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ON THE DENSITY OF LIPSCHITZ FUNCTIONS IN
NEWTONIAN SPACES

MARCELINA MOCANU

Abstract. Let E be a rearrangement invariant Banach function
space over a metric measure space X, where the measure of X is
doubling and X supports a (1, E) —Poincaré inequality. We provide
sufficient conditions for the local Holder continuity of a representative
of each function in NE(X), using a quasiconcavity property of a
certain power of the fundamental function of E. Using the properties
of a non-centered maximal operator based on E, we give a simple proof
for the density of Lipschitz functions in a Newtonian space NVE(X),
under the assumptions that E has an absolutely continuous norm and
its fundamental function satisfies a certain lower estimate.

1. INTRODUCTION

The theory of Sobolev spaces on metric measure spaces, that
emerged in the late 1990s, has reached an advanced stage of devel-
opment, see the monographs [7] and [16]. The Newtonian spaces are
first-order Sobolev spaces on metric measure spaces, based on upper
gradients.
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In analysis on metric measure spaces Lipschitz continuous functions
are a natural substitute for smooth functions. The notion of Lips-
chitz function, a purely metric one, is pervasive in Analysis and its
applications, from differential equations to machine learning [10].

Several extensions of Sobolev spaces to metric measure spaces have
been introduced in the mid-late 90s: Hajlasz-Sobolev spaces (based
on Hajlasz gradients) [14], Cheeger spaces (defined as completions
of Lipschitz class) [9] and Newtonian spaces (based on weak upper
gradients) [33], [16].

In this paper we consider a metric measure space (X,d,u) and
a Newtonian space N'E (X), where E is a Banach function space
in the sense of [6]. For E = LP(X), 1 < p < oo, the space
NVE(X) = NP (X) was the first extension based on upper gradients
of Sobolev spaces to metric measure spaces, introduced and studied by
Shanmugalingam [33]. The theory of Newtonian spaces N'* (X) was
further generalized by Tuominen [34] and Aissaoui [1], who studied
the case where E = LY(X) is an Orlicz space, then by Costea and Mi-
randa [11], who developed the theory for the case where E = LP7(X)
is a Lorentz space. The case E = L> (X)) has been studied by Durand-
Cartagena and Jaramillo [13]. The case where E is a Banach function
space was approached in [32], using Banach function spaces as an uni-
fying framework for Orlicz spaces and Lorentz spaces. The more gen-
eral case of Newtonian spaces based on quasi-Banach function lattices
has been studied by L. Maly in several papers [24], [25], [23].

Note that there are plenty of quasi-Banach function lattices that
are not Banach function spaces. In Functional Analysis, quasi-
Banach (function) spaces which are not normed spaces are the sub-
ject of an active research [22], [20]. The best-known example of a
quasi-normed function space which is not a normed space is that of

Lebesgue spaces LP (X, ) for 0 < p < 1, with the usual quasi-norm
1/p
£, = <5[ Wil d,u> having 2'/7~" as modulus of concavity [22]. The

Lorentz spaces LP9 (X, ), 1 <p < 00,1 < g < oo are endowed with
a quasi-norm that is a norm if 1 < g < p, but is only equivalent to a
norm if p < ¢ < oo [11]. For an Orlicz space L? (X, i) generated by a
generalized Orlicz function ® : R, — R, which is strictly increasing,
but not necessarily convex, such that ® (0) = 0 and 1}1_{210 O (u) = oo,

the Minkowski functional of the set of measurable functions f : X — R

with Ip (f) := [|f]dp < 1is a quasi-norm if and only if there exist
b
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p > 0 and ¢ > 0 such that ® (at) > ca?® (t) for all @ > 1 and t > 0,
this quasi-norm being the Luxemburg norm if ® is convex [20].

The density of smooth functions in Sobolev spaces on open sets in
R" is of great importance for the theory and applications of Sobolev
spaces, the celebrated H = W theorem of Meyers and Serrin [27]
showing that C* (Q)NW? (Q) is dense in W'? () whenever Q2 C R
is an open set and 1 < p < oo.

If X is a metric measure space, Lipschitz functions are dense in the
Hajtasz-Sobolev space M'P (X) with 1 < p < oo, both in norm and
in Lusin’s sense [14, Theorem 5]. The density of Lipschitz functions
in Newtonian spaces N'? (X) with 1 < p < oo has been proved by
Shanmugalingam [33, Theorem 4.1], in doubling metric measure spaces
(X, d, p) supporting a weak p—Poincaré inequality. Every Newtonian
function u € N'P(X) with a p—integrable upper gradient g is ap-
proximated in N'?(X), with an error that tends to zero as A — oo,
by A—Lipschitz functions u, that coincide with u a.e. in the com-
plement of the set where the non-centered Hardy-Littlewood maximal
function of gP is above A\P. Corresponding density results have been
proved for Orlicz-Sobolev spaces [34], [1] and Sobolev-Lorentz spaces
[11]. Under the above assumptions on (X, d, ) plus the completness
of the metric space, Durand-Cartagena and Jaramillo [13] proved that
LIP®(X) = MY (X) = N> (X) with equivalent norms, where
LIP* (X) is the space of bounded Lipschitz functions on X. More-
over, assuming that (X,d,u) is connected complete and doubling,
Durand-Cartagena, Jaramillo and Shanmugalingam have shown that
LIP> (X) = N'* (X) with comparable energy seminorms if and only
if X supports a weak co—Poincaré inequality [12, Theorem 4.7]. Am-
brosio, Colombo and Di Marino [3] obtained the density of Lipschitz
functions in N'* (X) with 1 < p < oo without assuming that the mea-
sure is doubling or that X supports a Poincaré inequality, provided
that X is proper and endowed with a doubling metric. Ambrosio,
Pinamonti and Speight [2] investigated weighted Sobolev spaces on
metric measure spaces and provided sufficient conditions for the den-
sity of Lipschitz functions in these spaces. Maly [23] carried out a
thorough and deep study of density of Lipschitz functions in Newto-
nian spaces based on quasi-Banach function lattices with absolutely
continuous quasi-norm, using weak boundedness properties of a frac-
tional maximal operator and various non-centered maximal operators
of Hardy-Littlewood type. The absolute continuity of the function lat-
tice quasi-norm is an essential assumption here, as it is shown through
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counterexamples. In [23] several density results that are very general
are obtained and some concretizations are given, that extend many
known results.

The density of Lipschitz functions in Newtonian spaces has impor-
tant consequences. Recall that a function u : X — R is said to be
E-quasicontinuous if for every € > 0 there is an open set U C X
such that Capg(U) < € and the restriction of u to X \ U is contin-
uous. The Sobolev capacity Capg (A) of a set A C X is defined as

Capg (A) = inf{HuHNLE(X) cu>1on E} If continuous functions

are dense in N'E (X), then every function in N'¥ (X) has an E-
quasicontinuous representative and the quasi-continuity of functions
in NV (X) is equivalent to the outer regularity of a Sobolev capacity
Capg [32], see [33] for E =LP(X). Moreover, in the case E =LP(X)
with X proper Bjorn, Bjérn and Shanmugalingam [8] proved that ev-
ery function in NYE (Q) is quasicontinuous in the open set  C X,
provided that continuous functions are dense in NV¥ (X). The results
of Bjorn, Bjorn and Shanmugalingam in [8] have been generalized by
Maly [25] to the case where E is a quasi-Banach function lattice; it is
established that, assuming that X is locally compact and E satisfies
a Vitali-Carathéodory property, the density of continuous functions
in NUE (X) implies the quasicontinuity of all functions in N*E (X).
If X is proper, E is a Banach function space with absolutely contin-
uous norm and Lipschitz functions are dense in N%E (X)), then the
set Lipc(X) of compactly supported Lipschitz functions is dense in
NYE(X) and for every open set Q@ C X the closure of Lipc () in
NVE(X) is Ny® () [30], see [8] for E =LP(X).

The aim of this paper is to give a simple proof for the density of
Lipschitz functions in a Newtonian space NVE(X), in the spirit of cor-
responding proofs from [33] and [11], under the assumptions that the
rearrangement-invariant Banach function space E has an absolutely
continuous norm and its fundamental function satisfies a certain lower
estimate in the sense of [5]. It is assumed that (X, d, i) is a doubling
metric measure space (with p nonatomic), that supports an appro-
priate (1, E)—Poincaré inequality. It is not assumed that (X, d) is
complete. We also provide sufficient conditions for the local Holder
continuity of a representative of each function in NE(X), using a
quasiconcavity property of a power p > log, C), of the fundamental
function of E, where C), is the doubling constant of the measure .
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2. PRELIMINARIES

Throughout this paper (E, ||-||g) is a Banach function space in
the sense of Bennet and Sharpley [6], over a complete and o—finite
measure space (X, u). We recall that E C Lj,, (X).

Definition 1. A function f € E is said to have absolutely continuous
(AC) norm in B if and only if || fx g, |lg — O for every sequence (Ax)i>1

k—o00
0). The space E is said to have absolutely continuous norm if every

f € E has AC norm .

of measurable sets satisfying A, — 0 p—a.e. (i.e. u (lim sup Ak) =

Some examples of Banach function spaces with absolutely continu-
ous norm are the Orlicz space LY (X) determined by a doubling Young
function ¥, in particular Lebesgue spaces LP (X) with 1 < p < oo and
Lorentz spaces LP?(X) with 1 < p < oo and 1 < ¢ < oo. In con-
trast, if the measure space (X, ) is nonatomic, then the only function
f € L*>® (X) with AC norm is the zero function [6, Example I. 3.3.].

Let f : X — R be a g—measurable function. The distribution
function of f is defined by dy (t) = u({z € X : |f (z)| > t}) for t > 0.
The nonincreasing rearrangement of f is

frt)=inf{s>0:d(s) <t},t>0.

Definition 2. A Banach function space (E, ||-||g) is said to be re-
arrangement invariant if f* = g* implies || f|lg = |l9llg-

Lebesgue spaces and some of their generalizations, namely Orlicz
spaces and Lorentz spaces are rearrangement invariant Banach func-
tion spaces.

Definition 3. The fundamental function of a rearrangement invariant
space B over (X,p) is g : [0,00) — [0,00) defined by Pg (t) =
xallg, where A C X is a p—measurable set with p(A) = t.

Lemma 1. [6, Corollary II. 5.3]Let E be a rearrangement invariant
Banach function space over a resonant measure space (X, pu). The
fundamental function ®g satisfies: g 1s increasing, vanishes only at
the origin, is continuous (except perhaps at the origin) and t — 2et)

t
15 decreasing.

Every measure space (X, ) with a o—finite and nonatomic measure
w is resonant [6, Theorem I1.2.7]. If (X,d) is a quasi-metric space
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endowed with doubling measure p and X has no isolated points, then
4 is nonatomic [21, Theorem 1].

Throughout the paper, the triple (X, d, 1) denotes a metric measure
space, which is a metric space (X,d) equipped with a Borel regular
measure 4, that is finite and positive on balls. Then u is regular, i.e.
inner regular and outer regular [17, p. 3]. Obviously, u is o—finite.

Denote by B(z,r) = {y € X : d(y,r) <r} and B(z,7) = {y € X :
d(y,z) < r} the open, respectively the closed ball in X, centered at
r € X and with radius r» > 0.

The measure p on the metric space (X, d) is said to be doubling if
there is a constant C' > 1 such that for every ball B(z,r) C X,

(2.1) p(B(x,2r)) < Cu(B(z,r)).

The doubling constant C), of the doubling measure p is the smallest
constant C satisfying the above condition.

A metric space is called proper if all closed and bounded subsets are
compact. Every proper metric space is complete and every complete
metric space with a doubling measure is proper [16, Lemma 4.1.14].

If the measure p is doubling, then Lebesgue differentiation the-
orem holds [17, Theorem 1.8], [16, page 77]: if f € L} (X), for
a.e. © € X we have li_r>r(1) [ 1f(y) = f(x)|du(y) = 0, in particular

r B(z,r)

lim (f)f(y)du(y) = f(x).

r—>0B 7

The E—modulus of a family T' of curves in X is defined by

Modg(T") = inf ||p||g ,where the infimum is taken over all Borel func-

tions p : X — [0,00] satisfying [ pds > 1 for all locally rectifiable

5
curves vy in X.

Definition 4. A Borel measurable function g : X — [0, 00] is said to
be an upper gradient of a function u : X — R if for every rectifiable
curve v : [a,b] = X the following inequality holds

22) ulr(a)) ~ utr )| < [ g

Y

A E—weak upper gradient of a function v : X — R is a Borel
measurable function g : X — [0,00] such that (2.2) holds for all
rectifiable curves 7 : [a,b] — X except for a curve family with zero
E—modulus.
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For a function u : X — R denote by G, g the family of all E—weak
upper gradients g € E of u in X. Let N LE(X) be the set of functions
u: X — R with u € E, for which G, is non-empty. For u € NE
define ||u| 516 := |Jullg +inf {||g]|g : ¢ € Gur}. The Newtonian space
NYE(X) is defined as the quotient normed of NYB(X) with respect to
the equivalence relation defined by: u ~ v if ||u — v||z1.e = 0. Then
N'B(X) is a Banach space with the norm [Jull, g = [[ull g1ex- [32]-

For an arbitrary Banach function space E over a metric measure
space X, the (1,E)—Poincaré inequality was introduced in [29] as
a natural generalization of the Orlicz-Poincaré inequality introduced
by Aissaoui [1] and the Poincaré inequality based on Lorentz spaces,
introduced by Costea and Miranda [11], that both generalize the weak
p—Poincaré inequality introduced in the setting of metric measure
spaces by Heinonen and Koskela [19]. The case E =L (X) has been
studied first by Durand-Cartagena, Jaramillo and Shanmugalingam
[12].

For every measurable set A C X with 0 < u(A) < oo and every
u € L' (A) denote the integral average of u over A by uy = m [ udp.

A

For every ball B = B (z,R) and each constant 7 > 0 we denote
7B = B(z,TR).

Definition 5. Let u : X — R be locally integrable and g : X —
[0, 00] be Borel measurable. The pair (u,g) is said to satisfy a weak

(1, E)— Poincaré inequality if there exist some constants Cp > 0 and
7 > 1 such that for all balls B C X

1 / : lgx-5lg
——— [ Ju—ug|du < Cpdiam(B)——-=.
u(B) | esl

(2.3)
The space (X, d, p) is said to support a weak (1, E)— Poincaré inequal-
ity if there exist some constants C'p > 0 and 7 > 1 independent of u
and g such that the inequality (2.3) holds whenever u € Li, (X) and g
1s an upper gradient of u.

Here ||gx-5||g stands for N (gx-5), even in the case N (gx,5) = 0o.
If (X,d,u) supports a weak (1, E)—Poincaré inequality, then (2.3)
holds whenever ¢g is a E—weak upper gradient of u, since for every
E—weak upper gradient g of a function v on X there is a sequence
(9i);>, of upper gradients of u, such that Zlgcr)lo llg: — gllg = 0 [32, Propo-

sition 2].
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The (1,E)—Poincaré inequality is stronger than the weak
oco—Poincaré inequality, since ||gX-pllg < [9X7Bll 1= x) IX-Blg- We
recall that every complete and doubling metric measure space (X, d, )
that supports a weak oo—Poincaré inequality is quasiconvex [12,
Proposition 3.4], hence it has no isolated points, in particular pu is
nonatomic.

Next we prove that the (1, E) —Poincaré inequality is weaker than
the p—Poincaré inequality with p = 1.

The Holder’s inequality for a Banach function space E and its as-
sociate Banach function space E' on (X, p) [6, Theorem I. 2.4] shows
that for every f € E and g € E' we have

(2.4) [ 1591dn < 171 sl
X

By [6, Theorem II. 5.2], if E is a rearrangement invariant Banach
function space over a resonant measure space (X,pu) and E’ is its
associate space, than the product of the fundamental functions of these
spaces is the identity function on [0, (X)), i.e.

(2.5) O (t) Pr (t) =t
for every t € [0, u (X)).

Proposition 1. Assume that the metric measure space (X, d, p) sup-
ports a weak 1— Poincaré inequality. Let E be a rearrangement invari-
ant Banach function space over the resonant measure space (X, ).
Then (X, d,pn) supports a (1,E)—Poincaré inequality, with the con-
stants from the weak 1— Poincaré inequality.

Proof. There exist some constants C'p > 0 and 7 > 1, such that for
every u € L},.(X) and g an upper gradient of u

5/ 5/
— u—uglduy < Cpr gdyu.
u(m) ) 1A= gy ) o

7B

By Holder’s inequality (2.4), [ gdp < llgx-5llg - [Ix-58/s-

TB
Using the identity (2.5) satisfied by the fundamental functions of E
and its associate space E’, we have

IX-Bllg IX-Bllg = 1 (TB).
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Then -7 f gdp < [|gx-5llg - HXTE}_!)E, = H\\g;f”'f hence

HgXTBHE
— [ |Ju—up|dp < Cpr-——"=
B) / Ix75llg

Bastero, Milman and Ruiz [5] defined for a Banach function space E
on R” the maximal operator Mg f(z) = supW | fxollg for f € E,
Qa2 IXQ1lg

where the supremum is taken over all cubes ) C R"™ which contain z
and have sides parallel to the coordinate axes.

In [29] we considered an analogue of the maximal operator from
[5] in the setting of metric measure spaces. Assume that f is a
p—measurable function. If fxp ¢ E for some ball B, then N (fxp) =
oo and we write || fxg|lg = oo.

Definition 6. The noncentered maximal operator associated with the
Banach function space E is defined by

MEf( ) o SuprXBHE
Ixsle

where the supremum is taken over all balls B C X containing the point
x. Here f is any u—measurable function.

For each f € L},.(X), the function Mgf is lower semicontinuous,
as each superlevel set G; := {z € X : Mgf(x) > t}, t > 0 is open in
X. Indeed, for every x € G, there exist a ball By C X with z € B
such that || fxs,llg > t X8 llg and 7 > 0 such that B(x,r) C By, and
we see that B (z,r) C Gy.

The maximal operator Mg has been thoroughly studied by Maly
23], in the general case where E is a quasi-Banach function lattice.

The validity of a (1,E)—Poincaré inequality in doubling metric
spaces, for a pair (u, g), implies a pointwise estimate for u in terms of
the maximal function Mgg. In the setting of metric measure spaces
this was first proved by Hajlasz and Koskela for E =LP(X), 1 < p < o0
[15, Theorem 3.2], using a restricted maximal function.

Proposition 2. Let (X, d, pn) be a doubling metric measure space and
let E be a Banach function space over (X, pu). Assume that the pair
(u,g) satisfies a weak (1, E) —Poincaré inequality with constants Cp
and 7. Then there exists a set A C X with u(A) =0 such that

(2.6) u(z) = u(y)| < C'd(z,y) (Mgg (z) + Mgg (y))
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for every x, y € X \ A. Here C" is some constant depending only on
Cp and the doubling constant C,,.

3. LocAL HOLDER CONTINUITY OF NEWTONIAN FUNCTIONS

We recall the notion of relative lower volume decay [16, page 213]. A
metric measure space (X, d, i) is said to satisfy a relative lower volume
decay of order ) > 0 if there is a constant Cy > 1 such that

p(B(z,5) 1 <S>Q
w(B(a,r)) — Co \r/ ~’
whenever a € X, 0< s <r and z € B(a,r).

It is well-known that every doubling metric measure space (X, d, u),
with the doubling constant C), > 1, satisfies a relative lower volume
decay of order Q = log, C,, with Cy = (C,,)?, see [16, Lemma 8.1.13].

(3.1)

Lemma 2. [If the metric measure space (X,d, p) satisfies the lower
volume decay of order Q > 0 given by (3.1), then for f € L}, (X) and
a€X,x€B(a,r) and0< s <r—d(x,a)

Q 1
|fB(m,s) - fB(a,r)‘ < CO <£) m / |f (l’) - fB(a,r)| d:u

B(a,r)

Proof. |fB(x,s) — fB(a,r)‘ =

st @)= T

z,s

= 'm / ) (f (=) = fB@r) du <
H(B(lx,s)) B(f : ’f (ZE) - fB(a,r)‘ dlu“
By triaingle inequality, = € B(a,r) and 0 < s < 7 —
d({L‘,G) 1mply B (CC,S) C B (CL,T’), hence f ‘f ([E) - fB(a,r)‘ dﬂ <
)

B(z,s

f : |f($) - fB(a,r)‘ dﬂ’

B( k)
Using (3.1) it follows that

p(B(a,r)) 1
5 = Ipen] =< M(B(x,S))M(B(a,r))B( | |f () = [Bam| du

Co (g)Q m / ‘f () — fB(a,r)‘ dp.

B(a,r)
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The following proposition provides sufficient conditions for the ex-
istence of a Holder continuous representative of the first component
of a pair satisfying a (1, E) —Poincaré inequality; for E =L7 (X) we
recover some conclusions of [4, Theorem 4.1] and [15, Theorem 5.1].

Theorem 1. Let (X,d, ) be a doubling metric measure space with
a doubling constant C,,. Let E be a rearrangement invariant Banach
function space over X. Assume that the fundamental function ® = $g
of E satisfies the following condition: ®F (t) /t is nonincreasing for
t € (0,9) for some constants p > Q :=log, C,, and § > 0.

If the pair (f,q) satisfies a (1, E)—Poincaré inequality, where f :
X — R is a locally integrable function and g € E, then f has a
representative that is locally (1 — % — Holder continuous.

In particular, if (X,d, ) supports a (1,E) —Poincaré inequality,
then every f € NYE(X) has a locally <1 — %) —Holder continuous
representative.

Proof. Step 1. Consider a ball B(a,R) in X and A € (0,1). Let
x € B(a,(1 —X)R) be a Lebesgue point of f. By triangle inequality,
B(z,AR) C B(a,R). We use a telescoping argument. Let By :=
B (a, R) and B; := B (z, \'R) for all integers ¢ > 1. Then B;;; C B;
for every integer ¢ > 0.

Since x is a Lebesgue point of f , we have

(@) = Sl = 1m0 fo, = | = |3 (s = f)| <D [Fms —
=0 1=0

NO—L f]f — fB.| du, for i > 0.

By Lemma 2, |fBZ.+1 B

Using the (1 E) —Poincaré inequality

/'f ~ foldu < Cpdiam(B)12XeEls
HXTBHE

we get L [ 1f(x) — f5,|dp < 2CPR)\iM. Then

B; ||X B

?

(3:2) |f () = f,| < CRA?D  NIZ22oiE
i=0 E

where C' = 2Cp().
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Using the monotonicity of the E—norm induced by (P2) and the
definition of the fundamental function & = &g we get
(3.3)
l9x-Bille o N9xr80lle _ IXr80llg [19XBollw _ @ (12 (7Bo)) [|9x-50lg

||X’T’Bi||E N ||X7'Bi||E N ||X’7'Bi||E ||XTB()||E N D (1 (7By)) “XTBOHE'

Now we will use the assumption that &7 (¢) /t is nonincreasing for

€ (0,6), hence 0 < t; <ty < ¢ implies 3 q)(t2 < (t—2>

We choose R, as we may, such that u (TBO) < 0. The above inequal-
ity and (3.1) imply

(p(rB) (1B oty
5o < Uimy) <@t

for all 7 > 0, where Q = log, C,, and C; = (C,,)*.
By (3.2), (3.3) and (3.4), using p > @ we get

(3.4)

119X~ _Q\?
(@)~ fuul < € (Copt 1l 5 (-9
IXrBolle 4=
We proved that for every ball B(a,R) C X, if € B(a,(1 —\) R) is
a Lebesgue point of f, then the following estimate holds
HgXB(%TR)HE

(3.5) [f (@) = fpan| < C'R .
||><B<a7TR>IIE

3=

Here C' = C'(C)) o =2Cp (00) v ) ;Q,Q

!

Step 2. Fix b € X and consider a ball B(b,r). Consider A € (0,1)
from Step 1. Assume that z,y € B(b, kr) are Lebesgue points of f,
where k € (0,1). The constant k and the radius r will be chosen later.

We may use the final estimate (3.5) from Step 1 with @ = z and

R = 2;d(z,y), since 2,y € B(a, (1 —A)R). We denote for short

B (z ,fgd( y)) = B(a,7R). Then

B8 1) - ) < 2 ey Lo

s@rmlle

In order to have B (a,7R) C B(b, 7r), we require #5d(x,y) + kr <

7r, but d(z,y) < 2kr, therefore it suffices to choose 0 < k < T)LH

We estimate the right hand side of (3.6) using again the assumption
that ®P (t) /t is nonincreasing for ¢ € (0,0), taking into account that
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w(B(p,7r)) < 6 for r > 0 small enough:

= < (spm) )i 950,00
c =) T

HgXB(a,TR)HE < HXB(b,T'r) B HgXB(b,TT)
xpermlls = Ixsermlls [xpem

By (3.1) it follows that

E

E

Q
P

ar Jowemls (_(1_»7) d(e,y) %
IxBrm)g 2

gXB(b,‘rr) E

XB(b,T’!') E

Finally, from (3.6) and (3.7) we obtain

‘E

e HgXB(b,TT))
P
[P

(3.8) f (@) = f(y)] < C"d(x,y)

whenever z,y € B(b, %

Here c” = 2 (Co)% (ﬂ) —

1-X 2

r) are Lebesgue points of f.

3O

AQ

—Q oy
(1-x" p(l—Al‘?

p+2 )

4Cp (Co) P (I

2

Step 3. Inequality (3.8) shows that for every point b € X there ex-
ists a radius p, > 0 depending on b and the constants 7,\,d > 0
and a constant C, > 0 depending on b,7,9,\,C,,Cp such that
If (x) — f(y)| < de(x,y)l_% whenever x,y € B(b, p,) are Lebesgue
points of f.

Since f is locally integrable and the measure p is doubling, the
complement X \ L¢ of the set L; of Lebesgue points of f has measure
zero, by Lebesgue differentiation theorem [17, Theorem 1.8], [16, page
77].

The restriction of f to Ly, that is (1 — %) —locally Holder con-

tinuous, can be extended by continuity to a function ]7 that is also
<1 — %) —locally Holder continuous. Since Ly is dense in X, for
every z € X we find a sequence (z,),., that is convergent to z,
with z, € Ly N B(z,p,) for n > 1. Using the local Hélder con-
tinuity of f] 1, it follows that the sequence (f (1)) p>, 1s Cauchy
in R, therefore it has a limit, that is independent of the sequence
(2n),>; converging to z and will be denoted by f (z). If 2 € Ly, then

If (zn) — f(2)] < C’bd(zn,z)k% for all n > 1, hence f(z) = f(z). In

particular, f = f a.e. in X.
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Let b € X. For every v,w € B(b, py) we find (v,), -, convergent to v
and (wn)nZl convergent to w, such that v,, w,, € LyNB(b, py) forn > 1.
Then passing to limit as n — oo in | f (v,) — f(wy)| < Cyd(v,, wn)k%

we get | f (v) — f(w)’ < de(v,w)lfg, q. ed. n

4. A DENSITY RESULT

Let E be a Banach function space. We recall some lemmas from
[31], implying that every function from NUVE(X) in this space can
be approximated by bounded functions whenever the measure pu is
nonatomic, (X,d) has no isolated points and E is a rearrangement-
invariant Banach function space with AC norm. The main motivation
behind these approximation results was the preparation of the tools
needed for the proof of the density result from this section.

The following lattice property of NYE(X) is well-known in the cases
where E is an Orlicz space [34, Lemma 6.14] or a Lorentz space [11,
Lemma 3.15, Lemma 3.16].

Lemma 3. If g; € E is a E-weak upper gradient of u; : X — R,
for i = 1,2, then u := max{u;,us} and v := min{uy, us} have the
E—weak upper gradient g = max{gi, g2} and g € E.

For k£ > 0 the truncation of a function u : X — R at levels +k is
defined as u, = max {min{u, k}, —k}. If u > 0, then u; := min{u, k}.

Lemma 4. If g € E is an E-weak upper gradient of u : X — [0, 00),
then for every k € [0,00) the function g is an E-weak upper gradient
of wi, := min{u, k}. Moreover, if u € E, then u, € E, with ||u|lg <
|u||g, for every k € [0, 00).

We recall that every function u : X — R having an E—weak upper
gradient in E has a representative that belongs to ACCg(X), i.e. is

absolutely continuous along all rectifiable curves in X except for a
curve family with zero E—modulus [32, Proposition 3].

Lemma 5. Let E be a Banach function space on X and u €
ACCg(X), which is constant p—a.e. on X \ Q, where Q C X is
open. If g is an upper gradient of uw or g € E is a E—weak upper
gradient of u, then gxq s also a E—weak upper gradient of u.

We say that E has property (C) if klim w (Ag) = 0 for every sequence
—00
of measurable sets Ay C X, k > 1 with klim Ixa,llg = 0. Every re-
—00

arrangement invariant Banach function space over a resonant measure
space has property (C) [31].
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The latter two lemmas imply the following

Lemma 6. Assume that (X,d,p) is a metric measure space, with
i non-atomic. Let E be a Banach function space over X that has
absolutely continuous norm and has property (C). Let v € NYE(X)
be nonnegative. For each integer k > 0 we define uy, := min{u, k}.
Then u, € E for each k > 0 and the sequence (uy),, converges
to u in the norm of NYB(X). Consequently, for each u € NYE(X)
and every € > 0 there is a bounded function v € NY¥(X) such that
lw = vl yimy) <e

The above approximation result generalizes Proposition 6.5 from
[11] and Proposition 6.16 from [34], and has in turn been generalized
to Newtonian spaces based on quasi-Banach lattices [23, Corollary
3.6].

Definition 7. [5] Let ® : [0,00) — [0,00) be an increasing bijection.
The rearrangement invariant Banach function space E is said to sat-
isfy a lower ®—estimate if there exists a positive constant M < oo
such that for every finite family {f;:i=1,..,n} C E of functions
with disjoint supports,

Zfi > M (Z o (llfz-llE)> .

Under the assumption that E is a rearrangement invariant space
satisfying a lower ®— estimate, where ® = ®g is the fundamental
function of E, Bastero, Milman and Ruiz [5] proved that there exists
C > 0 such that for every f € E

(4.1)

Op (u({z € X : Mpf (z) > \})) < % £l for all A > 0.

The following result, proved in [28], generalizes the well-known proper-
ties of weak boundedness of the Hardy-Littlewood maximal operator of
a locally integrable function on a doubling metric space (see [17, The-
orem 2.2]) and extends [5, Theorem 1| from the Euclidean setting to
the setting of metric measure spaces. Note that instead assuming that
(X, d, ) has no isolated points we may assume that p is nonatomic,
since we only need (X, i) to be resonant.

Lemma 7. Let E be a rearrangement invariant Banach function space
on a doubling metric measure space (X,d, ) without isolated points.
Let g and Mg the corresponding fundamental function and mazximal
operator, respectively. If E satisfies a lower ®g—estimate, then there
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exists a positive constant C' such that for every f € E and all A > 0
we have

C
(4.2) Pp (p({r € X Mgf(2) > A}) < +[Iflle -
Moreover, if E has absolutely continuous norm, then

(4.3) /\an;OAQE (u({z e X : Mgf(z) > A})) =0.

For an extended real-valued function u on X, denote the superlevel
set £, (A) ={z € X : u(x) > A}. By the definition of the fundamental
function, we may rewrite the above conditions (4.2) and (4.3) as

[Meqpno||, < €15l and
/\h—{EOH)\Xﬁ(MEf)()‘)HE = 0, respectively.

Next we prove our density result, following the proof of [33, Theorem
4.1], based on an idea due to Semmes, that was extended to Orlicz-
Sobolev spaces N1¥(X) determined by a doubling Young function ¥
[34, Theorem 6.17], to Newtonian Lorentz spaces N (X, 1) with
1 <q<p<oo[l1, Theorem 6.9] and to Newtonian spaces N'?7(X :
V) with 1 < p < 0o and V' a Banach space [16, Theorem 8.2.1].

Theorem 2. Let (X,d, ) be a doubling metric measure space, with
i nonatomic. Let E be a rearrangement invariant Banach func-
tion space, that has absolutely continuous norm and satisfies a lower
®—esti-mate, where ® = $g is the fundamental function of E. As-
sume that X supports a weak (1, E) — Poincaré inequality.

Then Lipschitz functions are dense in NVE(X) both in norm and in
Lusin’s sense: for everyu € NY®(X) and each e > 0 there exists a Lip-
schitz function v € NYB(X) such that p({x € X :u(z) #v(x)}) <e
and |lu —vl|, g <e.

Proof. Since p is o—finite and nonatomic, (X, u) is resonant. Then
the fundamental function & = &g of the rearrangement invariant
Banach function space E has the properties from Lemma 1 and E has
the so-called property (C).

Let u € N*B(X) and g € E be an upper gradient of .

Step 1. (Reduction to the case of bounded functions)

It suffices to consider u > 0, using the decomposition into positive
and negative parts. We may assume that « < M for some constant
M, using Lemma 6.
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Step 2. (Bound on the mean oscillation on a ball with
center in the ”good” set)

Consider the superlevel set G, = {z € X : Mgg(x) > A} for A > 0.
Note that the "bad” set GG is open.

Using the weak (1, E) —Poincaré inequality and the definition of the
maximal function Mgg we get

l9x B g

S ZCPTMEQ(ZE),
(peEre

/ ‘U - uB(J;,r)| d:u < 2C(PT
B(z,r)

u(B (z,7))

for all x € X and r > 0.
For x € X \ G), the above inequalities imply

1
)) / |U - uB(:cm)’ dM < QOPT)H

(4.4) TEET

B(z,r)

for every r > 0.

Step 3. (Distance between means on concentric balls, with
center in the ”good” set)

For z € X \ G,, one finds a bound of ’uB(J;,S) — UB(a)
O0<s<r.

Using Lemma 2, (4.4) implies ‘uB(m) — uB(m)‘ < 2CpCyr for
s <r.

In the general case a similar estimate is obtained by iterating the

above inequality. If 0 < s < £, taking k = — Uog2 ‘:{J — 1 we have

27F=1lp < 5 < 27%r and denoting r; = 27 it follows that

, Where

.
3 <

k—
}UB(:n,s) - uB(:r,r)l < |uB(:v,s) - uB(z,m)‘ + ;) ‘UB(x,ri) — UB(z,riy1) <

k
20pC,rA Y. 270 < 4CpC,CrA.
i=0
In conclusion,

(4.5) ‘uB(m) — uB(w)‘ <ACpCyrAfor 0 < s <r.

Step 4. (Lipschitz truncation defined on the ”good” set)
Let x € X\ G,.The Cauchy-type estimate }ug(m) — UB(W)} < 2Cr\
for 0 < s < r implies the existence of the li{{r(l)uB(;p,r) =: up(z).

Note that 0 < uy < M everywhere on X \ G,.

If x € X\ G, is a Lebesgue point of u, then uy(x) = u(x). Using
Lebesgue differentiation theorem for u € E CLj, (X), we conclude
that uy = u p—a.e. on X \ G,.
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One proves that uy is CA—Lipschitz on X \ G, using a telescoping
argument: there exists C' > 0 such that for all z,y € X \ G,

(4.6) Jux (2) = ua (y)| < CX-d(z,y).

Let x,y € X \ G\. Consider two chains of balls, centered at z and
y, respectively: for each integer i > 0 take B_; := B (x,2'7d (z,y))
and B;,; = B(y,27%d(z,y)). Then uy(z) = limup_, and uy (y) =

1— 00

o0
limup,,,, hence [uy (z) —ur (y)] < 3 |up, — up,,, |-
1—00 k—=—o0

By (4.5) we get |up, — up,,,| < Cp(C,)>22*d(z,y)\ for all inte-
gers k > 1, respectively |up, — up,,,| < Cp(C,)’ 2%*d(z, y)\ for all
integers k < —1. For k = 0, using Lemma 2 and (4.4) with r = 2d(z, y)
we get |up, — up,| < 4Cp (C,)* d(x,y)\. Finally, (4.6) is obtained
with C' = 16Cp (C,)*.

Step 5. (McShane extension of the Lipschitz truncation)

By McShane extension theorem, the C'A—Lipschitz function wu) :
X\ G\ — R can be extended to a CA—Lipschitz function vy : X — R,
defined by vy (z) = inf {uy (y) + CAd (z,y) : y € X \ G\ }.

This McShane extension is truncated in order to maintain bounded-
ness. Define wy = min (vy, M), A > 0. Note that w, is CA—Lipschitz
on X, 0<wy <M and wy, =v\, =uy on X\ G,.

In the next two steps it is proved that wy —u € NVE (X)) for A large
enough and )\lim |lwx —ull; g = 0. Moreover, wy solves the problem
—00 )

of aproximation in Lusin’s sense for each £ > 0 there exists Ao (¢) > 0
such that u({z € X 1 u(x) #w, (x)}) < € and wy, € NVE(X) for all
A> A (8)

Step 6. (Convergence in E—norm of truncated McShane
extensions)

We check that wy —u € E for A > M and A11_)11010 |lwy —u|lg =0

Let A > M. Since wy —u = 0 p—a.e. on X \ Gy and |wy —u| <
M < X on G, we have |wy —u| < Axg, p—a.e. on X.

But [|[Axc,llg = A® (1 (Gy)) — 0 as A — oo, according to the
asymptotic estimate (4.3) for & = ®g. The claim follows.

Step 7. (Convergence in N —norm of truncated McShane
extensions)

i) For every A > 0 the function w), is CA\-Lipschitz, therefore the
constant C'\ is an upper gradient of wy and w) is absolutely continuous
on each rectifiable curve.
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ii) By subadditivity of the modulus, (C'A 4 ¢) is an upper gradient
of wy —u and wy —u € ACCg (X).

Since wy —u = 0 p—a.e. on X\ G, and G, is open, applying Lemma
5 it follows that (CA + g) x¢, is a E—weak upper gradient of wy — u.

As in Step 6, note that Axg, € E for A, and |Axe,llg =
AP (11 (Gy)) — 0 as A — 0.

From the properties of the fundamental function of a r.i. space,
)\ILIEOQD (1 (Gy)) = 0 implies )\hj{.lou (G)) = 0, hence Gy — ) u—a.e as
A — 0.

Since g € E and E has absolutely continuous norm, ||gxq,||lg — 0
as A — 00.

Then || (CA+ g) xa,|lg = 0as A — oo, in particular (CA + g) xa, €
E for A large enough.

Consequently, we get wy —u € NVE (X) for X large enough. But
Jwx —ull; 5 < |lwx —ullg + [[(CA+ g) xa, |lg and the first claim fol-
lows, using the conclusion of Step 6.

Finally, having wy — v = 0 p—a.e. on X \ G,, it follows that
w{zx e X u(x)#wy(x)}) = p(Gy). Since p(Gy) — 0 as A — oo,
this completes the proof. 1

The proof of the above theorem can also be obtained by Theorem
4.2 in [23], since by Proposition 2 the maximal function Mgg of an
upper gradient g of the approximated function u is a Hajlasz gradient
of u, satisfying the weak eastimate (4.3) from Lemma 7.
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