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DUAL JET GEOMETRICAL OBJECTS OF MOMENTA
IN THE TIME-DEPENDENT HAMILTON GEOMETRY

MIRCEA NEAGU, ALEXANDRU OANĂ

Abstract.The aim of this paper is to obtain on the dual 1-jet space
J1∗(R,M) the main geometrical objects used in the dual jet geometry
of time-dependent Hamiltonians. We talk about distinguished (d-)
tensors, time-dependent semisprays, nonlinear connections and their
mathematical connections.

1. Introduction

According to Olver’s opinion [6], we recall that the 1-jet spaces and
their duals are the fundamental ambient mathematical spaces used in
the study of classical and quantum field theories in their Lagrangian
and Hamiltonian approaches (see also [3]). For this reason, the stud-
ies of Miron [4] and Atanasiu ([1], [2]) led to the development of the
Hamilton geometry of cotangent bundles exposed by Miron, Hrim-
iuc, Shimada and Sabău in the monograph [5]. We emphasize that,
via the Legendre duality of the Hamilton spaces with the Lagrange
spaces, the preceding authors have shown in [5] that the theory of
Hamilton spaces has the same symmetry as the Lagrange geometry,
giving thus a geometrical framework for the Hamiltonian theory of
Analytical Mechanics.
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According to this physical and geometrical context, suggested by
the cotangent bundle framework of the Miron et al., this paper is
devoted to exposing a particular case of the time-dependent covariant
Hamilton geometry studied in [3] on dual 1-jet spaces (in the sense
of d-tensors, time-dependent semisprays of momenta and nonlinear
connections), which is a natural dual jet extension of the Hamilton
geometry on the cotangent bundle from [5].

2. The dual 1-jet space

In our geometrical study we start with a smooth real manifold Mn of
dimension n, whose local coordinates are (xi)i=1,n. Let us also consider
the dual 1-jet vector bundle (i.e., the time-dependent phase space of
momenta)

J1∗(R,M) ≡ R× T ∗M → R×M,

whose local coordinates are denoted by (t, xi, p1i ), where the coordi-
nates p1i have the physical meaning of momenta.

The coordinate transformations (t, xi, p1i ) ←→ (t̃, x̃i, p̃1i ) induced
from R×M on the dual 1-jet space J1∗(R,M) are given by

(1)


t̃ = t̃ (t)

x̃i = x̃i (xj)

p̃1i =
∂xj

∂x̃i
dt̃

dt
p1j ,

where dt̃/dt 6= 0 and det(∂x̃i/∂xj) 6= 0. It follows that, in our dual jet
geometrical approach, we use a ”relativistic” time t.

By comparison, in the cotangent Hamiltonian approach from [5], the
authors use the trivial bundle R × T ∗M → T ∗M , whose coordinates
are (t, xi, pi). In this context, the changes of coordinates are given by

t̃ = t

x̃i = x̃i (xj)

p̃i =
∂xj

∂x̃i
pj,

emphasizing the absolute character of the time t. In such a context, a
time dependent Hamiltonian is a real valued function H on R×T ∗M ,
which is also called rheonomic, or non-autonomous Hamiltonian. A
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geometrization of these Hamiltonians was realized by Miron, Atanasiu
and their co-workers in the works [1], [2], [4] and [5].

Now, doing a transformation of coordinates (1) on J1∗(R,M), we
obtain the following results:

Proposition 1. The elements of the local natural basis of vector fields{
∂

∂t
,
∂

∂xi
,
∂

∂p1i

}
⊂ X (J1∗(R,M))

transform by the rules

(2)

∂

∂t
=
dt̃

dt

∂

∂t̃
+
∂p̃1j
∂t

∂

∂p̃1j
,

∂

∂xi
=
∂x̃j

∂xi
∂

∂x̃j
+
∂p̃1j
∂xi

∂

∂p̃1j
,

∂

∂p1i
=
∂xi

∂x̃j
dt̃

dt

∂

∂p̃1j
;

Proposition 2. The elements of the local natural basis of covector
fields

{dt, dxi, dp1i } ⊂ X ∗(J1∗(R,M))

transform by the rules

(3)

dt =
dt

dt̃
dt̃,

dxi =
∂xi

∂x̃j
dx̃j,

dp1i =
∂p1i
∂t̃

dt̃+
∂p1i
∂x̃j

dx̃j +
∂x̃j

∂xi
dt

dt̃
dp̃1j .

3. Time-dependent semisprays of momenta

As in the book [5], a central role in our dual jet geometrical study
is played by d-tensors.

Definition 3. A geometrical object T =
(
T

1i(k)(1)...
1j(1)(l)... (t, xr, p1r)

)
on the

dual 1-jet space J1∗(R,M), whose local components change according
to the rules

T
1i(k)(1)...
1j(1)(l)... = T̃

1p(r)(1)...
1q(1)(s)...

dt

dt̃

∂xi

∂x̃p

(
∂xk

∂x̃r
dt̃

dt

)
dt̃

dt

∂x̃q

∂xj

(
∂x̃s

∂xl
dt

dt̃

)
. . .
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with respect to a transformation of coordinates (1) on J1∗(R,M), is
called a d-tensor or a distinguished tensor field on J1∗(R,M).

Remark 4. The placing between parentheses of certain indices of the

local components T
1i(k)(1)...
1j(1)(l)... is necessary for clearer future contractions.

Example 5. If H : J1∗(R,M) → R is a Hamiltonian function de-
pending on the momenta p1i then the local components

G
(i)(j)
(1)(1) =

1

2

∂2H

∂p1i∂p
1
j

represent a d-tensor field G =
(
G

(i)(j)
(1)(1)

)
which is called the vertical

fundamental metrical d-tensor produced by H.

Example 6. The distinguished tensor C =
(
C(1)

(i)

)
,where C(1)

(i) = p1i ,

is called the Liouville-Hamilton d-tensor field of momenta on
the dual 1-jet space J1∗(R,M).

Example 7. If h11(t) is a semi-Riemannian metric on R, then the

geometrical object L =
(
L
(1)
(j)11

)
, where L

(1)
(j)11 = h11p

1
j , is called the

momentum Liouville-Hamilton d-tensor associated with the
metric h11(t).

Example 8. Using the preceding metric h11(t), the distinguished ten-

sor J =
(
J
(i)
(1)1j

)
, where J

(i)
(1)1j = h11δ

i
j, is called the d-tensor of

h-normalization on the dual 1-jet space J1∗(R,M).

It is obvious that any d-tensor on J1∗(R,M) is a tensor field on
J1∗(R,M). Conversely, the opposite is not true. As examples, we con-
struct two tensors on J1∗(R,M), which are not d-tensors on J1∗(R,M).

Definition 9. A global tensor G
1

on J1∗(R,M), locally expressed by

G
1

= p1i dx
i ⊗ ∂

∂t
− 2G

1

(1)
(j)idx

i ⊗ ∂

∂p1j
,

is called a temporal semispray on the dual 1-jet space J1∗(R,M).

Taking into account that the temporal semisprayG
1

is a global tensor

on J1∗(R,M), by a direct calculation, we obtain
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Proposition 10. (i) Under a transformation of coordinates (1) the

local components G
1

(1)
(j)i of the global tensor G

1
change according to the

rules

(4) 2G̃
1

(1)
(k)r = 2G

1

(1)
(j)i

dt̃

dt

∂xi

∂x̃r
∂xj

∂x̃k
− ∂xi

∂x̃r
∂p̃1k
∂t

p1i .

(ii) Conversely, to give a temporal semispray on J1∗(R,M) is equiv-

alent to give a set of local functions G
1

=
(
G
1

(1)
(j)i

)
which transform by

the rules (4).

Example 11. If H1
11(t) = (h11/2)(dh11/dt) is the Christoffel symbol

of a semi-Riemannian metric h11(t) of the temporal manifold R, then
the local components

(5)
0

G
1

(1)
(j)k =

1

2
H1

11p
1
jp

1
k

represent a temporal semispray
0

G
1

on the dual 1-jet space J1∗(R,M),

which is called the canonical temporal semispray associated
with the metric h11(t).

A second example of tensor on the dual 1-jet space J1∗(R,M), which
is not a distinguished tensor, is given by

Definition 12. A global tensor G
2

on J1∗(R,M), locally expressed by

G
2

= δji dx
i ⊗ ∂

∂xj
− 2G

2

(1)
(j)idx

i ⊗ ∂

∂p1j
,

is called a spatial semispray on the dual 1-jet space J1∗(R,M).

Like in the case of a temporal semispray, we can prove without
difficulties the following statement:

Proposition 13. To give a spatial semispray on J1∗(R,M) is equiv-

alent to give a set of local functions G
2

=
(
G
2

(1)
(j)i

)
which transform by

the rules

(6) 2G̃
2

(1)
(s)k = 2G

2

(1)
(j)i

dt̃

dt

∂xi

∂x̃k
∂xj

∂x̃s
− ∂xi

∂x̃k
∂p̃1s
∂xi

.
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Example 14. If γijk(x) are the Christoffel symbols of a semi-
Riemannian metric ϕij(x) of the spatial manifold M , then the local
components

(7)
0

G
2

(1)
(j)k = −1

2
γijkp

1
i

define a spatial semispray
0

G
2

on the dual 1-jet space J1∗(R,M), which

is called the canonical spatial semispray associated with the
metric ϕij(x).

Definition 15. A pair G =
(
G
1
, G
2

)
, consisting of a temporal semis-

pray G
1

and a spatial semispray G
2

, is called a time-dependent

semispray of momenta on the dual 1-jet space J1∗(R,M).

4. Nonlinear connections and adapted bases

In what follows, we study the important geometrical concept of
nonlinear connection on the dual 1-jet space J1∗(R,M), which is inti-
mately related by the concept of time-dependent semispray.

Definition 16. A pair of local functions N =
(
N
1

(1)
(k)1, N2

(1)
(k)i

)
on

J1∗(R,M), which transform by the rules

(8)
Ñ
1

(1)
(j)1 =N

1

(1)
(k)1

∂xk

∂x̃j
− dt

dt̃

∂p̃1j
∂t

,

Ñ
2

(1)
(j)r = N

2

(1)
(k)i

dt̃

dt

∂xk

∂x̃j
∂xi

∂x̃r
−∂x

i

∂x̃r
∂p̃1j
∂xi

,

is called a nonlinear connection on the dual 1-jet bundle

J1∗(R,M). The geometrical entity N
1

=

(
N
1

(1)
(j)1

)
(respectively N

2
=(

N
2

(1)
(j)i

)
) is called a temporal (respectively spatial) nonlinear con-

nection on J1∗(R,M).

Now, let us expose the connection between the time-dependent
semisprays of momenta and nonlinear connections on the dual 1-jet
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space J1∗(R,M). For this, let us consider that ϕij(x) is a semi-
Riemannian metric on the spatial manifold M . Thus, using the trans-
formation rules (4), (6) and (8) of the geometrical objects taken in
study, we can easily prove the following statements:

Proposition 17. (i) The connection between the temporal semisprays

G
1

=
(
G
1

(1)
(j)k

)
and the temporal components of nonlinear connections

Ntemporal =
(
N
1

(1)
(r)1

)
is given by the relations

N
1

(1)
(r)1 = ϕjk

∂G
1

(1)
(j)k

∂p1i
ϕir, G

1

(1)
(i)j =

1

2
N
1

(1)
(i)1p

1
j .

(ii) The connection between spatial semisprays G
2

=
(
G
2

(1)
(j)i

)
and the

spatial components of nonlinear connections Nspatial =
(
N
2

(1)
(j)i

)
is given

via the relations

N
2

(1)
(j)i = 2G

2

(1)
(j)i, G

2

(1)
(j)i=

1

2
N
2

(1)
(j)i.

Remark 18. It is obvious that on the 1-jet space J1∗(R,M) a time-
dependent semispray of momenta G naturally induces a nonlinear
connection NG and vice-versa, a nonlinear connection N induces a
time-dependent semispray GN . The nonlinear connection NG is called
the canonical nonlinear connection associated with the time-
dependent semispray of momenta G and vice-versa.

Example 19. The canonical nonlinear connection
0

N =(
0

N
1

(1)
(i)1,

0

N
2

(1)
(i)j

)
produced by the canonical time-dependent semis-

pray of momenta
0

G =

(
0

G
1
,
0

G
2

)
has the local components

(9)
0

N
1

(1)
(i)1 = H1

11p
1
i ,

0

N
2

(1)
(i)j = −γkijp1k.

This nonlinear connection is called the canonical nonlinear con-
nection on J1∗(R,M), associated with the semi-Riemannian
metrics h11(t) and ϕij(x).

Taking into account the complicated transformation rules (2)
and (3), we need a horizontal distribution on the dual 1-jet space
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J1∗(R,M), in order to construct some adapted bases of vector and
covector fields, whose transformation rules are simpler (tensorial ones,
for instance).

In this direction, let u∗ = (t, xi, p1i ) ∈ J1∗(R,M) be an arbitrary
point and let us consider the differential map

π∗
∗,u∗ : Tu∗J

1∗(R,M)→ T(t,x) (R×M)

of the canonical projection

π∗ : J1∗(R,M)→ R×M, π∗ (u∗) = (t, x) ,

together with its vector subspace Wu∗ = Kerπ∗
∗,u∗ ⊂ Tu∗J

1∗(R,M).
Because the differential map π∗

∗,u∗ is a surjection, we find that we
have dimRWu∗ = n and, moreover, a basis in Wu∗ is determined by{

∂

∂p1i

∣∣∣∣
u∗

}
.

So, the map W : u∗ ∈ J1∗(R,M) → Wu∗ ⊂ Tu∗J
1∗(R,M) is a

differential distribution, which is called the vertical distribution on
the dual 1-jet space J1∗(R,M).

Definition 20. A differential distribution

H : u∗ ∈ J1∗(R,M)→ Hu∗ ⊂ Tu∗J
1∗(R,M),

which is supplementary to the vertical distribution W , that is we have

Tu∗J
1∗(R,M) = Hu∗ ⊕Wu∗, ∀ u∗ ∈ J1∗(R,M),

is called a horizontal distribution on the dual 1-jet space
J1∗(R,M).

The above definition implies that dimRHu∗ = n + 1, ∀
u∗ ∈ J1∗(R,M). Moreover, the Lie algebra of the vector fields
X (J1∗(R,M)) can be decomposed in the direct sum X (J1∗(R,M)) =
S (H)⊕ S (W) , where S (H) (respectively S (W)) is the set of differ-
entiable sections on H (respectively W).

Supposing that H is a fixed horizontal distribution on J1∗(R,M),
we have the isomorphism

π∗
∗,u∗|Hu∗

: Hu∗ → Tπ∗(u∗) (R×M) ,

which allows us to prove the following result:
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Theorem 21. (i) There exist unique linear independent horizontal

vector fields
δ

δt
,
δ

δxi
∈ S (H) , having the properties

(10) π∗
∗

(
δ

δt

)
=

∂

∂t
, π∗

∗

(
δ

δxi

)
=

∂

∂xi
.

(ii) The horizontal vector fields
δ

δt
and

δ

δxi
can be uniquely written

in the form

(11)
δ

δt
=

∂

∂t
−N

1

(1)
(j)1

∂

∂p1j
,

δ

δxi
=

∂

∂xi
−N

2

(1)
(j)i

∂

∂p1j
.

(iii) The local coefficients N
1

(1)
(j)1 and N

2

(1)
(j)i obey the rules (8) of a

nonlinear connection N on J1∗(R,M).
(iv) On the 1-jet space J1∗(R,M) to give a horizontal distribution

H is equivalent to give a nonlinear connection N =

(
N
1

(1)
(j)1, N

2

(1)
(j)i

)
.

Proof. Let
δ

δt
,
δ

δxi
∈ X (J1∗(R,M)) be vector fields on J1∗(R,M),

locally expressed by

δ

δt
= A1

1

∂

∂t
+ Aj1

∂

∂xj
+ A

(1)
(j)1

∂

∂p1j
,

δ

δxi
= X1

i

∂

∂t
+Xj

i

∂

∂xj
+X

(1)
(j)i

∂

∂p1j
,

which verify the relations (10). Then, taking into account the local
expression of the map π∗

∗, we get

A1
1 = 1, Aj1 = 0, A

(1)
(j)1 = −N

1

(1)
(j)1,

X1
i = 0, Xj

i = δji , X
(1)
(j)i = −N

2

(1)
(j)i.

These equalities prove the form (11) of the vector fields from Theo-
rem, together with their linear independence. The uniqueness of the

coefficients N
1

(1)
(j)1 and N

2

(1)
(j)i is obvious.
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Because the vector fields
δ

δt
and

δ

δxi
are globally defined, we deduce

that a change of coordinates (1) on J1∗(R,M) produces a transforma-

tion of the local coefficients N
1

(1)
(j)1 and N

2

(1)
(j)i by the rules (8).

Finally, starting with a set of functions N =

(
N
1

(1)
(j)1, N

2

(1)
(j)i

)
, which

satisfy the rules (8), we can construct the horizontal distribution H,
taking

Hu∗ = Span

{
δ

δt

∣∣∣∣
u∗
,
δ

δxi

∣∣∣∣
u∗

}
.

The decomposition Tu∗J
1∗(R,M) = Hu∗ ⊕Wu∗ is obvious now. �

Definition 22. The set of the linear independent vector fields

(12)

{
δ

δt
,
δ

δxi
,
∂

∂p1i

}
⊂ X

(
J1∗(R,M)

)
is called the adapted basis of vector fields produced by the

nonlinear connection N =
(
N
1
, N

2

)
.

With respect to the coordinate transformations (1), the elements
of the adapted basis (12) have their transformation laws as tensorial
ones (in contrast with the transformations rules (2)):

δ

δt
=
dt̃

dt

δ

δt̃
,

δ

δxi
=
∂x̃j

∂xi
δ

δx̃j
,

∂

∂p1i
=
dt̃

dt

∂xi

∂x̃j
∂

∂p̃1j
.

The dual basis (of covector fields) of the adapted basis (12) is given
by

(13)
{
dt, dxi, δp1i

}
⊂ X ∗ (J1∗(R,M)

)
where

δp1i = dp1i +N
1

(1)
(i)1dt+N

2

(1)
(i)jdx

j.
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Definition 23. The dual basis of covector fields (13) is called the
adapted cobasis of covector fields of the nonlinear connec-

tion N =
(
N
1
, N

2

)
.

Moreover, with respect to transformation laws (1), we obtain the
following tensorial transformation rules:

dt =
dt

dt̃
dt̃,

dxi =
∂xi

∂x̃j
dx̃j,

δp1i =
dt

dt̃

∂x̃j

∂xi
δp̃1j .

As a consequence of the preceding assertions, we find the following
simple result:

Proposition 24. (i) The Lie algebra of vector fields on J1∗(R,M)
decomposes in the direct sum X (J1∗(R,M)) = X (HR) ⊕ X (HM) ⊕
X (W) , where

X (HR) = Span

{
δ

δt

}
, X (HM) = Span

{
δ

δxi

}
, X (W) = Span

{
∂

∂p1i

}
.

(ii) The Lie algebra of covector fields on J1∗(R,M) decomposes in
the direct sum X ∗ (J1∗(R,M)) = X ∗ (HR)⊕X ∗ (HM)⊕X ∗ (W) , where

X ∗ (HR) = Span {dt} , X ∗ (HM) = Span
{
dxi
}
, X ∗ (W) = Span

{
δp1i
}
.

Definition 25. The distributions HR and HM are called the R-
horizontal distribution and M-horizontal distribution on
J1∗(R,M).

5. Discussion

The results of this paper represent the basics for a subsequent ge-
ometrization (in the sense of nonlinear connection, canonical d-linear
connection, d-torsions and d-curvatures) on dual jet spaces of the time-
dependent Hamiltonians regarded as real-valued functions on the 1-jet
space J1∗(R,M). This Hamilton geometrization is similar with that
developed on cotangent bundles ([5], [4], [1] and [2]), but is charac-
terized by a ”relativistic” time in the study. In contrast the time-
dependent Hamilton geometrization on cotangent bundles is charac-
terized by an absolute time.
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