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ON THE DENSITY OF LIPSCHITZ FUNCTIONS IN
NEWTONIAN SPACES

MARCELINA MOCANU

Abstract. Let E be a rearrangement invariant Banach function
space over a metric measure space X, where the measure of X is
doubling and X supports a (1,E)−Poincaré inequality. We provide
sufficient conditions for the local Hölder continuity of a representative
of each function in N1,E(X), using a quasiconcavity property of a
certain power of the fundamental function of E. Using the properties
of a non-centered maximal operator based on E, we give a simple proof
for the density of Lipschitz functions in a Newtonian space N1,E(X),
under the assumptions that E has an absolutely continuous norm and
its fundamental function satisfies a certain lower estimate.

1. Introduction

The theory of Sobolev spaces on metric measure spaces, that
emerged in the late 1990s, has reached an advanced stage of devel-
opment, see the monographs [7] and [16]. The Newtonian spaces are
first-order Sobolev spaces on metric measure spaces, based on upper
gradients.
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In analysis on metric measure spaces Lipschitz continuous functions
are a natural substitute for smooth functions. The notion of Lips-
chitz function, a purely metric one, is pervasive in Analysis and its
applications, from differential equations to machine learning [10].

Several extensions of Sobolev spaces to metric measure spaces have
been introduced in the mid-late 90s: Hajlasz-Sobolev spaces (based
on Hajlasz gradients) [14], Cheeger spaces (defined as completions
of Lipschitz class) [9] and Newtonian spaces (based on weak upper
gradients) [33], [16].

In this paper we consider a metric measure space (X, d, µ) and
a Newtonian space N1,E (X), where E is a Banach function space
in the sense of [6]. For E = Lp (X), 1 ≤ p < ∞, the space
N1,E(X) = N1,p (X) was the first extension based on upper gradients
of Sobolev spaces to metric measure spaces, introduced and studied by
Shanmugalingam [33]. The theory of Newtonian spaces N1,p (X) was
further generalized by Tuominen [34] and Aı̈ssaoui [1], who studied
the case where E = LΨ(X) is an Orlicz space, then by Costea and Mi-
randa [11], who developed the theory for the case where E = Lp,q(X)
is a Lorentz space. The case E = L∞ (X) has been studied by Durand-
Cartagena and Jaramillo [13]. The case where E is a Banach function
space was approached in [32], using Banach function spaces as an uni-
fying framework for Orlicz spaces and Lorentz spaces. The more gen-
eral case of Newtonian spaces based on quasi-Banach function lattices
has been studied by L. Malý in several papers [24], [25], [23].

Note that there are plenty of quasi-Banach function lattices that
are not Banach function spaces. In Functional Analysis, quasi-
Banach (function) spaces which are not normed spaces are the sub-
ject of an active research [22], [20]. The best-known example of a
quasi-normed function space which is not a normed space is that of
Lebesgue spaces Lp (X,µ) for 0 < p < 1, with the usual quasi-norm

‖f‖p =

(∫
X

|f |p dµ
)1/p

having 21/p−1 as modulus of concavity [22]. The

Lorentz spaces Lp,q (X,µ), 1 < p < ∞, 1 ≤ q ≤ ∞ are endowed with
a quasi-norm that is a norm if 1 ≤ q ≤ p, but is only equivalent to a
norm if p < q ≤ ∞ [11]. For an Orlicz space LΦ (X,µ) generated by a
generalized Orlicz function Φ : R+→ R+, which is strictly increasing,
but not necessarily convex, such that Φ (0) = 0 and lim

u→∞
Φ (u) = ∞,

the Minkowski functional of the set of measurable functions f : X → R
with IΦ (f) :=

∫
X

|f | dµ ≤ 1 is a quasi-norm if and only if there exist
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p > 0 and c > 0 such that Φ (at) ≥ capΦ (t) for all a ≥ 1 and t ≥ 0,
this quasi-norm being the Luxemburg norm if Φ is convex [20].

The density of smooth functions in Sobolev spaces on open sets in
Rn is of great importance for the theory and applications of Sobolev
spaces, the celebrated H = W theorem of Meyers and Serrin [27]
showing that C∞ (Ω)∩W 1,p (Ω) is dense in W 1,p (Ω) whenever Ω ⊂ Rn

is an open set and 1 ≤ p <∞.
If X is a metric measure space, Lipschitz functions are dense in the

Haj lasz-Sobolev space M1,p (X) with 1 < p < ∞, both in norm and
in Lusin’s sense [14, Theorem 5]. The density of Lipschitz functions
in Newtonian spaces N1,p (X) with 1 ≤ p < ∞ has been proved by
Shanmugalingam [33, Theorem 4.1], in doubling metric measure spaces
(X, d, µ) supporting a weak p−Poincaré inequality. Every Newtonian
function u ∈ N1,p(X) with a p−integrable upper gradient g is ap-
proximated in N1,p(X), with an error that tends to zero as λ → ∞,
by λ−Lipschitz functions uλ that coincide with u a.e. in the com-
plement of the set where the non-centered Hardy-Littlewood maximal
function of gp is above λp. Corresponding density results have been
proved for Orlicz-Sobolev spaces [34], [1] and Sobolev-Lorentz spaces
[11]. Under the above assumptions on (X, d, µ) plus the completness
of the metric space, Durand-Cartagena and Jaramillo [13] proved that
LIP∞ (X) = M1,∞ (X) = N1,∞ (X) with equivalent norms, where
LIP∞ (X) is the space of bounded Lipschitz functions on X. More-
over, assuming that (X, d, µ) is connected complete and doubling,
Durand-Cartagena, Jaramillo and Shanmugalingam have shown that
LIP∞ (X) = N1,∞ (X) with comparable energy seminorms if and only
if X supports a weak ∞−Poincaré inequality [12, Theorem 4.7]. Am-
brosio, Colombo and Di Marino [3] obtained the density of Lipschitz
functions in N1,p (X) with 1 < p <∞ without assuming that the mea-
sure is doubling or that X supports a Poincaré inequality, provided
that X is proper and endowed with a doubling metric. Ambrosio,
Pinamonti and Speight [2] investigated weighted Sobolev spaces on
metric measure spaces and provided sufficient conditions for the den-
sity of Lipschitz functions in these spaces. Malý [23] carried out a
thorough and deep study of density of Lipschitz functions in Newto-
nian spaces based on quasi-Banach function lattices with absolutely
continuous quasi-norm, using weak boundedness properties of a frac-
tional maximal operator and various non-centered maximal operators
of Hardy-Littlewood type. The absolute continuity of the function lat-
tice quasi-norm is an essential assumption here, as it is shown through
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counterexamples. In [23] several density results that are very general
are obtained and some concretizations are given, that extend many
known results.

The density of Lipschitz functions in Newtonian spaces has impor-
tant consequences. Recall that a function u : X → R is said to be
E-quasicontinuous if for every ε > 0 there is an open set U ⊂ X
such that CapE(U) < ε and the restriction of u to X \ U is contin-
uous. The Sobolev capacity CapE (A) of a set A ⊂ X is defined as

CapE (A) = inf
{
‖u‖N1,E(X) : u ≥ 1 on E

}
. If continuous functions

are dense in N1,E (X), then every function in N1,E (X) has an E-
quasicontinuous representative and the quasi-continuity of functions
in N1,E (X) is equivalent to the outer regularity of a Sobolev capacity
CapE [32], see [33] for E =Lp(X). Moreover, in the case E =Lp(X)
with X proper Björn, Björn and Shanmugalingam [8] proved that ev-
ery function in N1,E (Ω) is quasicontinuous in the open set Ω ⊂ X,
provided that continuous functions are dense in N1,E (X). The results
of Björn, Björn and Shanmugalingam in [8] have been generalized by
Malý [25] to the case where E is a quasi-Banach function lattice; it is
established that, assuming that X is locally compact and E satisfies
a Vitali-Carathéodory property, the density of continuous functions
in N1,E (X) implies the quasicontinuity of all functions in N1,E (X).
If X is proper, E is a Banach function space with absolutely contin-
uous norm and Lipschitz functions are dense in N1,E (X), then the
set LipC(X) of compactly supported Lipschitz functions is dense in
N1,E (X) and for every open set Ω ⊂ X the closure of LipC (Ω) in

N1,E (X) is N1,E
0 (Ω) [30], see [8] for E =Lp(X).

The aim of this paper is to give a simple proof for the density of
Lipschitz functions in a Newtonian space N1,E(X), in the spirit of cor-
responding proofs from [33] and [11], under the assumptions that the
rearrangement-invariant Banach function space E has an absolutely
continuous norm and its fundamental function satisfies a certain lower
estimate in the sense of [5]. It is assumed that (X, d, µ) is a doubling
metric measure space (with µ nonatomic), that supports an appro-
priate (1,E)−Poincaré inequality. It is not assumed that (X, d) is
complete. We also provide sufficient conditions for the local Hölder
continuity of a representative of each function in N1,E(X), using a
quasiconcavity property of a power p > log2Cµ of the fundamental
function of E, where Cµ is the doubling constant of the measure µ.
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2. Preliminaries

Throughout this paper (E, ‖·‖E) is a Banach function space in
the sense of Bennet and Sharpley [6], over a complete and σ−finite
measure space (X,µ). We recall that E ⊂ L1

loc (X).

Definition 1. A function f ∈ E is said to have absolutely continuous
(AC) norm in E if and only if ‖fχEk‖E → 0 for every sequence (Ak)k≥1

of measurable sets satisfying Ak → ∅ µ−a.e. (i.e. µ

(
lim supAk

k→∞

)
=

0). The space E is said to have absolutely continuous norm if every
f ∈ E has AC norm .

Some examples of Banach function spaces with absolutely continu-
ous norm are the Orlicz space LΨ (X) determined by a doubling Young
function Ψ, in particular Lebesgue spaces Lp (X) with 1 ≤ p <∞ and
Lorentz spaces Lp,q (X) with 1 < p < ∞ and 1 ≤ q < ∞. In con-
trast, if the measure space (X,µ) is nonatomic, then the only function
f ∈ L∞ (X) with AC norm is the zero function [6, Example I. 3.3.].

Let f : X → R be a µ−measurable function. The distribution
function of f is defined by df (t) = µ ({x ∈ X : |f (x)| > t}) for t ≥ 0.
The nonincreasing rearrangement of f is

f ∗ (t) = inf {s ≥ 0 : df (s) ≤ t} , t ≥ 0.

Definition 2. A Banach function space (E, ‖·‖E) is said to be re-
arrangement invariant if f ∗ = g∗ implies ‖f‖E = ‖g‖E.

Lebesgue spaces and some of their generalizations, namely Orlicz
spaces and Lorentz spaces are rearrangement invariant Banach func-
tion spaces.

Definition 3. The fundamental function of a rearrangement invariant
space E over (X,µ) is ΦE : [0,∞) → [0,∞) defined by ΦE (t) =
‖χA‖E, where A ⊂ X is a µ−measurable set with µ (A) = t.

Lemma 1. [6, Corollary II. 5.3]Let E be a rearrangement invariant
Banach function space over a resonant measure space (X,µ). The
fundamental function ΦE satisfies: ΦE is increasing, vanishes only at

the origin, is continuous (except perhaps at the origin) and t 7→ ΦE(t)
t

is decreasing.

Every measure space (X,µ) with a σ−finite and nonatomic measure
µ is resonant [6, Theorem II.2.7]. If (X, d) is a quasi-metric space
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endowed with doubling measure µ and X has no isolated points, then
µ is nonatomic [21, Theorem 1].

Throughout the paper, the triple (X, d, µ) denotes a metric measure
space, which is a metric space (X, d) equipped with a Borel regular
measure µ, that is finite and positive on balls. Then µ is regular, i.e.
inner regular and outer regular [17, p. 3]. Obviously, µ is σ−finite.

Denote by B(x, r) = {y ∈ X : d(y, x) < r} and B(x, r) = {y ∈ X :
d(y, x) ≤ r} the open, respectively the closed ball in X, centered at
x ∈ X and with radius r > 0.

The measure µ on the metric space (X, d) is said to be doubling if
there is a constant C ≥ 1 such that for every ball B(x, r) ⊂ X,

(2.1) µ(B(x, 2r)) ≤ Cµ(B(x, r)).

The doubling constant Cµ of the doubling measure µ is the smallest
constant C satisfying the above condition.

A metric space is called proper if all closed and bounded subsets are
compact. Every proper metric space is complete and every complete
metric space with a doubling measure is proper [16, Lemma 4.1.14].

If the measure µ is doubling, then Lebesgue differentiation the-
orem holds [17, Theorem 1.8], [16, page 77]: if f ∈ L1

loc (X), for
a.e. x ∈ X we have lim

r→0

∫
B(x,r)

|f(y)− f(x)| dµ(y) = 0, in particular

lim
r→0

∫
B(x,r)

f(y)dµ(y) = f(x).

The E−modulus of a family Γ of curves in X is defined by
ModE(Γ) = inf ‖ρ‖E ,where the infimum is taken over all Borel func-
tions ρ : X → [0,∞] satisfying

∫
γ

ρ ds ≥ 1 for all locally rectifiable

curves γ in X.

Definition 4. A Borel measurable function g : X → [0,∞] is said to
be an upper gradient of a function u : X → R if for every rectifiable
curve γ : [a, b]→ X the following inequality holds

(2.2) |u(γ(a))− u(γ(b))| ≤
∫
γ

gds.

A E−weak upper gradient of a function u : X → R is a Borel
measurable function g : X → [0,∞] such that (2.2) holds for all
rectifiable curves γ : [a, b] → X except for a curve family with zero
E−modulus.
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For a function u : X → R denote by Gu,E the family of all E−weak

upper gradients g ∈ E of u in X. Let Ñ1,E(X) be the set of functions

u : X → R with u ∈ E, for which Gu,E is non-empty. For u ∈ Ñ1,E

define ‖u‖Ñ1,E := ‖u‖E + inf {‖g‖E : g ∈ Gu,E}. The Newtonian space

N1,E(X) is defined as the quotient normed of Ñ1,E(X) with respect to
the equivalence relation defined by: u ∼ v if ‖u− v‖Ñ1,E = 0. Then
N1,E(X) is a Banach space with the norm ‖u‖1,E = ‖u‖Ñ1,E(X). [32].

For an arbitrary Banach function space E over a metric measure
space X, the (1,E)−Poincaré inequality was introduced in [29] as
a natural generalization of the Orlicz-Poincaré inequality introduced
by Aı̈ssaoui [1] and the Poincaré inequality based on Lorentz spaces,
introduced by Costea and Miranda [11], that both generalize the weak
p−Poincaré inequality introduced in the setting of metric measure
spaces by Heinonen and Koskela [19]. The case E =L∞ (X) has been
studied first by Durand-Cartagena, Jaramillo and Shanmugalingam
[12].

For every measurable set A ⊂ X with 0 < µ(A) < ∞ and every
u ∈ L1 (A) denote the integral average of u over A by uA = 1

µ(A)

∫
A

udµ.

For every ball B = B (x,R) and each constant τ > 0 we denote
τB = B(x, τR).

Definition 5. Let u : X → R be locally integrable and g : X →
[0,∞] be Borel measurable. The pair (u, g) is said to satisfy a weak
(1,E)−Poincaré inequality if there exist some constants CP > 0 and
τ ≥ 1 such that for all balls B ⊂ X

(2.3)
1

µ(B)

∫
B

|u− uB| dµ ≤ CPdiam(B)
‖gχτB‖E
‖χτB‖E

.

The space (X, d, µ) is said to support a weak (1,E)−Poincaré inequal-
ity if there exist some constants CP > 0 and τ ≥ 1 independent of u
and g such that the inequality (2.3) holds whenever u ∈ L1

loc(X) and g
is an upper gradient of u.

Here ‖gχτB‖E stands for N (gχτB), even in the case N (gχτB) =∞.
If (X, d, µ) supports a weak (1,E)−Poincaré inequality, then (2.3)

holds whenever g is a E−weak upper gradient of u, since for every
E−weak upper gradient g of a function u on X there is a sequence
(gi)i≥1 of upper gradients of u, such that lim

i→∞
‖gi − g‖E = 0 [32, Propo-

sition 2].
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The (1,E)−Poincaré inequality is stronger than the weak
∞−Poincaré inequality, since ‖gχτB‖E ≤ ‖gχτB‖L∞(X) ‖χτB‖E. We

recall that every complete and doubling metric measure space (X, d, µ)
that supports a weak ∞−Poincaré inequality is quasiconvex [12,
Proposition 3.4], hence it has no isolated points, in particular µ is
nonatomic.

Next we prove that the (1,E)−Poincaré inequality is weaker than
the p−Poincaré inequality with p = 1.

The Hölder’s inequality for a Banach function space E and its as-
sociate Banach function space E′ on (X,µ) [6, Theorem I. 2.4] shows
that for every f ∈ E and g ∈ E′ we have

(2.4)

∫
X

|fg| dµ ≤ ‖f‖E ‖g‖E′ .

By [6, Theorem II. 5.2], if E is a rearrangement invariant Banach
function space over a resonant measure space (X,µ) and E′ is its
associate space, than the product of the fundamental functions of these
spaces is the identity function on [0, µ (X)), i.e.

(2.5) ΦE (t) ΦE′ (t) = t

for every t ∈ [0, µ (X)).

Proposition 1. Assume that the metric measure space (X, d, µ) sup-
ports a weak 1−Poincaré inequality. Let E be a rearrangement invari-
ant Banach function space over the resonant measure space (X,µ).
Then (X, d, µ) supports a (1,E)−Poincaré inequality, with the con-
stants from the weak 1−Poincaré inequality.

Proof. There exist some constants CP > 0 and τ ≥ 1, such that for
every u ∈ L1

loc (X) and g an upper gradient of u

1

µ(B)

∫
B

|u− uB| dµ ≤ CP r
1

µ(τB)

∫
τB

gdµ.

By Hölder’s inequality (2.4),
∫
τB

gdµ ≤ ‖gχτB‖E · ‖χτB‖E′ .

Using the identity (2.5) satisfied by the fundamental functions of E
and its associate space E′, we have

‖χτB‖E ‖χτB‖E′ = µ (τB) .
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Then 1
µ(τB)

∫
τB

gdµ ≤ ‖gχτB‖E ·
‖χτB‖E′
µ(τB)

=
‖gχτB‖E
‖χτB‖E

, hence

1

µ(B)

∫
B

|u− uB| dµ ≤ CP r
‖gχτB‖E
‖χτB‖E

.

Bastero, Milman and Ruiz [5] defined for a Banach function space E
on Rn the maximal operatorMEf(x) = sup

Q3x

1

‖χQ‖
E

‖fχQ‖E for f ∈ E,

where the supremum is taken over all cubes Q ⊂ Rn which contain x
and have sides parallel to the coordinate axes.

In [29] we considered an analogue of the maximal operator from
[5] in the setting of metric measure spaces. Assume that f is a
µ−measurable function. If fχB /∈ E for some ball B, then N (fχB) =
∞ and we write ‖fχB‖E =∞.

Definition 6. The noncentered maximal operator associated with the
Banach function space E is defined by

MEf(x) = sup
B

‖fχB‖E
‖χB‖E

,

where the supremum is taken over all balls B ⊂ X containing the point
x. Here f is any µ−measurable function.

For each f ∈ L1
loc (X), the function MEf is lower semicontinuous,

as each superlevel set Gt := {x ∈ X :MEf(x) > t}, t > 0 is open in
X. Indeed, for every x ∈ Gt there exist a ball B0 ⊂ X with x ∈ B0

such that ‖fχB0‖E > t ‖χB0‖E and r > 0 such that B(x, r) ⊂ B0, and
we see that B (x, r) ⊂ Gt.

The maximal operator ME has been thoroughly studied by Malý
[23], in the general case where E is a quasi-Banach function lattice.

The validity of a (1,E)−Poincaré inequality in doubling metric
spaces, for a pair (u, g), implies a pointwise estimate for u in terms of
the maximal function MEg. In the setting of metric measure spaces
this was first proved by Haj lasz and Koskela for E =Lp(X), 1 ≤ p <∞
[15, Theorem 3.2], using a restricted maximal function.

Proposition 2. Let (X, d, µ) be a doubling metric measure space and
let E be a Banach function space over (X,µ). Assume that the pair
(u, g) satisfies a weak (1,E)−Poincaré inequality with constants CP
and τ . Then there exists a set A ⊂ X with µ(A) = 0 such that

(2.6) |u(x)− u(y)| ≤ C ′d (x, y) (MEg (x) +MEg (y))
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for every x, y ∈ X \ A. Here C ′ is some constant depending only on
CP and the doubling constant Cµ.

3. Local Hölder continuity of Newtonian functions

We recall the notion of relative lower volume decay [16, page 213]. A
metric measure space (X, d, µ) is said to satisfy a relative lower volume
decay of order Q ≥ 0 if there is a constant C0 ≥ 1 such that

(3.1)
µ(B(x, s))

µ(B(a, r))
≥ 1

C0

(s
r

)Q
,

whenever a ∈ X, 0 < s ≤ r and x ∈ B (a, r).
It is well-known that every doubling metric measure space (X, d, µ),

with the doubling constant Cµ ≥ 1, satisfies a relative lower volume

decay of order Q = log2Cµ with C0 = (Cµ)2, see [16, Lemma 8.1.13].

Lemma 2. If the metric measure space (X, d, µ) satisfies the lower
volume decay of order Q ≥ 0 given by (3.1), then for f ∈ L1

loc (X) and
a ∈ X, x ∈ B (a, r) and 0 < s ≤ r − d (x, a)∣∣fB(x,s) − fB(a,r)

∣∣ ≤ C0

(r
s

)Q 1

µ(B(a, r))

∫
B(a,r)

∣∣f (x)− fB(a,r)

∣∣ dµ.
Proof.

∣∣fB(x,s) − fB(a,r)

∣∣ =

∣∣∣∣∣ 1
µ(B(x,s))

∫
B(x,s)

f (x) dµ− fB(a,r)

∣∣∣∣∣
=

∣∣∣∣∣ 1
µ(B(x,s))

∫
B(x,s)

(
f (x)− fB(a,r)

)
dµ

∣∣∣∣∣ ≤

1
µ(B(x,s))

∫
B(x,s)

∣∣f (x)− fB(a,r)

∣∣ dµ.

By triangle inequality, x ∈ B (a, r) and 0 < s ≤ r −
d (x, a) imply B (x, s) ⊂ B (a, r), hence

∫
B(x,s)

∣∣f (x)− fB(a,r)

∣∣ dµ ≤∫
B(a,r)

∣∣f (x)− fB(a,r)

∣∣ dµ.

Using (3.1) it follows that∣∣fB(x,s) − fB(a,r)

∣∣ ≤ µ(B(a, r))

µ(B(x, s))

1

µ(B(a, r))

∫
B(a,r)

∣∣f (x)− fB(a,r)

∣∣ dµ
≤ C0

(r
s

)Q 1

µ(B(a, r))

∫
B(a,r)

∣∣f (x)− fB(a,r)

∣∣ dµ.
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The following proposition provides sufficient conditions for the ex-
istence of a Hölder continuous representative of the first component
of a pair satisfying a (1,E)−Poincaré inequality; for E =Lp (X) we
recover some conclusions of [4, Theorem 4.1] and [15, Theorem 5.1].

Theorem 1. Let (X, d, µ) be a doubling metric measure space with
a doubling constant Cµ. Let E be a rearrangement invariant Banach
function space over X. Assume that the fundamental function Φ = ΦE

of E satisfies the following condition: Φp (t) /t is nonincreasing for
t ∈ (0, δ) for some constants p > Q := log2Cµ and δ > 0.

If the pair (f, g) satisfies a (1,E)−Poincaré inequality, where f :
X → R is a locally integrable function and g ∈ E, then f has a

representative that is locally
(

1− Q
p

)
−Hölder continuous.

In particular, if (X, d, µ) supports a (1,E)−Poincaré inequality,

then every f ∈ N1,E (X) has a locally
(

1− Q
p

)
−Hölder continuous

representative.

Proof. Step 1. Consider a ball B(a,R) in X and λ ∈ (0, 1). Let
x ∈ B (a, (1− λ)R) be a Lebesgue point of f . By triangle inequality,
B (x, λR) ⊂ B(a,R). We use a telescoping argument. Let B0 :=
B (a,R) and Bi := B (x, λiR) for all integers i ≥ 1. Then Bi+1 ⊂ Bi

for every integer i ≥ 0.
Since x is a Lebesgue point of f , we have

|f (x)− fB0| =
∣∣∣ lim
n→∞

fBn − fB0

∣∣∣ =

∣∣∣∣∣
∞∑
i=0

(
fBi+1

− fBi
)∣∣∣∣∣ ≤

∞∑
i=0

∣∣fBi+1
− fBi

∣∣ .
By Lemma 2,

∣∣fBi+1
− fBi

∣∣ ≤ C0λ
Q 1
µ(Bi)

∫
Bi

|f(x)− fBi | dµ, for i ≥ 0.

Using the (1,E)−Poincaré inequality

1

µ(B)

∫
B

|f(x)− fB| dµ ≤ CPdiam(B)
‖gχτB‖E
‖χτB‖E

,

we get 1
µ(Bi)

∫
Bi

|f(x)− fBi | dµ ≤ 2CPRλ
i‖gχτBi‖E
‖χτBi‖E

. Then

(3.2) |f (x)− fB0 | ≤ CRλQ
∞∑
i=0

λi
‖gχτBi‖E
‖χτBi‖E

,

where C = 2CPC0.
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Using the monotonicity of the E−norm induced by (P2) and the
definition of the fundamental function Φ = ΦE we get
(3.3)
‖gχτBi‖E
‖χτBi‖E

≤ ‖gχτB0‖E
‖χτBi‖E

=
‖χτB0‖E
‖χτBi‖E

‖gχτB0‖E
‖χτB0‖E

=
Φ (µ (τB0))

Φ (µ (τBi))

‖gχτB0‖E
‖χτB0‖E

.

Now we will use the assumption that Φp (t) /t is nonincreasing for

t ∈ (0, δ), hence 0 < t1 ≤ t2 < δ implies Φ(t2)
Φ(t1)

≤
(
t2
t1

) 1
p
.

We choose R, as we may, such that µ (τB0) < δ. The above inequal-
ity and (3.1) imply

(3.4)
Φ (µ (τB0))

Φ (µ (τBi))
≤
(
µ (τB0)

µ (τBi)

) 1
p

≤ (C0)
1
p λ−i

Q
p ,

for all i ≥ 0, where Q = log2Cµ and C0 = (Cµ)2.
By (3.2), (3.3) and (3.4), using p > Q we get

|f (x)− fB0| ≤ C (C0)
1
p
‖gχτB0‖E
‖χτB0‖E

∞∑
i=0

(
λ1−Q

p

)i
.

We proved that for every ball B(a,R) ⊂ X, if x ∈ B(a, (1− λ)R) is
a Lebesgue point of f , then the following estimate holds

(3.5)
∣∣f (x)− fB(a,R)

∣∣ ≤ C ′R

∥∥gχB(a,τR)

∥∥
E∥∥χB(a,τR)

∥∥
E

.

Here C ′ = C (C0)
1
p λQ

1−λ1−
Q
p

= 2CP (C0)
p+1
p λQ

1−λ1−
Q
p

.

Step 2. Fix b ∈ X and consider a ball B(b, r). Consider λ ∈ (0, 1)
from Step 1. Assume that x, y ∈ B(b, kr) are Lebesgue points of f ,
where k ∈ (0, 1). The constant k and the radius r will be chosen later.

We may use the final estimate (3.5) from Step 1 with a = x and
R = 2

1−λd (x, y), since x, y ∈ B(a, (1− λ)R). We denote for short

B
(
x, 2τ

1−λd(x, y)
)

= B (a, τR). Then

(3.6) |f (x)− f(y)| ≤ 2C ′

1− λ
d(x, y)

∥∥gχB(a,τR)

∥∥
E∥∥χB(a,τR)

∥∥
E

.

In order to have B (a, τR) ⊂ B(b, τr), we require 2τ
1−λd(x, y) + kr ≤

τr, but d(x, y) < 2kr, therefore it suffices to choose 0 < k ≤ (1−λ)τ
(1−λ)+4τ

.

We estimate the right hand side of (3.6) using again the assumption
that Φp (t) /t is nonincreasing for t ∈ (0, δ), taking into account that
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µ (B(p, τr)) < δ for r > 0 small enough:

‖gχB(a,τR)‖E
‖χB(a,τR)‖E

≤
∥∥∥χ

B(b,τr)

∥∥∥
E

‖χB(a,τR)‖E

∥∥∥gχ
B(b,τr)

∥∥∥
E∥∥∥χ

B(b,τr)

∥∥∥
E

≤
(
µ(B(b,τr))
µ(B(a,τR))

) 1
p

∥∥∥gχ
B(b,τr)

∥∥∥
E∥∥∥χ

B(b,τr)

∥∥∥
E

.

By (3.1) it follows that

(3.7)

∥∥gχB(a,τR)

∥∥
E∥∥χB(a,τR)

∥∥
E

≤ (C0)
1
p

(
(1− λ)τ

2

)Q
p

d (x, y)−
Q
p

∥∥∥gχB(b,τr)

∥∥∥
E∥∥∥χB(b,τr)

∥∥∥
E

.

Finally, from (3.6) and (3.7) we obtain

(3.8) |f (x)− f(y)| ≤ C ′′d(x, y)1−Q
p

∥∥∥gχ
B(b,τr))

∥∥∥
E∥∥χB(b,τr)

∥∥
E

,

whenever x, y ∈ B(b, (1−λ)τ
(1−λ)+4τ

r) are Lebesgue points of f .

Here C ′′ = 2C′

1−λ (C0)
1
p

(
(1−λ)τ

2

)
=

4CP (C0)
p+2
p
(
τ
2

)Q
p λQ

(1−λ)
1−Qp

(
1−λ1−

Q
P

) .

Step 3. Inequality (3.8) shows that for every point b ∈ X there ex-
ists a radius ρb > 0 depending on b and the constants τ, λ, δ > 0
and a constant Cb > 0 depending on b, τ, δ, λ, Cµ, CP such that

|f (x)− f(y)| ≤ Cbd(x, y)1−Q
p whenever x, y ∈ B(b, ρb) are Lebesgue

points of f .
Since f is locally integrable and the measure µ is doubling, the

complement X \Lf of the set Lf of Lebesgue points of f has measure
zero, by Lebesgue differentiation theorem [17, Theorem 1.8], [16, page
77].

The restriction of f to Lf , that is
(

1− Q
p

)
−locally Hölder con-

tinuous, can be extended by continuity to a function f̃ that is also(
1− Q

p

)
−locally Hölder continuous. Since Lf is dense in X, for

every z ∈ X we find a sequence (zn)n≥1 that is convergent to z,
with zn ∈ Lf ∩ B(z, ρz) for n ≥ 1. Using the local Hölder con-
tinuity of f |Lf it follows that the sequence (f (zn))n≥1 is Cauchy

in R, therefore it has a limit, that is independent of the sequence

(zn)n≥1 converging to z and will be denoted by f̃ (z). If z ∈ Lf , then

|f (zn)− f(z)| ≤ Cbd(zn, z)
1−Q

p for all n ≥ 1, hence f̃ (z) = f(z). In

particular, f̃ = f a.e. in X.
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Let b ∈ X. For every v, w ∈ B(b, ρb) we find (vn)n≥1 convergent to v
and (wn)n≥1 convergent to w, such that vn, wn ∈ Lf∩B(b, ρb) for n ≥ 1.

Then passing to limit as n→∞ in |f (vn)− f(wn)| ≤ Cbd(vn, wn)1−Q
p

we get
∣∣∣f̃ (v)− f̃(w)

∣∣∣ ≤ Cbd(v, w)1−Q
p , q. e.d.

4. A density result

Let E be a Banach function space. We recall some lemmas from
[31], implying that every function from N1,E(X) in this space can
be approximated by bounded functions whenever the measure µ is
nonatomic, (X, d) has no isolated points and E is a rearrangement-
invariant Banach function space with AC norm. The main motivation
behind these approximation results was the preparation of the tools
needed for the proof of the density result from this section.

The following lattice property of N1,E(X) is well-known in the cases
where E is an Orlicz space [34, Lemma 6.14] or a Lorentz space [11,
Lemma 3.15, Lemma 3.16].

Lemma 3. If gi ∈ E is a E-weak upper gradient of ui : X → R,
for i = 1, 2, then u := max{u1, u2} and v := min{u1, u2} have the
E−weak upper gradient g = max{g1, g2} and g ∈ E.

For k ≥ 0 the truncation of a function u : X → R at levels ±k is
defined as uk = max {min{u, k},−k}. If u ≥ 0, then uk := min{u, k}.
Lemma 4. If g ∈ E is an E-weak upper gradient of u : X → [0,∞),
then for every k ∈ [0,∞) the function g is an E-weak upper gradient
of uk := min{u, k}. Moreover, if u ∈ E, then uk ∈ E, with ‖uk‖E ≤
‖u‖E, for every k ∈ [0,∞).

We recall that every function u : X → R having an E−weak upper
gradient in E has a representative that belongs to ACCE(X), i.e. is
absolutely continuous along all rectifiable curves in X except for a
curve family with zero E−modulus [32, Proposition 3].

Lemma 5. Let E be a Banach function space on X and u ∈
ACCE(X), which is constant µ−a.e. on X \ Ω, where Ω ⊂ X is
open. If g is an upper gradient of u or g ∈ E is a E−weak upper
gradient of u, then gχΩ is also a E−weak upper gradient of u.

We say that E has property (C) if lim
k→∞

µ (Ak) = 0 for every sequence

of measurable sets Ak ⊂ X, k ≥ 1 with lim
k→∞
‖χAk‖E = 0. Every re-

arrangement invariant Banach function space over a resonant measure
space has property (C) [31].
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The latter two lemmas imply the following

Lemma 6. Assume that (X, d, µ) is a metric measure space, with
µ non-atomic. Let E be a Banach function space over X that has
absolutely continuous norm and has property (C). Let u ∈ N1,E(X)
be nonnegative. For each integer k ≥ 0 we define uk := min {u, k}.
Then uk ∈ E for each k ≥ 0 and the sequence (uk)k≥0 converges

to u in the norm of N1,E(X). Consequently, for each u ∈ N1,E(X)
and every ε > 0 there is a bounded function v ∈ N1,E(X) such that
‖u− v‖N1,E(X) < ε.

The above approximation result generalizes Proposition 6.5 from
[11] and Proposition 6.16 from [34], and has in turn been generalized
to Newtonian spaces based on quasi-Banach lattices [23, Corollary
3.6].

Definition 7. [5] Let Φ : [0,∞) → [0,∞) be an increasing bijection.
The rearrangement invariant Banach function space E is said to sat-
isfy a lower Φ−estimate if there exists a positive constant M < ∞
such that for every finite family {fi : i = 1, ..., n} ⊂ E of functions
with disjoint supports,

(4.1)

∥∥∥∥∥
n∑
i=1

fi

∥∥∥∥∥
E

≥MΦ

(
n∑
i=1

Φ−1 (‖fi‖E)

)
.

Under the assumption that E is a rearrangement invariant space
satisfying a lower Φ− estimate, where Φ = ΦE is the fundamental
function of E, Bastero, Milman and Ruiz [5] proved that there exists
C > 0 such that for every f ∈ E

ΦE (µ ({x ∈ X :MEf (x) > λ})) ≤ C

λ
‖f‖E for all λ > 0.

The following result, proved in [28], generalizes the well-known proper-
ties of weak boundedness of the Hardy-Littlewood maximal operator of
a locally integrable function on a doubling metric space (see [17, The-
orem 2.2]) and extends [5, Theorem 1] from the Euclidean setting to
the setting of metric measure spaces. Note that instead assuming that
(X, d, µ) has no isolated points we may assume that µ is nonatomic,
since we only need (X,µ) to be resonant.

Lemma 7. Let E be a rearrangement invariant Banach function space
on a doubling metric measure space (X, d, µ) without isolated points.
Let ΦE andME the corresponding fundamental function and maximal
operator, respectively. If E satisfies a lower ΦE−estimate, then there
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exists a positive constant C such that for every f ∈ E and all λ > 0
we have

(4.2) ΦE (µ ({x ∈ X :MEf (x) > λ})) ≤ C

λ
‖f‖E .

Moreover, if E has absolutely continuous norm, then

(4.3) lim
λ→∞

λΦE (µ ({x ∈ X :MEf (x) > λ})) = 0.

For an extended real-valued function u on X, denote the superlevel
set Lu (λ) = {x ∈ X : u(x) > λ}. By the definition of the fundamental
function, we may rewrite the above conditions (4.2) and (4.3) as∥∥∥λχL(MEf)(λ)

∥∥∥
E
≤ C ‖f‖E and

lim
λ→∞

∥∥∥λχL(MEf)(λ)

∥∥∥
E

= 0, respectively.

Next we prove our density result, following the proof of [33, Theorem
4.1], based on an idea due to Semmes, that was extended to Orlicz-
Sobolev spaces N1,Ψ(X) determined by a doubling Young function Ψ
[34, Theorem 6.17], to Newtonian Lorentz spaces N1,Lp,q(X,µ) with
1 ≤ q ≤ p < ∞ [11, Theorem 6.9] and to Newtonian spaces N1,p(X :
V ) with 1 ≤ p <∞ and V a Banach space [16, Theorem 8.2.1].

Theorem 2. Let (X, d, µ) be a doubling metric measure space, with
µ nonatomic. Let E be a rearrangement invariant Banach func-
tion space, that has absolutely continuous norm and satisfies a lower
Φ−esti-mate, where Φ = ΦE is the fundamental function of E. As-
sume that X supports a weak (1,E)− Poincaré inequality.

Then Lipschitz functions are dense in N1,E(X) both in norm and in
Lusin’s sense: for every u ∈ N1,E(X) and each ε > 0 there exists a Lip-
schitz function v ∈ N1,E(X) such that µ ({x ∈ X : u (x) 6= v (x)}) < ε
and ‖u− v‖1,E < ε.

Proof. Since µ is σ−finite and nonatomic, (X,µ) is resonant. Then
the fundamental function Φ = ΦE of the rearrangement invariant
Banach function space E has the properties from Lemma 1 and E has
the so-called property (C).

Let u ∈ N1,E(X) and g ∈ E be an upper gradient of u.
Step 1. (Reduction to the case of bounded functions)
It suffices to consider u ≥ 0, using the decomposition into positive

and negative parts. We may assume that u ≤ M for some constant
M , using Lemma 6.
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Step 2. (Bound on the mean oscillation on a ball with
center in the ”good” set)

Consider the superlevel set Gλ = {x ∈ X :MEg(x) > λ} for λ > 0.
Note that the ”bad” set Gλ is open.

Using the weak (1,E)−Poincaré inequality and the definition of the
maximal function MEg we get

1

µ(B (x, r))

∫
B(x,r)

∣∣u− uB(x,r)

∣∣ dµ ≤ 2CP r

∥∥gχτB(x,r)

∥∥
E∥∥χτB(x,r)

∥∥
E

≤ 2CP rMEg(x),

for all x ∈ X and r > 0.
For x ∈ X \Gλ, the above inequalities imply

(4.4)
1

µ(B (x, r))

∫
B(x,r)

∣∣u− uB(x,r)

∣∣ dµ ≤ 2CP rλ,

for every r > 0.
Step 3. (Distance between means on concentric balls, with

center in the ”good” set)
For x ∈ X \ Gλ, one finds a bound of

∣∣uB(x,s) − uB(x,r)

∣∣, where
0 < s ≤ r.

Using Lemma 2, (4.4) implies
∣∣uB(x,s) − uB(x,r)

∣∣ ≤ 2CPCµrλ for r
2
≤

s ≤ r.
In the general case a similar estimate is obtained by iterating the

above inequality. If 0 < s < r
2
, taking k = −

⌊
log2

s
r

⌋
− 1 we have

2−k−1r ≤ s < 2−kr and denoting ri = 2−ir it follows that∣∣uB(x,s) − uB(x,r)

∣∣ ≤ ∣∣uB(x,s) − uB(x,rk)

∣∣ +
k−1∑
i=0

∣∣uB(x,ri) − uB(x,ri+1)

∣∣ ≤
2CPCµrλ

k∑
i=0

2−i < 4CPCµCrλ.

In conclusion,

(4.5)
∣∣uB(x,s) − uB(x,r)

∣∣ ≤ 4CPCµrλ for 0 < s ≤ r.

Step 4. (Lipschitz truncation defined on the ”good” set)
Let x ∈ X\Gλ.The Cauchy-type estimate

∣∣uB(x,s) − uB(x,r)

∣∣ ≤ 2Crλ
for 0 < s ≤ r implies the existence of the lim

r↘0
uB(x,r) =: uλ(x).

Note that 0 ≤ uλ ≤M everywhere on X \Gλ.
If x ∈ X \ Gλ is a Lebesgue point of u, then uλ(x) = u(x). Using

Lebesgue differentiation theorem for u ∈ E ⊂L1
loc(X), we conclude

that uλ = u µ−a.e. on X \Gλ.
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One proves that uλ is Cλ−Lipschitz on X \Gλ, using a telescoping
argument: there exists C > 0 such that for all x, y ∈ X \Gλ

(4.6) |uλ (x)− uλ (y)| ≤ Cλ · d(x, y).

Let x, y ∈ X \ Gλ. Consider two chains of balls, centered at x and
y, respectively: for each integer i ≥ 0 take B−i := B (x, 21−id (x, y))
and Bi+1 = B (y, 2−id (x, y)). Then uλ (x) = lim

i→∞
uB−i and uλ (y) =

lim
i→∞

uBi+1
, hence |uλ (x)− uλ (y)| ≤

∞∑
k=−∞

∣∣uBk − uBk+1

∣∣.
By (4.5) we get

∣∣uBk − uBk+1

∣∣ ≤ CP (Cµ)3 22−kd(x, y)λ for all inte-

gers k ≥ 1, respectively
∣∣uBk − uBk+1

∣∣ ≤ CP (Cµ)3 23+kd(x, y)λ for all
integers k ≤ −1. For k = 0, using Lemma 2 and (4.4) with r = 2d(x, y)
we get |uB0 − uB1| ≤ 4CP (Cµ)3 d(x, y)λ. Finally, (4.6) is obtained

with C = 16CP (Cµ)3.
Step 5. (McShane extension of the Lipschitz truncation)
By McShane extension theorem, the Cλ−Lipschitz function uλ :

X \Gλ → R can be extended to a Cλ−Lipschitz function vλ : X → R,
defined by vλ (x) = inf {uλ (y) + Cλd (x, y) : y ∈ X \Gλ}.

This McShane extension is truncated in order to maintain bounded-
ness. Define wλ = min (vλ,M), λ > 0. Note that wλ is Cλ−Lipschitz
on X, 0 ≤ wλ ≤M and wλ = vλ = uλ on X \Gλ.

In the next two steps it is proved that wλ−u ∈ N1,E (X) for λ large
enough and lim

λ→∞
‖wλ − u‖1,E = 0. Moreover, wλ solves the problem

of aproximation in Lusin’s sense for each ε > 0 there exists λ0 (ε) > 0
such that µ ({x ∈ X : u (x) 6= wλ (x)}) < ε and wλ ∈ N1,E (X) for all
λ > λ0 (ε).

Step 6. (Convergence in E−norm of truncated McShane
extensions)

We check that wλ − u ∈ E for λ ≥M and lim
λ→∞
‖wλ − u‖E = 0

Let λ ≥ M . Since wλ − u = 0 µ−a.e. on X \ Gλ and |wλ − u| ≤
M ≤ λ on Gλ, we have |wλ − u| ≤ λχGλ µ−a.e. on X.

But ‖λχGλ‖E = λΦ (µ (Gλ)) → 0 as λ → ∞, according to the
asymptotic estimate (4.3) for Φ = ΦE. The claim follows.

Step 7. (Convergence in N1,E−norm of truncated McShane
extensions)

i) For every λ > 0 the function wλ is Cλ-Lipschitz, therefore the
constant Cλ is an upper gradient of wλ and wλ is absolutely continuous
on each rectifiable curve.
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ii) By subadditivity of the modulus, (Cλ+ g) is an upper gradient
of wλ − u and wλ − u ∈ ACCE (X).

Since wλ−u = 0 µ−a.e. on X \Gλ and Gλ is open, applying Lemma
5 it follows that (Cλ+ g)χGλ is a E−weak upper gradient of wλ − u.

As in Step 6, note that λχGλ ∈ E for λ, and ‖λχGλ‖E =
λΦ (µ (Gλ))→ 0 as λ→∞.

From the properties of the fundamental function of a r.i. space,
lim
λ→∞

Φ (µ (Gλ)) = 0 implies lim
λ→∞

µ (Gλ) = 0, hence Gλ → ∅ µ−a.e as

λ→∞.
Since g ∈ E and E has absolutely continuous norm, ‖gχGλ‖E → 0

as λ→∞.
Then ‖(Cλ+ g)χGλ‖E → 0 as λ→∞, in particular (Cλ+ g)χGλ ∈

E for λ large enough.
Consequently, we get wλ − u ∈ N1,E (X) for λ large enough. But
‖wλ − u‖1,E ≤ ‖wλ − u‖E + ‖(Cλ+ g)χGλ‖E and the first claim fol-
lows, using the conclusion of Step 6.

Finally, having wλ − u = 0 µ−a.e. on X \ Gλ, it follows that
µ ({x ∈ X : u (x) 6= wλ (x)}) = µ (Gλ). Since µ (Gλ) → 0 as λ → ∞,
this completes the proof.

The proof of the above theorem can also be obtained by Theorem
4.2 in [23], since by Proposition 2 the maximal function MEg of an
upper gradient g of the approximated function u is a Haj lasz gradient
of u, satisfying the weak eastimate (4.3) from Lemma 7.
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e-mail: mmocanu@ub.ro


