases

In what follows, we study the important geometrical concept of nonlinear connection on the dual 1-jet space $J^{1*}(\mathbb{R}, M)$, which is intimately related by the concept of time-dependent semispray.

Definition 16. A pair of local functions $N = \left(N_{1(k)1}^{(1)}, N_{2(k)i}^{(1)}\right)$ on $J^{1*}(\mathbb{R}, M)$, which transform by the rules

(8)
$$\widetilde{N}_{1(j)1}^{(1)} = N_{1(k)1}^{(1)} \frac{\partial x^{k}}{\partial \tilde{x}^{j}} - \frac{dt}{d\tilde{t}} \frac{\partial \tilde{p}_{j}^{1}}{\partial t}, \\
\widetilde{N}_{2(j)r}^{(1)} = N_{2(k)i}^{(1)} \frac{d\tilde{t}}{dt} \frac{\partial x^{k}}{\partial \tilde{x}^{j}} \frac{\partial x^{i}}{\partial \tilde{x}^{r}} - \frac{\partial x^{i}}{\partial \tilde{x}^{r}} \frac{\partial \tilde{p}_{j}^{1}}{\partial x^{i}},$$

is called a **nonlinear connection** on the dual 1-jet bundle $J^{1*}(\mathbb{R},M)$. The geometrical entity $\underset{1}{N} = \binom{N \binom{1}{j}}{1}$ (respectively $\underset{2}{N} = \binom{N \binom{1}{j}}{2}$) is called a **temporal** (respectively **spatial**) **nonlinear connection** on $J^{1*}(\mathbb{R},M)$.

Now, let us expose the connection between the time-dependent semisprays of momenta and nonlinear connections on the dual 1-jet space $J^{1*}(\mathbb{R}, M)$. For this, let us consider that $\varphi_{ij}(x)$ is a semi-Riemannian metric on the spatial manifold M. Thus, using the transformation rules (4), (6) and (8) of the geometrical objects taken in study, we can easily prove the following statements:

Proposition 17. (i) The connection between the temporal semisprays $G_1 = \begin{pmatrix} G_1^{(1)} \end{pmatrix}$ and the temporal components of nonlinear connections $N_{temporal} = \begin{pmatrix} N_1^{(1)} \end{pmatrix}$ is given by the relations

$$N_{1(r)1}^{(1)} = \varphi^{jk} \frac{\partial G_{1(j)k}^{(1)}}{\partial p_i^1} \varphi_{ir}, \qquad G_{1(i)j}^{(1)} = \frac{1}{2} N_{1(i)1}^{(1)} p_j^1.$$

(ii) The connection between spatial semisprays $G_2 = \begin{pmatrix} G_2^{(1)} \\ 2(j)i \end{pmatrix}$ and the spatial components of nonlinear connections $N_{spatial} = \begin{pmatrix} N_2^{(1)} \\ 2(j)i \end{pmatrix}$ is given via the relations

$$N_{2(j)i}^{(1)} = 2G_{2(j)i}^{(1)}, \qquad G_{2(j)i}^{(1)} = \frac{1}{2}N_{2(j)i}^{(1)}.$$

Remark 18. It is obvious that on the 1-jet space $J^{1*}(\mathbb{R}, M)$ a time-dependent semispray of momenta G naturally induces a nonlinear connection N_G and vice-versa, a nonlinear connection N induces a time-dependent semispray G_N . The nonlinear connection N_G is called the canonical nonlinear connection associated with the time-dependent semispray of momenta G and vice-versa.

Example 19. The canonical nonlinear connection $N = \begin{pmatrix} 0 & 1 \\ N_1^{(1)} & N_2^{(1)} \end{pmatrix}$ produced by the canonical time-dependent semispray of momenta $G = \begin{pmatrix} 0 & 0 \\ G, G \end{pmatrix}$ has the local components

(9)
$$N_{1(i)1}^{(1)} = H_{11}^1 p_i^1, \qquad N_{2(i)j}^{(1)} = -\gamma_{ij}^k p_k^1.$$

This nonlinear connection is called the **canonical nonlinear connection on** $J^{1*}(\mathbb{R}, M)$, **associated with the semi-Riemannian** metrics $h_{11}(t)$ and $\varphi_{ij}(x)$.

Taking into account the complicated transformation rules (2) and (3), we need a horizontal distribution on the dual 1-jet space

 $J^{1*}(\mathbb{R}, M)$, in order to construct some adapted bases of vector and covector fields, whose transformation rules are simpler (tensorial ones, for instance).

In this direction, let $u^* = (t, x^i, p_i^1) \in J^{1*}(\mathbb{R}, M)$ be an arbitrary point and let us consider the differential map

$$\pi^*_{*,u^*}: T_{u^*}J^{1*}(\mathbb{R},M) \to T_{(t,x)}(\mathbb{R} \times M)$$

of the canonical projection

$$\pi^*: J^{1*}(\mathbb{R}, M) \to \mathbb{R} \times M, \quad \pi^*(u^*) = (t, x),$$

together with its vector subspace $W_{u^*} = Ker\pi^*_{*,u^*} \subset T_{u^*}J^{1*}(\mathbb{R}, M)$. Because the differential map π^*_{*,u^*} is a surjection, we find that we have $\dim_{\mathbb{R}} W_{u^*} = n$ and, moreover, a basis in W_{u^*} is determined by $\left\{ \frac{\partial}{\partial p_i^1} \right\}_{*}$.

So, the map $W: u^* \in J^{1*}(\mathbb{R}, M) \to W_{u^*} \subset T_{u^*}J^{1*}(\mathbb{R}, M)$ is a differential distribution, which is called the *vertical distribution* on the dual 1-jet space $J^{1*}(\mathbb{R}, M)$.

Definition 20. A differential distribution

$$\mathcal{H}: u^* \in J^{1*}(\mathbb{R}, M) \to H_{u^*} \subset T_{u^*}J^{1*}(\mathbb{R}, M),$$

which is supplementary to the vertical distribution W, that is we have

$$T_{u^*}J^{1*}(\mathbb{R},M) = H_{u^*} \oplus W_{u^*}, \forall u^* \in J^{1*}(\mathbb{R},M),$$

is called a **horizontal distribution** on the dual 1-jet space $J^{1*}(\mathbb{R}, M)$.

The above definition implies that $\dim_{\mathbb{R}} H_{u^*} = n + 1$, $\forall u^* \in J^{1*}(\mathbb{R}, M)$. Moreover, the Lie algebra of the vector fields $\mathcal{X}(J^{1*}(\mathbb{R}, M))$ can be decomposed in the direct sum $\mathcal{X}(J^{1*}(\mathbb{R}, M)) = \mathcal{S}(\mathcal{H}) \oplus \mathcal{S}(\mathcal{W})$, where $\mathcal{S}(\mathcal{H})$ (respectively $\mathcal{S}(\mathcal{W})$) is the set of differentiable sections on \mathcal{H} (respectively \mathcal{W}).

Supposing that \mathcal{H} is a fixed horizontal distribution on $J^{1*}(\mathbb{R}, M)$, we have the isomorphism

$$\pi^*_{*,u^*}|_{H_{u^*}}: H_{u^*} \to T_{\pi^*(u^*)}(\mathbb{R} \times M),$$

which allows us to prove the following result:

Theorem 21. (i) There exist unique linear independent horizontal vector fields $\frac{\delta}{\delta t}$, $\frac{\delta}{\delta x^{i}} \in \mathcal{S}(\mathcal{H})$, having the properties

(10)
$$\pi^* * \left(\frac{\delta}{\delta t}\right) = \frac{\partial}{\partial t}, \quad \pi^* * \left(\frac{\delta}{\delta x^i}\right) = \frac{\partial}{\partial x^i}.$$

(ii) The horizontal vector fields $\frac{\delta}{\delta t}$ and $\frac{\delta}{\delta x^i}$ can be uniquely written in the form

(11)
$$\frac{\delta}{\delta t} = \frac{\partial}{\partial t} - N_{1(j)1}^{(1)} \frac{\partial}{\partial p_j^1}, \qquad \frac{\delta}{\delta x^i} = \frac{\partial}{\partial x^i} - N_{2(j)i}^{(1)} \frac{\partial}{\partial p_j^1}.$$

- (iii) The local coefficients $N_{1(j)1}^{(1)}$ and $N_{2(j)i}^{(1)}$ obey the rules (8) of a nonlinear connection N on $J^{1*}(\mathbb{R}, M)$.
- (iv) On the 1-jet space $J^{1*}(\mathbb{R},M)$ to give a horizontal distribution \mathcal{H} is equivalent to give a nonlinear connection $N = \begin{pmatrix} N_{(j)1}^{(1)}, & N_{(j)i}^{(1)} \\ 1 & 2 \end{pmatrix}$.

Proof. Let $\frac{\delta}{\delta t}$, $\frac{\delta}{\delta x^i} \in \mathcal{X}(J^{1*}(\mathbb{R}, M))$ be vector fields on $J^{1*}(\mathbb{R}, M)$, locally expressed by

$$\begin{split} \frac{\delta}{\delta t} &= A_1^1 \frac{\partial}{\partial t} + A_1^j \frac{\partial}{\partial x^j} + A_{(j)1}^{(1)} \frac{\partial}{\partial p_j^1}, \\ \frac{\delta}{\delta x^i} &= X_i^1 \frac{\partial}{\partial t} + X_i^j \frac{\partial}{\partial x^j} + X_{(j)i}^{(1)} \frac{\partial}{\partial p_i^1}, \end{split}$$

which verify the relations (10). Then, taking into account the local expression of the map π^*_* , we get

$$A_1^1 = 1, \ A_1^j = 0, \ A_{(j)1}^{(1)} = -N_1^{(1)},$$

$$X_i^1 = 0, \ X_i^j = \delta_i^j, \ X_{(j)i}^{(1)} = -N_{(j)i}^{(1)}.$$

These equalities prove the form (11) of the vector fields from Theorem, together with their linear independence. The uniqueness of the coefficients $N_{1(j)1}^{(1)}$ and $N_{2(j)i}^{(1)}$ is obvious.

Because the vector fields $\frac{\delta}{\delta t}$ and $\frac{\delta}{\delta x^i}$ are globally defined, we deduce that a change of coordinates (1) on $J^{1*}(\mathbb{R}, M)$ produces a transformation of the local coefficients $N_{1(j)1}^{(1)}$ and $N_{2(j)i}^{(1)}$ by the rules (8).

Finally, starting with a set of functions $N = \begin{pmatrix} N_{1}^{(1)}, & N_{2}^{(1)} \\ 1 \end{pmatrix}$, which satisfy the rules (8), we can construct the horizontal distribution \mathcal{H} , taking

$$H_{u^*} = Span\left\{ \left. \frac{\delta}{\delta t} \right|_{u^*}, \left. \frac{\delta}{\delta x^i} \right|_{u^*} \right\}.$$

The decomposition $T_{u^*}J^{1*}(\mathbb{R},M)=H_{u^*}\oplus W_{u^*}$ is obvious now. \square

Definition 22. The set of the linear independent vector fields

(12)
$$\left\{ \frac{\delta}{\delta t}, \frac{\delta}{\delta x^i}, \frac{\partial}{\partial p_i^1} \right\} \subset \mathcal{X} \left(J^{1*}(\mathbb{R}, M) \right)$$

is called the adapted basis of vector fields produced by the nonlinear connection $N = \left(\underset{1}{N}, \underset{2}{N} \right)$.

With respect to the coordinate transformations (1), the elements of the adapted basis (12) have their transformation laws as tensorial ones (in contrast with the transformations rules (2)):

$$\begin{split} \frac{\delta}{\delta t} &= \frac{d\tilde{t}}{dt} \frac{\delta}{\delta \tilde{t}}, \\ \frac{\delta}{\delta x^i} &= \frac{\partial \tilde{x}^j}{\partial x^i} \frac{\delta}{\delta \tilde{x}^j}, \\ \frac{\partial}{\partial p^1_i} &= \frac{d\tilde{t}}{dt} \frac{\partial x^i}{\partial \tilde{x}^j} \frac{\partial}{\partial \tilde{p}^1_i}. \end{split}$$

The dual basis (of covector fields) of the adapted basis (12) is given by

(13)
$$\left\{dt, dx^{i}, \delta p_{i}^{1}\right\} \subset \mathcal{X}^{*}\left(J^{1*}(\mathbb{R}, M)\right)$$

where

$$\delta p_i^1 = dp_i^1 + N_{1(i)1}^{(1)} dt + N_{2(i)j}^{(1)} dx^j.$$

Definition 23. The dual basis of covector fields (13) is called the adapted cobasis of covector fields of the nonlinear connection $N = \begin{pmatrix} N, N \\ 1 \end{pmatrix}$.

Moreover, with respect to transformation laws (1), we obtain the following tensorial transformation rules:

$$dt = \frac{dt}{d\tilde{t}}d\tilde{t},$$

$$dx^{i} = \frac{\partial x^{i}}{\partial \tilde{x}^{j}}d\tilde{x}^{j},$$

$$\delta p_{i}^{1} = \frac{dt}{d\tilde{t}}\frac{\partial \tilde{x}^{j}}{\partial x^{i}}\delta \tilde{p}_{j}^{1}.$$

As a consequence of the preceding assertions, we find the following simple result:

Proposition 24. (i) The Lie algebra of vector fields on $J^{1*}(\mathbb{R}, M)$ decomposes in the direct sum $\mathcal{X}(J^{1*}(\mathbb{R}, M)) = \mathcal{X}(\mathcal{H}_{\mathbb{R}}) \oplus \mathcal{X}(\mathcal{H}_{M}) \oplus \mathcal{X}(\mathcal{W})$, where

$$\mathcal{X}(\mathcal{H}_{\mathbb{R}}) = Span\left\{\frac{\delta}{\delta t}\right\}, \ \mathcal{X}(\mathcal{H}_{M}) = Span\left\{\frac{\delta}{\delta x^{i}}\right\}, \ \mathcal{X}(\mathcal{W}) = Span\left\{\frac{\partial}{\partial p_{i}^{1}}\right\}.$$

(ii) The Lie algebra of covector fields on $J^{1*}(\mathbb{R}, M)$ decomposes in the direct sum $\mathcal{X}^*(J^{1*}(\mathbb{R}, M)) = \mathcal{X}^*(\mathcal{H}_{\mathbb{R}}) \oplus \mathcal{X}^*(\mathcal{H}_M) \oplus \mathcal{X}^*(\mathcal{W})$, where

$$\mathcal{X}^*\left(\mathcal{H}_{\mathbb{R}}\right) = Span\left\{dt\right\}, \ \mathcal{X}^*\left(\mathcal{H}_M\right) = Span\left\{dx^i\right\}, \ \mathcal{X}^*\left(\mathcal{W}\right) = Span\left\{\delta p_i^1\right\}.$$

Definition 25. The distributions $\mathcal{H}_{\mathbb{R}}$ and \mathcal{H}_{M} are called the \mathbb{R} -horizontal distribution and M-horizontal distribution on $J^{1*}(\mathbb{R}, M)$.

5. Discussion

The results of this paper represent the basics for a subsequent geometrization (in the sense of nonlinear connection, canonical d-linear connection, d-torsions and d-curvatures) on dual jet spaces of the time-dependent Hamiltonians regarded as real-valued functions on the 1-jet space $J^{1*}(\mathbb{R}, M)$. This Hamilton geometrization is similar with that developed on cotangent bundles ([5], [4], [1] and [2]), but is characterized by a "relativistic" time in the study. In contrast the time-dependent Hamilton geometrization on cotangent bundles is characterized by an absolute time.

References

- [1] Gh. Atanasiu, **The invariant expression of Hamilton geometry**, Tensor N.S., vol. (47), no. (3) (1988), 225–234.
- [2] Gh. Atanasiu, F.C. Klepp, Nonlinear connections in cotangent bundle, Publ. Math. Debrecen, Hungary, vol. (39), no. (1-2) (1991), 107–111.
- [3] Gh. Atanasiu, M. Neagu, A. Oană, The Geometry of Jet Multi-Time Lagrange and Hamilton Spaces. Applications in Theoretical Physics, Fair Partners, Bucharest, 2013.
- [4] R. Miron, **Hamilton geometry**, An. Şt. "Al. I. Cuza" Univ., Iaşi, Romania, vol. (35) (1989), 33–67.
- [5] R. Miron, D. Hrimiuc, H. Shimada, S.V. Sabău, The Geometry of Hamilton and Lagrange Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
- [6] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986.

Transilvania University of Braşov, Department of Mathematics and Computer Science, Blvd. Iuliu Maniu, No. 50, Braşov 500091, ROMÂNIA

e-mail: mircea.neagu@unitbv.ro, alexandru.oana@unitbv.ro