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COMPLEX DIFFERENTIAL EQUATIONS WITH
ENTIRE COEFFICIENTS OF FINITE («,5)—ORDER

BENHARRAT BELAIDI AND TANMAY BISWAS

Abstract. In this paper, we wish to investigate the complex higher
order linear differential equations in which the coefficients are entire
functions of («, §)-order and obtain some results which improve and
generalize some previous results of Tu et al. [33] as well as Belaidi
2, 3, 4].

1. Introduction

Throughout this paper, we assume that the reader is famil-
iar with the fundamental results and the standard notations of the
Nevanlinna value distribution theory of entire and meromorphic func-
tions and the theory of complex linear differential equations which are
available in [15, 24, 38] and therefore we do not explain those in details.
To study the generalized growth properties of entire and meromorphic
functions, the concepts of different growth indicators such as the it-
erated p-order (see [23, 29]), the (p, ¢)-th order (see [20, 21}), (p,q)-¢
order (see [30]) etc. are very useful and during the past decades,
several authors made close investigations on the generalized growth
properties of entire and meromorphic functions related to the above
growth indicators in some different directions. The theory of complex
linear equations has been developed since 1960s. Many authors have
investigated the complex linear differential equations
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(1) )+ A () 5 (2) + -+ Ao(2) f(2) = 0
and
(2) f(k)(z) + Ak—l(z)f(k_l)(z) o+ Ao(2) f(2) = F(2)

and achieved many valuable results when the coefficients Agy(2), ...,
Ai_1(2), F(z) (k > 2) in (1) or (2) are entire or meromorphic functions
of finite order or finite iterated p-order or (p,q)-th order or (p,q)-¢
order (e.g. 1], 9], [10], [13], [18], [23], [25]-[27], [30], [33]-[35], [37]).

In [12], Chyzhykov and Semochko showed that both definitions
of iterated p-order and the (p, q)-th order have the disadvantage that
they do not cover arbitrary growth (see [12, Example 1.4]). They used
more general scale, called the p-order (see [12]). In recent times, the
concept of p-order is used to study the growth of solutions of complex
differential equations which extend and improve many previous results
(see [5, 6, 12, 22]).

In [28], Mulyava et al. have used the concept of («, )-order
or generalized order of an entire function in order to investigate the
properties of solutions of a heterogeneous differential equation of the
second order and obtained several interesting results. For details one
may see [28].

In this paper, our aim is to make use of the concepts of en-
tire functions of («a, B)-order or generalized order after giving a minor
modification to the original definition (e.g. see, [28, 31]) in order to
investigate the complex linear differential equations (1) or (2).

2. Definitions and Notations

First of all, let L be a class of continuous non-negative on
(—o0,+00) function a such that a(zx) = a(xy) > 0 for x < xy and
a(x) 1 +oo as zp < © — +oo. We say that o € Ly, if @« € L and
a((l1+o(1))x) = (1 + o(1))a(x) as x — +oo. Further, we say that
a € Ly, ifa € Land a(z+0(1)) = (140(1))a(x) as x — +o00. Finally,
a€ Ly, ifa € Land a(cr) = (1+0(1))a(z) as x — +oo for each fixed
¢ € (0,400), ie., a is slowly increasing function. Clearly Ly C Ly
and Lo C L;. Moreover, we assume that throughout the present pa-
per «, [ always denote the functions belonging to Lg;, L respectively
and for an integer p > 1, a(log” 2) = o(B(x)), a(logz) = o(a(z))
and a!(kz) = o(a™!(z)) (0 < k < 1) as x — +oo unless otherwise
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specifically stated. The value

oaslf] = lim Supa(log M(r, 1))

m sy B(log ) (€L, peL)

is called [28, 31] (a, f)-order or generalized order of an entire function
f(z). For details about («a, §)-order one may see [28, 31].

If « € Ly and B € Ly and f(z) is an entire transcendental
function, then (see [28])

ouslf] = lim supa(IOgMOn’ 7)) = lim supM.

oo B(logr) r—+oo  B(logT)

Now we rewrite the definition of the (a, §)-order of an entire
function in the following way after giving a minor modification to the
original definition (e.g. see, [28, 31]):

Definition 1. ([7]) The (o, B)-order denoted by o p)[f] of an entire
function f(z) is defined by

e a(log® M(r, f))
Tl = B P g )

Proposition 2. If f(z) is an entire function, then

- a(log? T(r, f)) . a(log® M(r, )
O (a(lo = lim sup = lim sup
(ex(log).f) [f] r—+00 B(log 7") r—+400 B(IOg T)

Proof. By the inequality T'(r, f) < log™ M(r, f) < %T(R, f) (0 <
r < R) (cf. [15]) for an entire function f, set R = 2r, we have

T(r,f) <log™ M(r, f) < 3T(2r, f).

By using a((1 + o(1))z) = (1 + o(1))a(x) and S((1 + o(1))x) = (1 +
o(1))5(z) as * — +00, one can easily obtain the proposition. O
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Definition 3. If f(2) is an entire function satisfying 0 < o(.p)[f] <
+00, then for any v € L and v(r) # r,

;

Ty pf] = +00  when y(a) € Ly; and TE&“OO%%)) = 00
for any o < o(ap)f];

)3 f] =0 when v(a) € Ly and Tli}rilm% =0

for any o1 > o0 f];

Olaonlf] = +00  when y(B) € Ly and lim 75080 = +o00
for any o < o(ap)[f];

Tan(ylfl =0 when y(B) € Ly and TETMLT(%&Z% =0

for any o1 > o4 p)(f];

( O((@aeplfl =1 when y € Lg.

Remark 4. An entire function f(z) is said to have generalized indez-

pair (o, B) if 0 < pap)[f] < 400 and pexpaexpp) Lf] s not a nonzero
finite number.

Remark 5. Definition 3 and Remark 4 extend the definition of index
pair (p,q) of an entire function introduced by Juneja et al. [20].

Remark 6. Let f(z) be an entire function of («, 5)-order o and fi(2)
be an entire function of (ay, 51)-order o1 and let either a(r) = ay(r)

or lim 2
r— oo @1(r)

growth can be easily deduced:
(i) If = 10 o ﬁl T) then the growth of f(z) is slower than the growth

a(r)

Offl( )

(i) If 02(53) B(r , then f(z) grows faster than fi(z).

(iii) If a(r) = aq(r) and B(r) = pi(r), then f(z) and fi(z) are of
the same generalized indez-pair (o, 5). If o > o1, then f(z) grows
faster than fi(z), and if o < o1, then f(z) grows slower than fi(z).
If 0 = o1, Definition 1 does not give any precise estimate about the

relative growth of f(z) and fi(z).

= 4o00. The following results about their comparative

Similarly to Definition 1, we can also define the (o, 3)-exponent
of convergence of the zero sequence of a meromorphic function f(z) in
the following way:

Definition 7. ([7]) The (a, )-exponent of convergence of the zero
sequence denoted by Aa,p) | f] of a meromorphic function f(z) is defined
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by
: a(logn(r,1/f))
Aa = limsu )
= P g r)
Analogously, the (a,_ﬁ)—eatponent of convergence of the distinct zero
sequence denoted by Na.p)[f] of [ is defined by
< a(logn(r,1/f))

Aa = limsu
@plf] =lmsup==sr "5

Accordingly, the values

C a(log®n(r1/f)
Mol = limsu
(alog),5) [f] r_>+oop B(logr)

and

— a(log?n r, 1
are respectively called as («a(log), 3)-exponent of convergence of the
zero sequence and (a(log), 8)-exponent of convergence of the distinct
zero sequence of a meromorphic function f(z).
The linear measure of a set £ C [0, +00) is defined as m(E) =

+o0
[ xe(t)dt. The logarithmic measure of a set F' C [1,+00) is defined
0

+o00
by Im(F) = [ XFT(t)dt, where x¢(t) is the characteristic function of a
1

set G. The upper and lower densities of E/ are
m(EN[0,r])

- E
densE = lim Supw and densFE = liminf —————=.
r——400 T r—-+00 r

Proposition 8. ([7]) If f(z) is a meromorphic function, then

alogn(r,1/9) _ . alog N(r,1/f)

Map)lf] = limsup

st 00 B(logr) 00 B(logr) }
_ L a(logn(r,1/f)) .. a(log N(r,1/f))
Maplf] = lfﬂf},ﬂp B(logr) B hTrEJsrgop B(logr)

Proposition 9. If f(z) is a meromorphic function, then

: log? n(r,1 . log? N(r.1
Netwoolf) = gt i S
b a(log® (r, 1/ 1)) a(log? N(r,1/f))

Aa(log), = limsup = lim sup
o [f] = T sup==5 S S log 1)

)
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Proof. Without loss of generality, assume that f(0) # 0, then
N(r,1/f) =[] Mdt. We have

N(r,1/f)=N(ro,1/f) = /7‘ Mdt <n(r,1/f) log:—0 (0<rg<r),

that is
N(r,1/f) < N(ro, 1/f) +n(r, 1/f) logr% (0 <r <),

N(ro,1/f)
(r,1/f)log 75

ie., N(r,1/f) < (1 + ) n(r,1/f)log — (0 < ry < 7),
n To

which implies

(3)  logP N 1/7) < (1+ 0 (1)) (loa® n(r,1/f) +10g% 1)

then by (3), we have

o olog® N(r.1/f))
hrriliip B(logr)
N <(1 +o(1)) <log[2] n(r,1/f) + log? r))
< lim sup
r—+00 B(log ,r,)
= lim sup(l +o(1)) a(logm n(r,1/f) + 1Og[3} r)
r—400 ﬁ(log 7,)
< i sup2max{los” n(r 1/1). log®7r})
r—400 ﬁ(lOg 71)
= limsup (1 + o (1)) max{a(log? n(r, 1/f)), alog? r)}
r—+00 ﬁ(log ’T‘)
< lim Supa(logm n(r,1/f)) + a(log[3] r)
r——400 B(log 7")

: a(log® n(r,1/f)) .
<1 ]
= e Bllogr) * i) B(logr)

o a(log®n(r1/)))
(4) = s e

a(logm r)

a(logl®l r)
B(logr) 0

since a(log?” z) = o(B(z)), p > 1 as & — 400, we have
as r — +00.
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On the other hand, we have

Ner,1/f) = /0 —n(t’tl/f)dt > / —"(t’tl/f)dt

(5) >n(r,1/f)loge = n(r,1/f).
By (5), we obtain

. a(log? N(er,1/f)) _ .. a(log® n(r,1/f))
I sup =g = STy

By using the condition S((1 4 o(1))z) = (1 + o(1))B(x) as * — +o0,
we can write
2] 2]
i QU NCr L) alog? Ner, 1/)
r—+00 B(logr) r—+00  B(loger —loge)
2]
— limsup a(log” N(er,1/f))

r—too 3 ((1 — 1oger> log er)

o a(log” N(er,1/f)
B lfgigopﬁ((l—i-o( 1))loger
o a(log” N(er,1/f)
B lggigop(l—i-o( 1)) B(loger
_ a(log? N(r, 1/f))
- NPT Bl

)
)
)
)

it follows that
- alog? N(r1/f) o allog® n(r,1/f))

6 lim su > limsu .

(6) rﬁJroop B(logr) N rﬁ+oop B(logr)

By (4) and (6), it is easy to see that

: a(log? n(r,1/£)) _ a(log? N (r, /1)
Aallo = lim sup = lim sup
o =R G log ey T llonr)

By the same proof above, we can obtain the conclusion

Rl = s I e LS

O
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Proposition 10. Let fi(z), f2(2) be non-constant meromorphic func-
tions with o(a(iog),8) [ f1] and o(agog)p)lf2] as their (a(log), 3)-order.
Then

(Z) O(a (log),B [fl =+ f?] < maX{O- (log),B [fl] a(log),B) [f2]};
(1) 0(a(i0g).0) L f1 - fo] < Max{0(a(iog),s [f1] U(a (1og),8) [f2] };
(i1i) If 0(aog),8)[f1] # T(aqion),p) [ f2]; then

O(a(log),8) 1 £ fo] = max{o(a(iog),8)[f1]: T(atior).8)[f2] };
(1) If O(agog) ) [f1] # O(atiop),8) [ fo], then
a(log),8) [f1 + fa] = max{o(a(i0g),6)[f1]: O(at10g),8) [ f2]}-
Proof. Without loss of generality, we assume that

T (a(log).s [fl] < O(a(log),B [fQ] < +00.

From the definition of (a(log), 8)-order, for any given € > 0, we obtain
for all sufficiently large values of r that

(7) T(r, f1) < expP(a™ (((agog) 5) 1] + €)B(log 7))
and
(8) T(r, f>) < exp? (@™ ((0(agor). ) Lf2] + €)B(logr))).

Since T(r, f1 £ f2) < T(r, f1) + T(r, f2) + log 2 for all large r, we get
from (7) and (8) for all sufficiently large values of r that

T(r fiEfo) < 2expP(a™ (0(agog p)lf2] +2)B(logr))) +log2
[ €., T<7n7 fl + f2) < 3eXp[ }(O{ ((U(a(log)vﬁ) [f?] + 5)5(10g T)))

LGS+ 1) < e a7 (0(agons ] +2)(10g )

7.€

e, (T+o(W)log?T(r, fi £ f2) < a ' ((0(at0g) 5[ f2] +)B(logr))
i, a((L+o())log? T(r, fi £ f2)) < (0(agon) 5[ f2] + )5 (logr)
i, (1+0(1)alog® T(r, f + f2)) < (0(aper).f2] +2)B(logr),
which implies that

(L0002 T i + )
00 B(logr)
holds for any given £ > 0. Hence

(9) O (atiog),0) Lf1 £ f2] < max{o(aqog),8)f1]; O(atog) 5[ f2]}-
Further without loss of any generality, let

T (a(log),B) Lfi] < O (a(log),B [f2] < 400

< O(a

(log),B [f2]
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and f(z) = fi(2) £ fo(2). Then in view of (9) we get that o(a(iog) )| f]
< O(a(iog),8) L f2]- As, fa(z) = £(f(2) — fi(2)) and in this case we obtain
that o(a(og),s)[f2] < max {o(anog),8)[f], Tatog),lfi]}-As we assume
tog) 8 [ /1] <

)
that o(a(og),8)[f1] < T(agog)slf], therefore we have O(atlog),8)[f2] <
O (a(iog),3) Lf] and hence
T(a(ion).8) ] = Tlation) )| f2] = max{(aqog),8)[f1], Taon) 5[ f2]}-

Similarly, from T'(r, f1 - fo) < T'(r, f1) + T(r, f2) for all large r, we can
also get

U(a (log),B [fl f2] < maX{U (log),B [.fl] a(log),s [f?]}
and if 0(a(0g),8) [ f1] 7 Ola(iog),s) [ f2], then

O (a(log)8)Lf1 + f2] = max{o(agog)9)f1]; T(at10g).0)[f2]},
which completes the proof of Proposition 10. 0

3. Main Results

In this section we present our main results which considerably
extend the results of Tu et al. [33] as well as Belaidi [2, 3, 4].

Theorem 11. Let Ay(z), Ai(2),..., Ax_1(2) be entire functions with
Ao(z) # 0 such that for real constants a, b, u, 61, O with 0 < b <
a,pu >0, 0, <6y, we have

(10) [Ao(2)] = exp {aexp (a7 (1B (log =) }

and

(11)  |Aj(2)] < exp {bexp (™' (uB (log|2])))}, j=1, k-1

as z — oo with 1 < argz < 0y. Then o(aog),)[f] = 1 holds for all
non-trivial solutions of (1).

Theorem 12. Let H be a set of complex numbers satisfying dens{|z| :
z€ H} >0, and let Ayg(2), A1(2), ..., Ax—1(2) be entire functions that
satisfy (10) and (11) as z — oo for z € H, where 0 < b < a, u > 0.
Then every solution f(z) # 0 of (1) satisfies 0(agiog),5)Lf] = 11

Theorem 13. Let H be a set of complex numbers satisfying dens{|z| :
z € H} >0, and let Ay(2), A1(2), ..., Ap— 1( ) be entire functions of
(o, B)-order wzth max{ogA;] 17 =1,..,k =1} <onupgld] =0 <
+00 such that for some constants 0 < b < a and for any given € > 0,
we have

(12) [Ao(2)] = exp {aexp (a7 (0 —€) B (log|2]))) }
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and
(13)

|Aj(z)| < exp{bexp (o ((c —g)B(loglz])))}, j=1,..k—1
as z — oo for z € H. Then every solution f(z) # 0 of (1) satisfies
T(atiog).8)f] = (a3 [Ao] = 0
Theorem 14. Let H, Ay(z), A1(2), ..., Ax_1(z) satisfy the hypotheses

of Theorem 13, and let F(z) # 0 be an entire function of («, 8)-order.
(i) If 0(agiog),8)[F] < 0(a,)[Ao], then every solution f(z) of (2) satis-

fies Nagog),5)[f] = Aatiog),s)[f] = O(atog),p)lf] = o, with at most one
exceptional solution fo(z) satisfying o(aoeg),s)lfo] < 0.

(ii) If 0(a,8)[ Aol < O(agiog),p)[F] < +00, then every solution f(z) of (2)
satisfies (a(iog),)f] = T(atiog) o) [F]

Remark 15. For some related results in the whole complex plane for
the (o, 3,)-order, see [8].

4. Some Lemmas

In this section we present some lemmas which will be needed
in the sequel.

Lemma 16. ([14]) Let f(z) be a nontrivial entire function, and let
k> 1 and € > 0 be given constants. Then there exist a constant ¢ > 0
and a set Ey C [0,400) having finite linear measure such that for all
z satisfying |z| = r ¢ Ey, we have

(k)

f(z)
Lemma 17. ([16, 36]) Let f(z) be a transcendental entire function,
and let z be a point with |z| = r at which |f(2)| = M(r, f). Then, for
all |z| outside a set Ey of r of finite logarithmic measure, we have

96 _ (v DY )
) LD (D) o) e g )

where v(r, f) is the central indez of f(z).

< c[T(kr, f)r¢logT(kr, f)]* (k€ N).

Lemma 18. ([17], Theorems 1.9 and 1.10, or [19], Satz 4.3 and 4.4)
+o00

Let f(z) = > anz™ be any entire function, u(r, f) be the maximum
n=0

term, i.e., u(r, f) = max {|a,|r";n =0,1,...}, and v(r, f) be the cen-

tral index of f(z).
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(i) If lao| # 0, then

T

(16) log pu(r, f) = log |ao| + /@dt.
0
(ii) For r < R, we have
a7) M f) <t f) (W) + ).

Lemma 19. Let f(z) be an entire function satisfying oaog)8)f] =
o1, and let v(r, f) be the central index of f(z). Then

: a(log® v(r, f))

lim sup

400 B(logr)
Proof. In view of the first part of Lemma 18, one may obtain that

2r
log u(2r, f) = log |ao| + /V(tg /)

0

=01.

dt

2r
t
1) =loglaol+ [ 05Dty > vog ao) + v(r. £)1ox2.

T

Also by Cauchy’s inequality, it is well known that (cf. [32])
(19) ur, f) < M(r, f).
Therefore, one may obtain from (18) and (19) that

v(r, f)log2 <log M (2r, ) — log |ao|.

Thus from above, we get that

log Jao
1 log? 2 < logl? M (2 1 l— —F—
ogv(r. 1) +10g"2 < log” M(ar, ) +1og (1 - -t

log[ 2
log® v(r, f)
log |ao|
log <1 - 10g1\%[(23",f)>
log[S] M(2r, f)

o a((1+o(1))log® v(r, f))
e hgilop B(logr)

ie., log® u(r, f) + log (1 + ) < logt® M (2r, f)

+log [ 1+
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coppelbt
R
< timp (L )
e o I <
T e R e

Further for any constant K, one may get from the second part of
Lemma 18, that (cf. [11])

log M(r, f) < v(r, f)logr+logr(2r, f) + K

Therefore from above we obtain that

logM(r,f) < v(2r f)logr+v(2r f)+ K
ie., logM(r, f) < v(2r f)(1+logr)+ K
S logM(r, f) < v(2r f)log(e-r)+ K

e., log® M(r, f) < logv(2r, f) +log®(e - r)

+Jog(1‘%b(m;f;;g@'r))

e., log® M(r, f) < (1+0(1))log? v(2r, f)
(log[s] M(r, f)) a((1+o(1)log® v(2r, f))

€., lfﬂf}}op B(logr) - lirgigop B(log2r —log 2)
o a(log® M(r,f)) _ (L +o(1))a(log™ v(r, f))
TR sy R (L o(1))5(losr)

. L a(log® M(r, f)) _ . a(log? v(r, f))

(21) d.e., o= hr%igop Bllog ) < hrrgigop Blogr)

Combining (20) and (21), we obtain that

. a(log® v(r, f))
lim su
r—)—i—oop B(logr)

This proves the lemma.

=01.
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Lemma 20. Let f be a transcendental entire function.  Then
9 (a0g),8)[f] = O(atiog),)[f]-

Proof. By Cauchy’s integral formula, we have

oy L f(©)

f(Z)—% (C—Z)2d47
T

where ' ={¢:|C—2|=R—r}, |2|=r <R Set { —z=(R—r)e?

(0<0<27), d¢ = (R—r)ie?dd. Since max{|f(¢)| : ¢ € T} <

M(R, f), then we obtain

M(R, )
R—r =

D < L[ IQ)
M S) =17 o [ r =i <

Set R =r + 1, it follows that
M(r, f') < M(r +1, f).
Then

o a(log® M(r, /1))
(ol 1= lim su ,
(a(log),8) '] THJroop A(logr)

<a(log[3] M(r+1,f)) B(log(r+ 1)))

B(log (r +1)) B(logr)

log(lJr%)
allog® M(r+1,f)) " ((” log 7 >1°gr)

= lim sup .

s too B(log (r + 1)) B(logr)

< lim sup
r——+00

B(log (r + 1)) B(logr)

Since B((1 + o(1))z) = (1 4+ o(1))B(x) as x — +oo, from above we
obtain that

(22) I (a(1og).8) '] < (aog)8)[f]-
On the other hand, for an entire function f(z), we have f(z)— f(0) =

= lim sup
r—+00

(a(log[3] M@r+1,f) B((1+o0(1))log r)) |

[ f'(t)dt, where the integral being taken along the straight line from 0
0

to z, so we obtain that

M(r, ) < / Fdt] -+ 1£0)] < rM(r £+ 1£0)] .
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Therefore from above we get that

log® M (r, f) < (1+ o(1)) log? M (r, f')

(23) i€, O(ao).8)|f] < O(agog) 5)[f]-
Hence the lemma follows from (22) and (23). O

Remark 21. In the line of Lemma 20 one can easily deduce that
apf] = owplf'], where f(z) is an entire transcendental function.

Lemma 22. Let f(z) be an entire function of («, B)-order satisfying
o f] = 0. Then there exists a set E5 C (1,400) having infinite
logarithmic measure such that, we have

- allogT(r 1) _
r——+00 ﬁ(log 7’)

reEg

Proof. By Definition 1, there exists an increasing sequence {r,} >
tending to +oo that satisfying (1 + 2)r, < 7,41 and

. a(logT(ra, [))
rnlig-loo ﬁ(log Tn)

So, there exists an n; (€ N) such that for n > n; and for any r € E3 =
+00
U [rn, (1 + 2)r], we have

- O-(Oc,ﬁ) [f] = 0.

a(log T(ra, f)) _ allogT(r, 1)) _ a(logT((1+ 1)r., f)
Y Blog(+ D) = Blogr) = Blogra)
By (24), we get that
(25)

. (a(logT(rn,f)) . B(logry,) )
Bllogr,)  B(log((1+4 )ry))

]ily (25) and B((1 +o(1))z) = (1 +o(1))5(z) as * — 400, we obtain
that

_a(logT(r, f))
(26) ™ Blloar)

reEg

On the other hand, by (24) and B((1 + o(1))x) = (1 + o(1))5(z) as

T —r +OO, we have
« 1() T

rotoe f(logr)

reEg

Tn—>+00
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. a(log T((1 + ;)rn, f) Bllog((L+)ra)) _
o < (b st ) <
Therefore, by (26) and (27), we get that

o T f)

r—+o0  [B(logr) ’

rekg
where
dt <
m(E3) = Z / = Z log(1 +
n=ni n=mni
This complete the proof. 0

Lemma 23. Let f(z) be an entire function of («,[)-order with
plfl = 0 > 0, and let fi(z) be an entire function of (ai,1)-
order with o, g,)[f1] = 01 < +00. If o0 p)lf] and o, p)[f1] satisfy
one of the following conditions:

(1) a(r) = 041(7“) B(r) = Bi(r) and o(a, )| f1] < 00 !f];
(¢1) lim Zil =0, B(r) = Ai(r) and o0, ) [f1] < 00,8 [f];

then there emsts a set By C (1,400) having infinite logarithmic mea-
sure such that, we have

im T(Tv fl) _
r—+00 T( f)

reky

Proof. (i) By Definition 1, we obtain for all sufficiently large values of
r that

(28) T(r, f1) < exp{a”((o1 +)B(logr))} .

By 0(ap)[f] = 0 and Lemma 22, there exists a set [y of infinite loga-
rithmic measure satisfying

L allogT(f) _
r—+oo  [(logr)

reky

Then
(29) T(r.f) = exp{a (0 —e)B(logr))} (r € Eu),
where 0 < 2¢ < 0 — ;. Now by (28) and (29), we obtain that

T(r, f1) < &P {a7 (o1 +¢) B (logr))}
T(r,f) = exp{a~*((c —¢)B(logr))}
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=exp{a'((o1+¢)B(logr)) —a ' ((c —¢) B (logr))}

~exp {al (0 —¢) B (logr)) <§_11 ((((gljg;)gﬁ(l(i;gh?))) N 1> }

a”! (22 (0 —¢) B (logr)) 1) }

a~!((o —¢)f(logr))

o (k(o <) B (logr)
a1 (0 —2) B (logr) 1>}

= exp {Oz‘l ((0 —¢) B (logr)) (

—exp{at (o - 2) 5 0g)

o1 +¢€

—0,r > 400 (re k), 0<k= <1
o—¢
Therefore, we get from above that
T
(r, /1) =0 (rekE).

r—1>£-noo T(r7 f)
(ii) By definition, we obtain for all sufficiently large values of r that
(30) T(r, f) < exp{a;’ (o1 +¢) B (logr)) } .

Now by (29) and (30), for any given £ with 0 < 2¢ < 0 —0;. we obtain
that

T(r. 1) _ exp{oi’ (01 +2) A gr))}
T(r,f) = exp{a~!((c —¢)B(logr))}
oy +¢e) B (logr))} cexp{a”! (o1 +¢) B (logr))}
or+e)B(logr))t exp{a~!((c —¢)B(logr))}
4 a;t ((op +¢) B (logr))

= exp {a ((o1+¢) B (logr)) (al Egal " E; Elogr;) 1) }
exp{a~!((oy +¢)B(logr))}

exp{a~t((c —¢)B(logr))}

_ _ eXp {041 ((
(

exp {a~! (

Since lim 1,1(” — 0 and lim &%) — 0 (0 < k < 1), then by the
rotoo® (1) r—+oo ¢ (r)
inequality obove, we obtain
T
rh) o eny.

r—EPoo T(r, f)
0
Lemma 24. Let F(z) #0, A;(2) (j =0, ...,k—1) be entire functions.

Also let f(z) be a solution of( ) satzsfymg max{o(a(log),8)[4;] (J =
0,.... k = 1), 0(a00g),8) [F} < 0atog),s)lf]. Then we have

Aatog) )] = Aatog).0)[f] = T(agog).) /]
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Proof. By (2) we get that

1 1 [ f® =1 f!

31 — ===+ A4 e+ A(2)=+ A :
o) =5 (el am a0
Now, it is easy to see that if f(z) has a zero at zy of order a (a > k),
and Ay, ..., Ax_1 are analytic at zp, then F(z) must have a zero at 2

of order a — k, hence

o aeg) s )

and

(33) N(ﬂ%)gm( > ( )

By the lemma on logarithmic derivative and (31), we have
(34)

k—1

” ( %) <m ( %)+Z m(r, A;)+O(log T(r, f)+logr) (r ¢ Es),

where Es is a set of r of finite linear measure. By (33) and (34), we
obtain that

T(r f) =T (r, %) +0(1) < kN (r, %) T, F)

k-1
(35) + > T(r, A7) + O(log(rT(r, f))) (r & Es).

§=0
Since max{a(a(log)ﬂ) [A]] (] =0,1,..., k— 1) » O (a(log),B) [F]} <
O(a(og),8)[f], then by Lemma 23, there exists a set [, having
infinite logarithmic measure such that

T(r,F) T(r,A;)
(36) jmax { TG ) T fj) }—> 0, r — 400, 7 € Ey.
Since f is transcendental, we have
(37) O(log(rT'(r, f))) = o(T(r, f)).

Therefore, by (35), (36) and (37), for all |z| = r € E4\E5, we get that

T(r f) < O (N (7‘, %)) |

Hence, from above we have
O (a(log),B) [f] < X(oz(log),ﬁ) [f] < )‘ (log),B) [f]
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By definition, we have X(a(log),ﬁ)[f] < )\(a(log),ﬂ)[f] < U(a(log),ﬁ)[f]-
Therefore

Aatiog) 8) [f] = Mation) 5 [f] = O (agon).5)[f]-
Hence, the lemma follows. O

Lemma 25. Let f be a meromorphic function. If o p)[f] = 0 < 400,
then o (a(iog) 5 f] = 0.

Proof. Suppose that o, s)[f] = 0 < +00. Then, for any given ¢ > 0
and sufficiently large r, we have

T(r,f) <expia™ (o +¢) B (logr))}.

Then, we immediately get

log? T
T (atiog) )L f] = 1?35501)0[( O§ <1Og(:>’ 1)
Q <log[2] (exp{a™ ((c +¢) B (log T))}))
< lim sup
b B (logr)
s a(loga™ ((0 +¢) B (logr)))
B linifip B (logr)

1 -1
zlimsupa(Og& (o +¢)z)) = (0 + ¢)limsup

a (log z)

=0.

5. Proof of the Main Results

Proof of Theorem 11. Let f(z) # 0 be a solution of (1) and
rewritten (1) as

(k) 2 (k—1) P ' 5

f(2) f(2) f(2)
Therefore

(k) z (k—1) > (5
(38) [ 4o(2)] < \ff(§)> | a5

By Lemma 16, there exist a constant ¢ > 0 and a set E; C [0, +00)
having finite linear measure such that |z| = r ¢ E, for all z = re, we

have

(39) <c[rT@r, ), j=1,.,k—1.

‘f(j)(z)
f(z)
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By (38), (39) and the hypotheses of Theorem 11, we get that
exp {aexp (a7 (B (log|z]))) } < [Ao(2)|

(40) < kexp {bexp (o™ (uB (log|2]))) } c[rT(2r, f)]**

as z — oo with |z| =r & Ey, 0, <argz =0 < 0s.
Now from (40) we have

exp {(a —b) exp (a_l (up (log |z])))} < ke[rT(2r, f)]**

ie., (a—b)exp (o (uB(loglz]))) < 2k(logr+logT(2r, f))
+ log (kc)

2k
— b(logr +log T'(2r, f))

log (k
| Jog (ke)
a—1>b
By using o((1+ o(1))z) = (1 + o(1))a(x), we get from above that

o (uB (logr)) < (1+0(1)) (log? T(2r, f) + 1og™ 1)

ie., exp (o (uB(loglz]))) <

ie. nf(logr) < a((1+0(1) (1og T(2r, f) +log? 7))
ie., uf(logr) < (1+o(1 a(l T(r, ) +log2]r>

ie., pflogr) < a(2max{log® T(2r, f), log?r})

ie., uB(logr) < (14 o(1))a (max{log® T(2r, f), log? r})

(41) ie., pf(logr) < a <log[2] T(2r, f)> +a <10g[ ] )

Since B((1+o0(1))z) = (1+0(1))B(z) as © — +oo and = 10g[21 D50 as
r — 400, then by (41) and Proposition 2, we have a(a(log) glf] >
Thus Theorem 11 follows.

Proof of Theorem 12. Let f(z) # 0 be a solution of (1). By the
hypotheses of Theorem 12, there exists a set H with dens{|z| : z €
H} > 0 such that for all z satisfying z € H, we have

(42) [Ao(2)] = exp {aexp (o' (1B (log]2]))) }

and
(13)  4;(2)] < exp {bexp (™ (1B (log =)}, j =1,k — 1
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as z — 00. Set Hy = {|z| =1 : 2 € H}, since dens{|z| : z € H} > 0,

then H; is a set with [dr = 4o0. Therefore from, by substituting
Hy

(39), (42) and (43) into (38), it follows that for all z satisfying |z| =

r € Hy \ E, we obtain that

exp {aexp (a7 (uf (log|2]))) }
< kexp {bexp (a™" (B (log|z|))) } c[rT(2r, f)]*

as |z| =r — 4o00. Thus

(44) exp {(a —b)exp (a7 (18 (log2]))) } < kelrT(2r, f)]**

as |z| =r € Hy \ Ey, r — +o0o. Therefore, by (44) and Proposition 2,
we obtain that O (a(log),B) [f] > L.

Proof of Theorem 13. By Theorem 12, we have 0(q(10g),5)[f] > 0 —¢,
since € > 0 is arbitrary, we get o(a(iog),8)[f] = O(a,8)[A0] = 0. On the
other hand, by Lemma 17, there exists a set Fy C [1,+00) having
finite logarithmic measure such that (15) holds for all z satisfying
|z| =7 ¢ [0,1] U Ey and |f(2)] = M(r, f). Now for any given £ > 0
and for sufficiently large r, we obtain

(45) |A;(2)] <expP{a ((0+¢)B(logr))}, j=0,1,....k—1

Substituting (15) and (45) into (1), for all z satisfying |z| = r ¢
[0,1] U Ey and |f(2)| = M(r, f), we have

(2 1o

< x(* ( )) 1+ o(L)| exp {a™ (0 +2) 8 (log 7))}
It follows that

2|
(46)  v(r, f) <krl+o(D)]exp® {a7" (0 +¢) B (logr))} -
Therefore in view of (46), a((1+0(1))z) = (14+0(1))a(x) as x — +oo
and 2070 g 50 +o0, we get that

B(logr)
log!?
(47) limsupa( og " v(r.f))
r—>+00 B(log T)

Since € > 0 is arbitrary, by (47) and Lemma 19, we obtain that
O(agog),8)f] < o. This and the fact that o(goeg) s lf] > o yield
O(a(iog),8)|f] = 0. The proof is complete.
Proof of Theorem 14. (i) Suppose that o(a(og),8)[F] < 0(a,s)[Ao]-
First, we show that (2) can possess at most one exceptional solution

<o+e.
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fo(z) satisfying o(anog),8) [ fo] < 0. In fact, if f*(2) is a second solution

With 0(agog),8)[[*] < 0, then oog) g fo — f*] < 0. But fo(z) — f*(2)
is a solution of the corresponding homogeneous equation (1) of (2),
this contradicts Theorem 13. We assume that f(z) is a solution with

O(aog),p)lf] = o, and fi(2), fo(2), . . . , fi(2) is a solution base
of the corresponding homogeneous equation (1). Then, f(z) can be
expressed in the form

(48)  [f(z) = Bi(2)/i(2) + Ba(2) f2(2) + - - - + Bi(2) f(2),

where By(z), Ba(z), . . ., Bir(z) are determined by
By(2)fi(2) + By(2) fal2) + - + By(2) fu(z) = 0,
By(2)fi(2) + By(2) fol2) + -+ + By(2) fu(2) = 0,

(49)

BV (@) + By sV () o+ BV () = F (o).
As the Wronskian W ( f1, fa, ..., fx) is a differential polynomial in f;, fa,
....fr with constant coefficients, it is easy to deduce that

(50) (aog),8) W] < 0(atiog),5)[fi] = 0(a,8)[Ad] = 0.
From (49) we get that,
(51) B; =I. Gj(flaf2> afk) : W(f17f27 "'7fk)_17 ] = 17 "'7k7

where G,(f1, fa, ..., fi) are differential polynomials in fi, fa, ..., fi with
constant coeflicients. Therefore

(52)  0taog),8) G5 < Tlagion),p) [fi] = O(apAd] =0, =1,k

Since o(a(iog),s)[F] < 0(a,p[Ao), by Lemma 20, (50)—(52), for j =
1, ..., k, we obtain that

O (a(log),8) [Bj] = O(atiog),) [B;] < max{o(a(og),s)[F]; 7(a,p) [Ao]}

(53) = 0(a9)[40] = 0.
Now from (48) and (53), we obtain that
T (a(iog),)f] < max{(aqog) 5 il O(ation) )| By] (7= 1, K)}

(54) = 0(a,)[Ad] = 0.
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This and the assumption o(a(0g),5)[f] > o yield o(aaog),8)[f] = 0. by
Lemma 25, we have

max {0 (a(iog),8) [ F: O(atiog)0) [A5] (1= 0,1, ...k — 1)} = 0(a(iog),8)(F)

< 0(a,8)[Ao] = T(agog), s /]
So, if f(z) is a solution of equation (2) satisfying o(a(og),8)[f] = o,
then by Lemma 24, we get that

Matog) )] = Aatog),0)[f] = T(agog).0)[f] = 0.

(ii) Suppose that o(a,8[Ao] < (aog),8)[F] < +00. Then, by (53), for
7 =1,...,k, we obtain that

T (a(l0g),8) [ Bi] = T(a(iog),8)[B;] < max{o(a(log),s)[F]; T(a,)[ Ao}

(55) = (a(log) )| F]:
Now from (48) and (55), we obtain that

O (a(log),B) [f] S max{o-(oc(log)”@) [fj]v O (a(log),B) [B]] (] = 17 ceey k>}

(56) < O(aiog),8) [F]-

From (2), a simple consideration of (« (log), 8)-order implies that

9 (afiog)8)[f] 2 O(afion) 5) [F]
By the above inequality and (56), we get that

T (a(l0g),8) [ f] = T(aiog),8) [F]

which completes the proof.
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