"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 31 (2021), No. 2, 109-120

INVARIANT POINTS AND ε -APPROXIMATIONS FOR MAPPINGS SATISFYING RATIONAL-TYPE CONTRACTIVE CONDITIONS IN TAKAHASHI SPACES

SUMIT CHANDOK AND T.D. NARANG

Abstract. In this paper, we prove some Brosowski-Meinardus type invariant point results for the set of ε -simultaneous approximation and ε -simultaneous coapproximation for rational type contraction mappings defined on Takahashi spaces. Subsequently, we deduce some results on ε -approximation, ε -coapproximation, best approximation and best coapproximation for such class of mappings.

1. Introduction and Preliminaries

The study of best approximation theory plays an important role in nonlinear functional analysis, optimization theory, fixed point theory, nonlinear programming, game theory, variational inequality, complementarity problems, and so forth. The idea of applying fixed point theorems to approximation theory was initiated in normed linear spaces by G. Meinardus [12]. Generalizing the result of Meinardus, Brosowski [1] proved the following theorem on invariant approximation using fixed point theory:

Keywords and phrases: ε -simultaneous approximatively compact set, starshaped set, best approximation, best simultaneous approximation, ε -simultaneous approximation.

(2010) Mathematics Subject Classification: 41A28, 41A50, 47H10, 54H25.

Theorem 1.1. Let \mathscr{T} be a linear and nonexpansive operator on a normed linear space E. Let \mathscr{G} be a \mathscr{T} -invariant subset of E and \mathfrak{x} a \mathscr{T} -invariant point. If the set $P_{\mathscr{G}}(\mathfrak{x})$ of best \mathscr{G} -approximants to \mathfrak{x} is nonempty, compact and convex, then it contains a \mathscr{T} -invariant point.

Subsequently, various generalizations of Brosowski's results appeared in the literature. Singh [19] observed that the linearity of the operator \mathcal{T} and convexity of the set $P_{\mathcal{G}}(\mathfrak{x})$ in Theorem 1.1 can be relaxed and proved the following:

Theorem 1.2. Let $\mathscr{T}: E \to E$ be a nonexpansive self mapping on a normed linear space E. Let \mathscr{G} be a \mathscr{T} -invariant subset of E and \mathfrak{x} a \mathscr{T} -invariant point. If the set $P_{\mathscr{G}}(\mathfrak{x})$ is nonempty, compact and starshaped, then it contains a \mathscr{T} -invariant point.

Later, Singh [20] demonstrated that Theorem 1.2 remains valid if \mathscr{T} is assumed to be nonexpansive only on the set $P_{\mathcal{G}}(\mathfrak{x}) \cup \{\mathfrak{x}\}$. Thenceforth, many results have been obtained in this direction by many researchers (see [3, 4, 5, 6, 7, 8, 10, 11, 13, 15, 16, 17, 18] and references cited therein).

In this manuscript, we obtain some similar types of results on \mathscr{T} -invariant points for the set of ε -simultaneous approximation and ε -simultaneous coapproximation for a rational type contraction mapping defined on a Takahashi space (\mathscr{X}, d, W) . For such class of mappings, we also deduce some results on \mathscr{T} -invariant points for the set of ε -approximation, ε -coapproximation, best approximation and best coapproximation.

Definition 1.3. Let (\mathcal{X}, d) be a metric space, $\emptyset \neq \mathcal{G} \subset \mathcal{X}$, \mathcal{F} a nonempty bounded subset of \mathcal{X} . For $\mathfrak{x} \in \mathcal{X}$, assume that

$$d_{\mathcal{F}}(\mathfrak{x}) = \{\sup d(y,\mathfrak{x}) : y \in \mathcal{F}\},$$

$$D(\mathcal{F},\mathcal{G}) = \{\inf d_{\mathcal{F}}(\mathfrak{x}) : \mathfrak{x} \in \mathcal{G}\},$$

and

$$P_{\mathcal{G}}(\mathcal{F}) = \{g_0 \in \mathcal{G} : d_{\mathcal{F}}(g_0) = D(\mathcal{F},\mathcal{G})\}.$$

An element $g_0 \in P_{\mathcal{G}}(\mathcal{F})$ is said to be a **best simultaneous approximation** of \mathcal{F} with respect to \mathcal{G} (see [5]).

For $\varepsilon > 0$, we define

$$P_{\mathcal{G}(\varepsilon)}(\mathcal{F}) = \{g_0 \in \mathcal{G} : d_{\mathcal{F}}(g_0) \le D(\mathcal{F}, \mathcal{G}) + \varepsilon\}$$

=\{g_0 \in \mathcal{G} : \sup_{y \in \mathcal{F}} d(y, g_0) \leq \infty_{y \in \mathcal{F}} \sup_{y \in \mathcal{F}} d(y, g) + \varepsilon\}.

An element $g_0 \in P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ is said to be a ε -simultaneous approximation of \mathcal{F} with respect to \mathcal{G} (see [5]).

It can be easily seen that for $\varepsilon > 0$, the set $P_{\mathcal{G}}(\varepsilon)(\mathcal{F})$ is always a nonempty bounded set and is closed if \mathcal{G} is closed.

In case $\mathcal{F} = \{p\}$, $p \in \mathcal{X}$, then elements of $P_{\mathcal{G}}(p)$ are called **best approximations** to p in \mathcal{G} and of $P_{\mathcal{G}(\varepsilon)}(p)$ are called ε -approximation to p in \mathcal{G} .

For $\varepsilon > 0$, we define

$$R_{\mathcal{G}(\varepsilon)}(\mathcal{F}) = \{g_0 \in \mathcal{G} : \sup_{g \in \mathcal{G}} d(g, g_0) + \varepsilon \le \inf_{g \in \mathcal{G}} \sup_{y \in \mathcal{F}} d(y, g)\}.$$

An element $g_0 \in R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ is said to be a ε -simultaneous coapproximation of \mathcal{F} with respect to \mathcal{G} (see [5]).

Let \mathscr{T} be a self mapping defined on a subset \mathscr{G} of a metric space \mathscr{X} . A best approximant \mathfrak{y} in \mathscr{G} to an element \mathfrak{x}_0 in \mathscr{X} with $\mathscr{T}\mathfrak{x}_0 = \mathfrak{x}_0$ is an invariant approximation in \mathscr{X} to \mathfrak{y} if $\mathscr{T}\mathfrak{y} = \mathfrak{y}$.

Example 1.4. Let $\mathscr{X} = \mathbb{R}$ and $\mathcal{G} = [0,1] \subset \mathscr{X}$. Define $\mathscr{T} : \mathscr{X} \to \mathscr{X}$ as

$$\mathscr{T}\mathfrak{x} = \begin{cases} & \mathfrak{x}, \mathfrak{x} < 0 \\ & \mathfrak{x} + 1, 0 \le \mathfrak{x} \le 1 \\ & \frac{\mathfrak{x} + 2}{2}, \mathfrak{x} > 1. \end{cases}$$

Clearly, $\mathcal{F}(\mathcal{G}) = \mathcal{G}$ and $\mathcal{F}(2) = 2$. Also, $P_{\mathcal{G}}(2) = \{1\}$. Hence \mathcal{F} has a fixed point in $P_{\mathcal{G}}(2)$ which is a best approximation to 2 in \mathcal{G} . Thus, 2 is an invariant approximation.

Definition 1.5. A sequence $\{y_n\}$ in \mathcal{G} is called a ε -minimizing sequence for \mathcal{F} , if

$$\lim \sup_{\mathfrak{x} \in \mathcal{F}} d(\mathfrak{x}, y_n) \le D(\mathcal{F}, \mathcal{G}) + \varepsilon.$$

The set \mathcal{G} is said to be ε -simultaneous approximatively compact with respect to \mathcal{F} (see [5]) if for every $\mathfrak{x} \in \mathcal{F}$, each ε -minimizing sequence $\{y_n\}$ in \mathcal{G} has a subsequence $\{y_{n_i}\}$ converging to an element of \mathcal{G} .

Inspired by the work of Takahashi [21] and Guay et al. [9], we have the following definition.

Definition 1.6. Let \mathscr{X} be a nonempty set, d be a metric on \mathscr{X} and $W: \mathscr{X} \times \mathscr{X} \times [0,1] \to \mathscr{X}$ be a continuous mapping satisfying, for all $\mathfrak{x}, \mathfrak{y}, \mathfrak{u} \in \mathscr{X}$ and $\lambda \in [0,1]$,

(i)
$$d(\mathfrak{u}, W(\mathfrak{x}, \mathfrak{y}, \lambda)) \le \lambda d(\mathfrak{u}, \mathfrak{x}) + (1 - \lambda)d(\mathfrak{u}, \mathfrak{y}),$$

(ii)
$$d(W(\mathfrak{x},\mathfrak{u},\lambda),W(\mathfrak{y},\mathfrak{u},\lambda)) \leq d(\mathfrak{x},\mathfrak{y}).$$

Then the triple (\mathcal{X}, d, W) is called a **Takahashi space**.

A normed linear space and each of its convex subset are simple examples of Takahashi spaces with W given by $W(\mathfrak{x},\mathfrak{y},\lambda)=\lambda\mathfrak{x}+(1-\lambda)\mathfrak{y}$ for $\mathfrak{x},\mathfrak{y}\in\mathscr{X}$ and $0\leq\lambda\leq1$. For definition of convex set, p-starshaped set and starshaped set see [5] and references cited therein.

Definition 1.7. Let \mathcal{G} be a nonempty subset of a metric space (\mathcal{X}, d) and $\mathcal{T}: \mathcal{G} \to \mathcal{G}$ be a self map. Then \mathcal{T} is said to be **asymptotically regular** (see, [2]) if for all $\mathfrak{x} \in \mathcal{G}$, $d(\mathcal{T}^n(\mathfrak{x}), \mathcal{T}^{n+1}(\mathfrak{x})) \to 0$ as $n \to \infty$.

Definition 1.8. A mapping $\mathscr{T}: \mathscr{X} \to \mathscr{X}$ satisfies **condition (A)** (see [14]) if

$$d(\mathcal{T}^n\mathfrak{x},\mathfrak{y}) \leq d(\mathfrak{x},\mathfrak{y}),$$

for all $\mathfrak{x}, \mathfrak{y} \in \mathscr{X}$ and for some positive integer n.

2. Main Results

To start with, we give the following definition of H_C -contraction. **Definition 2.1.** Let (\mathcal{X}, d) be a metric space. A mapping $\mathcal{T} : \mathcal{X} \to \mathcal{X}$ is called a H_C -contraction if there exist $\alpha, \beta \in [0, 1)$ with $\alpha + \beta < 1$ such that for all $\mathfrak{x}, \mathfrak{y} \in \mathcal{X}$, we have

$$(2.1) d(\mathscr{T}\mathfrak{x}, \mathscr{T}\mathfrak{y}) \leq \alpha \frac{d(\mathfrak{x}, \mathscr{T}\mathfrak{x})d(\mathfrak{y}, \mathscr{T}\mathfrak{y})}{1 + d(\mathfrak{x}, \mathfrak{y})} + \beta(d(\mathfrak{x}, \mathfrak{y})).$$

Remark 2.2. On a metric space, every H_C -contraction has at most one fixed point. Indeed, let $\mathfrak x$ and $\mathfrak y$ be two distinct fixed points of $\mathscr T$, which is a H_C -contraction. Then

$$\begin{split} d(\mathfrak{x},\mathfrak{y}) &= d(\mathscr{T}\mathfrak{x},\mathscr{T}\mathfrak{y}) &\leq & \alpha \frac{d(\mathfrak{x},\mathscr{T}\mathfrak{x})d(\mathfrak{y},\mathscr{T}\mathfrak{y})}{1 + d(\mathfrak{x},\mathfrak{y})} + \beta(d(\mathfrak{x},\mathfrak{y})) \\ &= & \beta(d(\mathfrak{x},\mathfrak{y})), \end{split}$$

which is a contradiction as $0 \le \beta < 1$ and $d(\mathfrak{x}, \mathfrak{y}) > 0$.

We prove the following result needed in the sequel:

Proposition 2.3. Let $\mathscr{T}: \mathscr{X} \to \mathscr{X}$ be a H_C -contraction on a metric space (\mathscr{X}, d) . Then for all $\mathfrak{x} \in \mathscr{X}$, the sequence $\{d(\mathscr{T}^n\mathfrak{x}, \mathscr{T}^{n+1}\mathfrak{x})\}$ is decreasing and \mathscr{T} is asymptotically regular.

Proof. Let \mathfrak{x}_0 be an arbitrary point in \mathscr{X} and $\{\mathfrak{x}_n\}$ be the Picard sequence in \mathscr{X} such that $\mathfrak{x}_{n+1} = \mathscr{T}\mathfrak{x}_n = \mathscr{T}^n\mathfrak{x}_0$, for every $n \geq 0$. Using (2.1), we have

$$d(\mathfrak{x}_{n+2},\mathfrak{x}_{n+1}) = d(\mathscr{T}\mathfrak{x}_{n+1},\mathscr{T}\mathfrak{x}_{n})$$

$$\leq \alpha \frac{d(\mathfrak{x}_{n+1},\mathscr{T}\mathfrak{x}_{n+1})d(\mathfrak{x}_{n},\mathscr{T}\mathfrak{x}_{n})}{1+d(\mathfrak{x}_{n+1},\mathfrak{x}_{n})} + \beta(d(\mathfrak{x}_{n+1},\mathfrak{x}_{n}))$$

$$= \alpha \frac{d(\mathfrak{x}_{n+1},\mathfrak{x}_{n+2})d(\mathfrak{x}_{n},\mathfrak{x}_{n+1})}{1+d(\mathfrak{x}_{n+1},\mathfrak{x}_{n})} + \beta(d(\mathfrak{x}_{n+1},\mathfrak{x}_{n}))$$

$$\leq \alpha(d(\mathfrak{x}_{n+1},\mathfrak{x}_{n+2})) + \beta(d(\mathfrak{x}_{n+1},\mathfrak{x}_{n})).$$

This implies

(2.2)
$$d(\mathfrak{x}_{n+2},\mathfrak{x}_{n+1}) \leq \frac{\beta}{1-\alpha} d(\mathfrak{x}_{n+1},\mathfrak{x}_n).$$

Since $\frac{\beta}{1-\alpha} < 1$, the sequence $\{d(\mathcal{T}^n\mathfrak{x}_0, \mathcal{T}^{n+1}\mathfrak{x}_0)\}$ is a decreasing sequence. Using mathematical induction, we have

(2.3)
$$d(\mathfrak{x}_{n+2},\mathfrak{x}_{n+1}) \le \left(\frac{\beta}{1-\alpha}\right)^{n+1} d(\mathfrak{x}_1,\mathfrak{x}_0).$$

Taking the limit $n \to \infty$, we have $d(\mathfrak{x}_{n+2},\mathfrak{x}_{n+1}) \to 0$, that is, $d(\mathscr{T}^n\mathfrak{x}_0,\mathscr{T}^{n+1}\mathfrak{x}_0) \to 0$. Hence the result.

Using the above proposition, we prove the following:

Theorem 2.4. Every H_C -contraction on a complete metric space has unique fixed point.

Proof. Using Proposition 2.3, the sequence $\{d(\mathcal{T}^n\mathfrak{x}_0, \mathcal{T}^{n+1}\mathfrak{x}_0)\}$ is decreasing and $d(\mathcal{T}^n\mathfrak{x}_0, \mathcal{T}^{n+1}\mathfrak{x}_0) \to 0$ as $n \to \infty$ for all $\mathfrak{x}_0 \in \mathcal{X}$. We claim that $\{\mathfrak{x}_n\}$ is a Cauchy sequence. For m > n, and $k = \frac{\beta}{1-\alpha}$ we have

$$d(\mathfrak{x}_n,\mathfrak{x}_m) \leq d(\mathfrak{x}_n,\mathfrak{x}_{n+1}) + d(\mathfrak{x}_{n+1},\mathfrak{x}_{n+2}) + \dots + d(\mathfrak{x}_{m-1},\mathfrak{x}_m)$$

$$\leq (k^n + k^{n+1} + \dots + k^{m-1})d(\mathfrak{x}_0,\mathfrak{x}_1)$$

$$\leq \frac{k^n(1 - k^{m-n})}{1 - k}d(\mathfrak{x}_0,\mathfrak{x}_1).$$

Therefore, $d(\mathfrak{x}_m,\mathfrak{x}_n) \to 0$, when $m,n \to \infty$. Thus $\{\mathfrak{x}_n\}$ is a Cauchy sequence in a complete metric space \mathscr{X} and so there exists $u \in \mathscr{X}$ such that $\lim_{n\to\infty}\mathfrak{x}_n=u$.

Now, we'll show that the point u is a fixed point of \mathscr{T} . On the contrary, suppose that $\mathscr{T}u \neq u$, then $d(u, \mathscr{T}u) > 0$. Consider

$$d(\mathbf{r}_{n+1}, \mathcal{T}u) = d(\mathcal{T}\mathbf{r}_n, \mathcal{T}u) \le \alpha \frac{d(\mathbf{r}_n, \mathcal{T}\mathbf{r}_n)d(u, \mathcal{T}u)}{1 + d(\mathbf{r}_n, u)} + \beta(d(\mathbf{r}_n, u))$$
$$= \alpha \frac{d(\mathbf{r}_n, \mathbf{r}_{n+1})d(u, \mathcal{T}u)}{1 + d(\mathbf{r}_n, u)} + \beta(d(\mathbf{r}_n, u)).$$

Taking $n \to \infty$, we have $d(u, \mathcal{T}u) \leq 0$, it implies that $d(u, \mathcal{T}u) = 0$. Hence u is a fixed point of \mathcal{T} . Using Remark 2.2, we obtain that \mathcal{T} has unique fixed point.

Example 2.5. Let $\mathscr{X} = [0,1]$ and d be the usual metric on \mathscr{X} . Define $\mathscr{T}: \mathscr{X} \to \mathscr{X}$ as $\mathscr{T}\mathfrak{x} = \left\{ \begin{array}{c} \frac{2}{5}, & \mathfrak{x} \in [0,\frac{2}{3}) \\ \frac{1}{5}, & \mathfrak{x} \in [\frac{2}{3},1]. \end{array} \right.$ Suppose $\alpha = \frac{1}{7}, \beta = \frac{1}{7} \in [0,1)$ with $\alpha + \beta = \frac{2}{7} < 1$. We may check that

$$d(\mathscr{T}\mathfrak{x},\mathscr{T}y) \leq \frac{1}{7} \frac{d(\mathfrak{x},\mathscr{T}\mathfrak{x})d(y,\mathscr{T}y)}{1+d(\mathfrak{x},y)} + \frac{1}{7} (d(\mathfrak{x},y)),$$

for all $\mathfrak{x}, y \in \mathscr{X}$. Thus using Theorem 2.4, we notice that $\frac{2}{5} \in \mathscr{X}$ is a fixed point of \mathscr{T} .

Example 2.6. Let $\mathscr{X}=[0,1]$ and d be the usual metric on \mathscr{X} . Define $\mathscr{T}:\mathscr{X}\to\mathscr{X}$ as $\mathscr{T}\mathfrak{x}=\left\{\begin{array}{cc}\frac{\mathfrak{x}}{10},&\mathfrak{x}\in[0,\frac{1}{2}]\\\frac{\mathfrak{x}}{5}-\frac{1}{20},&\mathfrak{x}\in(\frac{1}{2},1].\end{array}\right.$ Suppose $\alpha=\frac{1}{8},\beta=\frac{1}{4}\in[0,1)$ with $\alpha+\beta=\frac{3}{8}<1$. We may check that

$$d(\mathscr{T}\mathfrak{x},\mathscr{T}y) \leq \frac{1}{8} \frac{d(\mathfrak{x},\mathscr{T}\mathfrak{x})d(y,\mathscr{T}y)}{1+d(\mathfrak{x},y)} + \frac{1}{4} (d(\mathfrak{x},y)),$$

for all $\mathfrak{x}, y \in \mathscr{X}$. Thus using Theorem 2.4, \mathscr{T} has unique fixed point. Notice that $0 \in \mathscr{X}$ is the fixed point of \mathscr{T} .

Theorem 2.7. Let \mathscr{T} be a asymptotically regular and continuous self mapping on a complete Takahashi space (\mathscr{X}, d, W) and satisfying the following for some positive integer n,

$$(2.4) d(\mathcal{T}^{n}\mathfrak{x}, \mathcal{T}^{n}y) \leq \alpha \left(\frac{dist(\mathfrak{x}, [\mathcal{T}^{n}\mathfrak{x}, q])dist(y, [\mathcal{T}^{n}y, q])}{1 + d(\mathfrak{x}, y)} \right) + \beta(d(\mathfrak{x}, y)),$$

for all $\mathfrak{x}, y, q \in \mathscr{X}$, where $\alpha, \beta \in [0,1)$ with $\alpha + \beta < 1$. Suppose that \mathcal{G} is a \mathscr{T} -invariant subset of \mathscr{X} and \mathcal{F} a nonempty bounded subset of

 \mathscr{X} such that $\mathscr{T}\mathfrak{x} = \mathfrak{x}$ for all $\mathfrak{x} \in \mathcal{F} \setminus \mathcal{G}$. If $P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ is compact, and q-starshaped, then it contains a \mathscr{T} -invariant point.

Proof. Let $z \in P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ be arbitrary. Then using (2.4) and the fact that for all $\mathfrak{x} \in \mathcal{F} \setminus \mathcal{G}$, $\mathfrak{T}\mathfrak{x} = \mathfrak{x} = \mathfrak{T}^n\mathfrak{x}$, we have

$$\begin{split} d(\mathfrak{x},\mathscr{T}^nz) &= d(\mathscr{T}^n\mathfrak{x},\mathscr{T}^nz) \\ &\leq \alpha \bigg(\frac{dist \big(\mathfrak{x}, [\mathscr{T}^n\mathfrak{x}, q]) dist(z, [\mathscr{T}^nz, q] \big)}{1 + d(\mathfrak{x}, z)} \bigg) + \beta(d(\mathfrak{x}, z)) \\ &= \beta(d(\mathfrak{x}, z)). \end{split}$$

Hence,

(2.5)
$$d(\mathfrak{x}, \mathscr{T}^n z) \le \beta(d(\mathfrak{x}, z)).$$

since $\beta < 1$. Therefore, using definition of $P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$, we get

(2.6)
$$\sup_{\mathfrak{x}\in\mathcal{F}}\{d(\mathfrak{x},\mathcal{T}^nz)\} \leq \sup_{\mathfrak{x}\in\mathcal{F}}\{d(\mathfrak{x},z)\} \leq D(\mathcal{F},\mathcal{G}) + \varepsilon.$$

Hence $\mathscr{T}^n z \in P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$. Therefore \mathscr{T}^n is a self map on $P_{\mathcal{G}}(\varepsilon)(\mathcal{F})$. Define $\mathscr{T}_n: P_{\mathcal{G}(\varepsilon)}(\mathcal{F}) \to P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ as $\mathscr{T}_n z = W(\mathscr{T}^n z, q, \lambda_n), z \in P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ where $\{\lambda_n\}$ is a sequence in (0,1) such that $\lambda_n \to 1$. Consider

$$d(\mathcal{T}_n z, \mathcal{T}_n y) = d(W(\mathcal{T}^n z, q, \lambda_n), W(\mathcal{T}^n y, q, \lambda_n))$$

$$\leq \lambda_n d(\mathcal{T}^n z, \mathcal{T}^n y)$$

$$\leq \lambda_n \left[\alpha \left(\frac{d(z, [\mathcal{T}^n z, q]) d(y, [\mathcal{T}^n y, q])}{1 + d(z, y)} \right) + \beta(d(z, y)) \right]$$

$$\leq \lambda_n \left[\alpha \left(\frac{d(z, \mathcal{T}_n z) d(y, \mathcal{T}_n y)}{1 + d(z, y)} \right) + \beta(d(z, y)) \right],$$

where $\lambda_n(\alpha + \beta) < 1, z, y \in P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$. Therefore by Theorem 2.4, each \mathcal{T}_n has a unique fixed point z_n in $P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$. Since $\{\mathcal{T}^n z_n\}$ is a sequence in the compact set $P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$, there exists a subsequence $\{\mathcal{T}^{n_i} z_{n_i}\}$ of $\{\mathcal{T}^n z_n\}$ such that $\{\mathcal{T}^{n_i} z_{n_i}\} \to z \in P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$. Moreover,

$$z_{n_i} = \mathscr{T}_{n_i} z_{n_i} = W[\mathscr{T}^{n_i} z_{n_i}, q, \lambda_{n_i}] \to z.$$

As \mathscr{T} is continuous, $\mathscr{T}^{n_i}z_{n_i}\to\mathscr{T}^{n_i}z$. By the uniqueness of the limit, we have $\lim_{n\to\infty}\mathscr{T}^{n_i}z=z$ and so $\lim_{n\to\infty}\mathscr{T}^{n_i+1}z=\mathscr{T}z$.

Now, we show that $d(z, \mathcal{I}z) = 0$. Consider

$$d(z,\mathscr{T}z) \leq d(z,\mathscr{T}^{n_i}z) + d(\mathscr{T}^{n_i}z,\mathscr{T}^{n_i+1}z) + d(\mathscr{T}^{n_i+1}z,\mathscr{T}z).$$

Letting $n \to \infty$, in the above inequality, and using \mathscr{T} is asymptotically regular, we have $d(z, \mathscr{T}z) \to 0$. Therefore $\mathscr{T}z = z$. i.e. z is \mathscr{T} -invariant.

Using Proposition 2.1 of Chandok and Narang [5], we have the following result.

Corollary 2.8. Let \mathscr{T} be asymptotically regular and continuous self map on a complete Takahashi space (\mathscr{X}, d, W) satisfying inequality (2.4). Suppose that F is a nonempty bounded subset of \mathscr{X} such that $\mathscr{T}\mathfrak{x} = \mathfrak{x}$ for all $\mathfrak{x} \in F \setminus \mathcal{G}$, where \mathcal{G} a \mathscr{T} -invariant subset of \mathscr{X} . If \mathcal{G} is ε -simultaneous approximatively compact with respect to \mathcal{F} and $P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ is starshaped, then it contains a \mathscr{T} -invariant point.

For $\mathcal{F} = \{\mathfrak{x}\}$ and $\varepsilon = 0$, we have the following result on the set of best approximation.

Corollary 2.9. Let \mathscr{T} be asymptotically regular and continuous self mapping on a Takahashi space (\mathscr{X}, d, W) and satisfying inequality (2.4). If \mathscr{G} is an approximatively compact, p-starshaped, \mathscr{T} -invariant subset of \mathscr{X} and \mathfrak{x} a \mathscr{T} -invariant point and $P_{\mathscr{G}}(\mathfrak{x})$ is starshaped, then $P_{\mathscr{G}}(\mathfrak{x})$ contains a \mathscr{T} -invariant point.

We now prove a result for \mathcal{T} -invariant points from the set of ε -simultaneous coapproximations.

Theorem 2.10. Let \mathscr{T} be asymptotically regular and continuous self mapping satisfying condition (A) and inequality (2.4) on a Takahashi space (\mathscr{X}, d, W) . Assume that $\emptyset \neq \mathcal{G} \subset \mathscr{X}$ and \mathcal{F} is a nonempty bounded subset of \mathscr{X} such that $R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ is compact and q-starshaped. Then $R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ contains a \mathscr{T} -invariant point.

Proof. Let $g_0 \in R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$. Consider

$$d(\mathcal{T}^n g_0, g) + \varepsilon \le d(g_0, g) + \varepsilon \le \inf_{g \in \mathcal{G}} \sup_{y \in \mathcal{F}} d(y, g),$$

and so $\mathscr{T}^n g_0 \in R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ i.e. $\mathscr{T}^n : R_{\mathcal{G}(\varepsilon)}(\mathcal{F}) \to R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$. Since $R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ is q-starshaped, $W(z,q,\lambda) \in R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ for all $z \in R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$, $\lambda \in [0,1]$. Let $\{\lambda_n\}$, $0 \leq \lambda_n < 1$, be a sequence of real numbers such that $\lambda_n \to 1$ as $n \to \infty$. Define \mathscr{T}_n as $\mathscr{T}_n(z) = W(\mathscr{T}^n z, q, \lambda_n)$, $z \in R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$. Since \mathscr{T} is a self mapping on $R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ and $R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ is starshaped, each \mathscr{T}_n is a well defined and maps $R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ into $R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$.

Moreover,

$$\begin{split} d(\mathscr{T}_n y, \mathscr{T}_n z) &= d(W(\mathscr{T}^n y, q, \lambda_n), W(\mathscr{T}^n z, q, \lambda_n)) \\ &\leq \lambda_n d(\mathscr{T}^n y, \mathscr{T}^n z) \\ &\leq \lambda_n \left[\alpha \left(\frac{d(y, [\mathscr{T}^n y, q]) d(z, [\mathscr{T}^n z, q])}{1 + d(y, z)} \right) + \beta(d(y, z)) \right] \\ &\leq \lambda_n \left[\alpha \left(\frac{d(y, \mathscr{T}^n y) d(z, \mathscr{T}^n z)}{1 + d(y, z)} \right) + \beta(d(y, z)) \right], \end{split}$$

where $\lambda_n[\alpha + \beta] < 1$. So by Theorem 2.4 each \mathscr{T}_n has a unique fixed point $u_n \in R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ i.e. $\mathscr{T}_n u_n = u_n$ for each n. Since $\{\mathscr{T}^n u_n\}$ is a sequence in the compact set $R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$, there exists a subsequence $\{\mathscr{T}^{n_i} u_{n_i}\}$ of $\{\mathscr{T}^n u_n\}$ such that $\{\mathscr{T}^{n_i} u_{n_i}\} \to u \in R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$. Moreover,

$$u_{n_i} = \mathscr{T}_{n_i} u_{n_i} = W[\mathscr{T}^{n_i} u_{n_i}, q, \lambda_{n_i}] \to u.$$

As \mathscr{T} is continuous, $\mathscr{T}^{n_i}u_{n_i}\to\mathscr{T}^{n_i}u$. By the uniqueness of the limit, we have $\lim_{n\to\infty}\mathscr{T}^{n_i}u=u$ and so $\lim_{n\to\infty}\mathscr{T}^{n_i+1}u=\mathscr{T}u$.

Now, we show that $d(u, \mathcal{T}u) = 0$. Since \mathcal{T} is asymptotically regular, we have

$$d(u, \mathcal{T}u) \leq d(u, \mathcal{T}^{n_i}u) + d(\mathcal{T}^{n_i}u, \mathcal{T}^{n_i+1}u) + d(\mathcal{T}^{n_i+1}u, \mathcal{T}u) \to 0.$$

Therefore $\mathcal{T}u = u$. i.e. u is \mathcal{T} -invariant.

- Remark 2.11. (1) By taking $\mathcal{F} = \{\mathfrak{x}_1, \mathfrak{x}_2\}$, $\mathfrak{x}_1, \mathfrak{x}_2 \in \mathcal{X}$, the set $P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ (respectively, $R_{\mathcal{G}(\varepsilon)}(\mathcal{F})$) is the set of ε -simultaneous approximation (respectively, ε -simultaneous coapproximation) to the pair of points $\mathfrak{x}_1, \mathfrak{x}_2$ and so we can obtain the results for such pair of points $P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$ or $P_{\mathcal{G}(\varepsilon)}(\mathcal{F})$.
 - (2) By taking $\mathcal{F} = \{\mathfrak{x}\}$, $\mathfrak{x} \in \mathscr{X}$, the set $P_{\mathcal{G}(\varepsilon)}(\mathfrak{x})$ (respectively, $R_{\mathcal{G}(\varepsilon)}(\mathfrak{x})$) is the set of ε -approximation(respectively, ε -coapproximation) to point \mathfrak{x} and so we can obtain the results on the set of ε -approximation (or ε -coapproximation).
 - (3) By taking $\mathcal{F} = \{\mathfrak{x}\}\$ and $\varepsilon = 0$, we can obtain the results on the set of best approximation (or best coapproximation).

Acknowledgements. The authors are thankful to the learned referee for critical comments and helpful suggestions leading to an improvement of the paper. The first author is also thankful to NBHM-DAE, India for the research grant 02011/11/2020/NBHM (RP)/R&D-II/7830.

References

- [1] B. Brosowski, **Fixpunktsätze in der Approximationstheorie**, Mathematica (Cluj) 11 (1969), 195-220.
- [2] F.E. Browder and W.V. Petryshyn, **The solution by iteration of nonlinear functional equations in Banach spaces**, Bull. Amer. Math. Soc., 72(1966), 571-575.
- [3] S. Chandok, Best approximation and fixed points for rational-type contraction mappings, J. Appl. Anal. 25(2)(2019), 205-209.
- [4] S. Chandok and T.D. Narang, ε-simultaneous approximation and invariant points, Bull. Belgian Math. Soc. 18(2011), 821-834.
- [5] S. Chandok and T.D. Narang, Invariant points and ε-simultaneous approximation, Internat. J. Math. Math. Sci. Vol. 2011 (2011) Article ID 579819 10 pages.
- [6] S. Chandok and T.D. Narang, Common fixed points of nonexpansive mappings with applications to best and best simultaneous approximation, J. Appl. Anal. 18(2012), 33-46.
- [7] S. Chandok and T.D. Narang, Common fixed points with applications to best simultaneous approximations, Anal. Theory Appl. 28(1)(2012), 1-12.
- [8] S. Chandok and T.D. Narang, **Some fixed point theorem for generalized asymptotically nonexpansive mapping**, Tamkang J. Math. 44(1)(2013), 23-29.
- [9] M.D. Guay, K.L. Singh and J.H.M. Whitfield, Fixed point theorems for nonexpansive mappings in convex metric spaces, Proc. Conference on nonlinear analysis (Ed. S.P. Singh and J.H. Bury) Marcel Dekker 80(1982), 179-189.
- [10] A.R. Khan and F. Akbar, Common fixed points from best simultaneous approximation, Taiwanese J. Math. 13(2009), 1379-1386.
- [11] A.R. Khan and F. Akbar, Best simultaneous approximations, asymptotically nonexpansive mappings and variational inequalities in Banach spaces, J. Math. Anal. Appl. 354(2009), 469-477.
- [12] G. Meinardus, Invarianz bei linearen Approximationen, Arch. Rational Mech. Anal. 14 (1963), 301-303.
- [13] R.N. Mukherjee and T. Som, A note on application of a fixed point theorem in approximation theory, Indian J. Pure Appl. Math. 16(1985), 243-244.
- [14] R.N. Mukherjee and V. Verma, **Best approximations and fixed points** of nonexpansive maps, Bull. Cal. Math. Soc. 81(1989), 191-196.
- [15] T. D. Narang and S. Chandok, On ε -approximation and fixed points of nonexpansive mappings in metric spaces, Mat. Vesnik 61(2009), 165-171.
- [16] T. D. Narang and S. Chandok, Fixed points of quasi-nonexpansive mappings and best approximation, Sel cuk J. Appl. Math. 10(2009), 75-80.
- [17] T. D. Narang and S. Chandok, Fixed points and best approximation in metric spaces, Indian J. Math. 51(2009), 293-303
- [18] G.S. Rao and S.A. Mariadoss, Applications of fixed point theorems to best approximations, Serdica-Bulgaricae Math. Publ. 9(1983), 244-248.

- [19] S. P. Singh, An application of a fixed-point theorem to approximation theory, J. Approx. Theory 25 (1979), 89-90.
- [20] S. P. Singh, Application of fixed point theorems in approximation theory, Appl. Nonlinear Anal.(Ed. V. Lakshmikantham), Academic Press, New York (1979), 389-397.
- [21] W. Takahashi, A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep. 22(1970), 142-149.

Sumit Chandok School of Mathematics, Thapar Institute of Engineering Technology, Patiala-147004, India e-mail: sumit.chandok@thapar.edu

T.D. Narang Department of Mathematics, Guru Nanak Dev University, Amritsar-143005, India e-mail: tdnarang1948@yahoo.co.in