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G(m)—INVARIANTS AND HOMOTOPY INVARIANTS
OF PARTIAL PARALLELIZABLE MANIFOLDS

COSTACHE APREUTESEI

Abstract. Using a partial and global frame of tangent bundle T'M,
we construct some G(M)—invariants [M x R¥] and homotopy classes
cx(M) corresponding to [M x R¥], k= 1,2, ..., py. Some properties of
the partial parallelizable and parallelizable manifolds are obtain with
the aid of partial trivial structures in tangent bundles and certain
homotopy classes.

1. INTRODUCTION

The concept of a partial parallelizable manifold (p.p.m.) is funda-
mental in this paper. It is inspired from [1],...,[5]. For to obtain in
G(m)—invariants and homotopy invariants of a p.p.m. we use [5] and
partial trivial structure (p.t.s.) in tangent vector bundle. We can ob-
tain some properties of p.p.m. using the theory of vector bundles and
parallelizable Grassmann manifolds are presented in [6], [7], [8], [9],
-y [15], [16].
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2. PARTIAL PARALLELIZABLE STRUCTURES ON MANIFOLDS AND
PARTIAL TRIVIAL STRUCTURES IN TANGENT BUNDLES

These results belongs of manifolds endowed with vector fields. Anal-
ysis of partial trivial manifolds arose in connection with the study
of vector fields on manifolds. Our idea is to replace the tangent
vector fields on a differentiable manifold M with the subbundle of
TM spanned by these fields. We look p.p.m. as a generalization of
parallelizable manifolds. The geometrical objects considered in this
paper are of C'°—classes, the morphisms are of constant rank and
manifolds are paracompact manifolds. We present a construction of
G(M)—invariants [M x R*] and homotopy classes ¢, (M) € [M, G}] of
a p.pm. (M,p,).

Let M be a paracompact manifold of dimension m, TM its tan-
gent vector bundle, and p a fixed natural number, 1 < p < m. Let
P, = (X1, Xs,...,X,) be a global partial frame (g.p.f.) of TM (i.e.
Xi(x), ..., X,(z) are independent vectors, Vo € M).

Definition 2.1. The couple (M, p,) is called a partial parallelizable
manifold (p.p.m.).

To justify this term we consider two arbitrary vector fields v =
p

p
ZviXi, w = Zkak" Then fields v and w are identically if and
=1 k=1

only if v = w', i =1,2,...,p.

We suppose that the topology of M is induced by its differentiable
structure.

Consider the group G(M) of the global diffeomorphisms of M on
M. An action ¢ € G(M) induce a bijection ¢’ on vector fields defined
by:

o' (X)(e(x)) = (p(2); 0, (X (2))),
where ¢/, denotes the differential of ¢ at x € M. Then, the action of
G(M) on p, is defined by the relation:

(1) (0, @) (op(@)) = (0(2); 05 (X1(2)), .., 5 (Xp(2)))-

Now, let E,(p,) be the vector subspace of T'M spanned by p,(z) =
(Xi(x), ..., Xp(x)) for v € M. Then E(p,) = UzenEz(p,) is the total
space of a vector bundle over M, &(p,) = (E(p,), 1P, M) where II? is
the projection of £(p,). Since p, is a global frame of £(p,) and M a
paracompact manifold, the exact sequence

O — E(py) — TM — TM/E(p,) — 0
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gives the vector bundle isomorphisms T'M =~ E(p,) & TM/E(p,) ~
(M x RP) @ TM/E(p,), where E(p,) >~ M x RP.

Conversely: let (e;), i = 1,2,...,p, be the canonical base of R?
and 7 = {(x,¢;) | © € M} the global frame of trivial bundle O =
(M xRP — M). Then, r is a global partial frame of TM. An arbitrary

P
vector field E(p,)—valued X has the representation X = Z)\iXi,

i=1
where A\’ are real functions. With the precedent notations, we have
the following

Lemma 2.1. Let (M, p) be a paracompact, partial parallelizable man-
ifold. Then, there is a trivial vector subbundle E(p,) of TM. Con-
versely, if T M admits a trivial vector subbundle, then M is a partial
parallelizable manifold. In this condition, the structure of TM is given
by the isomorphism TM ~ (M x RP) @ TM/E(p,).

Corollary 2.1. The set [M x R?] = {E(p,) is the subbundle of T M
generated by p,} is a G(M)—invariant.

Proof. 1f p, # p, and E(p,) is the subbundle generated by p, =
(0, 9")(pp), ¢ € G(M) then E(p,) ~ E(p,) =~ M x R”. &

Definition 2.2. The trivial subbundle E(p,) ~ M x R? is called a
partial trivial structure of TM. TM is called a partial trivial vector

bundle (p.t.b.).

The partial parallelism of M is equivalent to a partial trivialization
of TM. Hence, lemma 2.1 transfer some result from theory of partial
parallelizable manifold (M, p,) in the study of partial trivial bundle
TM.

Analysis of excepted case p = m. In this situation, M is a paralleliz-
able manifold. Let p,, = (Xi, X2, ..., X;) be a global frame of T'M.
Then E(py,) =TM ~ M x R™.

A~

Let p,,, E(pm) be the equivalence classes of p,, and E(p,,) defined
by G(M)—actions. Finally, we have E(pm) = gm(p,,) where g,, is a
bijection given by lemma 2.1.

Remark. Similarly, we consider G(M)—invariants [M x RF] =
{E(p})/E(p}) 1s isomorphic to E(pr), (p,p')(pr) = p, where p1 C
p2 C ... C pp, o € G(M)}.

Now, we consider the set Ay = {0} | ok is an arbitrar g.p.f. of
TM}. We have two ways of viewing an element oy, € Ay, 1 < k < p.
It is a global partial frame of T'M, and o} is a partial parallelism of



8 COSTACHE APREUTESEI

M. Action of G(M) on Ay is given by the relation (2.1). Denote A
t/}\liS equivalence relation and let o) be the equivalence class of g;. Let
E(oy) be the equivalence class of F(oy) relative to G(M)—actions. In
this way the class E(p;) correspond to p,. Group G(M) actions on
the frames of trivial vector bundle ©F = (M x R* — M) through
E(M) ~ ©F and the relation (2.1). Consider the fibre bundle F(p;) =
E(p) @ ©F. Interpreting Whitney sum of two vector bundles that a
fiber product [[11], p. 15], the action of G(M) on frames of F(py) is

defined by the following relation

(2) (0, ©")(s) = (¢, @) (pr), (0, ) (M), 9 € G(M),

where sy, A, are global frames of F'(py), corresponding to action (2.2).
Precedent consideration and lemma 2.1 give the following

Theorem 2.1. Let (M, p,) be a C*—differentiable, paracompact, par-
tial
parallelizable manifold. Then (M,p,) admit the equivalence classes

~

P E(pr), E(pp), k=1,2,....,p. Each of these classes determines the
remained classes.

3. G(M)—INVARIANTS OF PARTIAL PARALLELIZABLE MANIFOLD
In this section we produce certain invariants at the action of G(M).

Theorem 3.1. Let (M, p,) be a C>®—differentiable, paracompact and
partial parallelizable manifold. Then, there exist and are unique deter-
mined certain G(M)—invariants [M x R¥] of (M, p,), 1 < k < kp.

Proof. For an arbitrary fixed natural number k, 1 < k < p and the
set p1 C pa C ... C pr C ... C pp,, We consider the vector bun-
dle over M, &(pr) = (E(pg),I1*, M), where II* is its projection. If

pe = (0.¢)(pr), ¢ € G(M) is a gpf. of TM, py # pi, then p
spanned a vector subbundle of TM, £(p,) = (E(p,,), 11¥, M). Now,
we consider the equivalence class [M x R*] which is composed only
of isomorphic trivial subbundles of TM: E(py), E(py,),... Since each
subbundle E(pg), E(py),... isisomorphic with M x R¥, we denote:
(M x RM = {E(p, &) px) | pr = (Xirs s Xiy) C ppyp € G(M)}
Since k is arbitrary, the couple (M, p,) admits the equivalence class
(M x R?], [M x R?|, ..., [M x RP]. These classes are determined in
unique way by p; C p2 C ... C pp, respectively.

Remark. The class [M x RF] is an invariant to action of G(M) and
to selection of Pk ﬁk? if ﬁk = (907 90,)(pk)7 e G(M>7 k= L2,..,p.
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Definition 3.1. The class [M x R*] is called a G(M)—invariant of
M, pp,, k=1,..,p.

Analysis of excepted case p = m. Since M is a parallelizable man-
ifold there is a global frame p,, of TM. Then, the equivalence class
M x R™] = {E((9,¢)(pm)) | pm = (Xi, X), 0 € G(M)} is an
G(M)—invariant of (M, p,,). Therefore (M, p,,) admits the invariants
(M x RY, [M x R?],..., [M x R™].

4. HOMOTOPY INVARIANTS OF PARTIAL PARALLELIZABLE
MANIFOLDS

Let G4 be the Grassmann variety consisting of the set of s—subspace
of R*, s = k,p,m — p,m. In this section we will demonstrate some
homotopy properties of p.p.m. (M, p,).

Theorem 4.1. Let (M,p,) a C™—differentiable paracompact and
partial parallelizable manifold. There exist some homotopy classes
(M), e (M), Cpr(M) of the partial parallelizable manifold (M, py,).

Proof. We obtain the classes ¢, (M) by [M x R*] and some bijections.
Denote Vect, (M) the set of isomorphism classes of vector bundles over
M and of fiber R*.

Let [M, Gy be the set of homotopy classes of maps f : M — Gj.
There is a bijection f; :Vecty(M) — [M,Gy] for each k = 1,2, ...,p
[8]. For the sake of simplicity, we denote this theorem by the symbol
(H.C.) (=homotopy calssification).

Let fr be a fixed bijection, fi :Vecty(M) — [M,Gy]. Since fy is
a bijection, the invariant [M x R*] has associated with it a unique
homotopy class cx(M) € [M,Gy] defined by the relation ¢, (M) =
fk([M X RkD? k= L2,..,p.

Similarly, we obtain ¢, (M) = fon (M x R™F)), ¢,(M) =
fm([M x R¥]) which are the homotopy classes corresponding to
[M x R™*], [M x R™] through the bijection f,, s :Vect,, (M) —
(M, Gk, fm :Vecty, (M) — [M,G,,], respectively. It is clear that
these classes are well-defined for fy : f,_x, fin fixed bijections. n

Remark. Since f; :Vects(m) — [M, Gy, s = k,m — k,m are bijec-
tions, precedent relations also give G(M )—invariants [M x R*] apply-
ing to cs(M).

We describe the transformations of classes c,(m) — ¢,.(m) relative
to transformations p, — px and f, — ﬁ, where p,, p, are g.p.f. and
fes f* are bijections given by theorem (H.C.).
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We can formulate the following

Theorem 4.2. Let (M, p,) be a partial parallelizable manifold and
1 <k<p. Then:

1) The classes c,(M), cpr(M), cpm(M) are G(M)—invariants;

2) These classes satisfy the relations (4.1), (4.2);

3) All these classes are homotopy invariants for fized maps f,g.

Proof. 1) Let f,g € (M), F : M x [0,1] — G} a homotopy of
maps f,g and ¢ € G(M). Then, the map H : M x [0,1] — Gy,
H(z,t) = Hi(z) = Fi(p(x)) = F(p(x),t), x € M, is a homotopy of
fop, gop. Consequently, fop, goy € ¢x(m). Similarly, results that
Cm—k(M) and ¢, (M) are G(M)—invariants.

2) Since f,gr are bijections, fr # gk, by relations ¢ (m) =
ge({E(pr)}), (M) = fu({E(pr)}) we obtain

(3) cr(M) = frg ' (c(m)).

This method can be applied for the classes ¢, (M), ¢, (M) too. Then
result the relations

4 k(M) = finr(hp (M), cn(M) = fingy,' (¢, (M))),
where f, and g, are bijections given by the theorem (H.C.).

3) Using the definitions of cx(M), ¢;r(M), (M) for fixed bijec-
tions fx, fi—k, fm, the result follows. 1

Definition 4.1. For fi, fin_k, fm fized, the classes cx(M), ¢y (M),
cm(M) are called homotopy invariants of (M, p,), corresponding to
G(M)— invariants [M x RE], [m x R™7*], [m x R™], respectively;
k=1,2,....p.

Remark. Since we use only g.p.f. (¢,¢")(pr), ¢ € GIM), k =
1,2,...,p, and classes {F(pr)}, the precedent result is natural. The
set Tp(M) = {c,(M)c,(M) = grfy  (ck(M)), Vg, fi} is independent
of g, fr-

Our present goal is to establish a relation between homotopy invari-

ants cx (M), c¢p_r(M) and ¢, (M).

We have two ways to interpret an element E(p;) € [M x R"]:

1) It is a vector subbundle of T'M, and

2) E(px) is a vector bundle over M, k = 1,2, ..., k.

Convention: If E is a vector bundle over M, [E] denotes the set of
trivial subbundles of T'M isomorphic to E, and {E} denotes the class
of vector bundles over M isomorphic to E. (It is clear that [E] # {E}).
Hence, [E] and {E} are distinct classes.
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We will identify the direct sum of two vector bundles with its cou-
ple of term, i.e. E(px) ® TM/E(pr) < (E(px), TM/E(py)). In the
following result the subbundle E(py) is considered only that a vector
bundle, £ = 1,2, ..., p.

Theorem 4.3. Let (M,p,) be a C*—differentiable, paracom-
pact partial parallelizable manifold, TM its tangent wvector bun-
dle, and c,(M) = [hk] where hy : M — Gy is a con-
stant map. Then, between the homotopy classes cp(M), cp(M),
Cm—k (M) there are the relations ¢, (M) = (cg(M), cpm—r(M)). Con-
versely: if between these homotopy classes there exist the relations
enl(4) = (00 oA, then (MY = ({E(pe)} {724 Elpe)}),
=1,2,....,p.

Proof. Step I. One consider the Whitney sum that a fiber prod-
uct of two vector bundle [[11], p. 16] and the relation be-
tween bijections f,, = fi ® fiox = (fi, fu—k). Then we have
en(M) = fullTMY) = (fi® fu){E(on) & TM(E(n))}) =
Go{E PP F e TTME(p)}) = (M), (M)

Step II. Let pp = (Xiy, Xiy, s Xip.), pp = (X1, Xo, ..., X)) be a par-
tial and global frame of M. Now, for an arbitrary fixed k, using a sim-
ilar argument from the step I, we have ¢, (M) = (¢p(M), cp—r(M)).
Reciprocal affirmation results by the identification of maps: f, lg

o= (fh £, and a similar precedent calculation.

Except case: parallelizable manifold, p = m. Now, {TM} = {M x
REY. Therefore, co(M) = fJ({M x R*}), cpms(M) = fr_s({M x
R™*}) and ¢, (M) = (¢cs(M), cp—s(M)), s =1,2,...;,m — 1. 1

Remark. Therefore, some results of the p.p.m. are obtained with
the aid of the p.t.s. in TM and bijections Vecy(M) — [M,Gyl, s =
1,2,....m— 1.

4.1. A characterization of partial parallelizable manifolds. In
this sections we obtain a fundamental relation between partial paral-
lelism of (M, p,) and homotopy class ¢,(M).

For a vector bundle E, over M, we denote p =dimension of fiber of

E

D+

Theorem 4.4. Let M be a C*°— differentiable, paracompact manifold

and f*, the trivial induced bundle of v, under a map f: M — G,,.
1) Then M s a partial parallelizable manifold if and only if there

exists a subbundle E, of TM, where E, and f*v, are isomorphic.
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In these conditions, the structure of TM is given by isomorphisms
TM >~ f*y, ®TM/E, ~ (M x R) @ TM/E,.

2) If the subbundle E,, defines a partial trivial structure in T M, then
E, and f*v, define same homotopy class c,(M).

Proof. 1) Because M is a paracompact manifold, the vector bundle
E, is isomorphic to f*v, for a map f : M — G, [[11], p. 31]. We
remark that two isomorphic vector bundle are simultaneous trivial. It
is well known that a vector bundle is trivial if and only if this admit a
global frame. Let o, be a global frame of E,. Then the couple (M, 0,)
denotes a partial parallelizable manifold.

Conversely: Let (M, o,) be a partial parallelizable manifold. Us-
ing the partial global frame o0,, we can construct a trivial bundle,
E(sigmay,) of TM (lemma 2.1). Therefore, E(0,) is a trivial bundle,
E(0,) >~ M xRP. Since (M) is a paracompact manifold, we use the re-
sult [11]: Vector bundle E(o,) is isomorphic to induced vector bundle
h*o, for some map h: M — G,. Thus, E(o,) ~ M x R? ~ h*c,. Via
the lemma 2.1 and precedent results, we have TM ~ f*~,&TM/E, ~
(M x RP)@®TM/E,.

2) Now, we use the definition of the class ¢,(M) = f([M x RP])
where f, : M — G, is a bijection (theorem (H.C.)). If the subbundle
E, defines a partial structure in 7'M, then E, ~ M x RP. Evidently,

cp(M) = f,({f*w}) = fu{Ep})- 0

Remark. There exists a similar result for each couple (Eg, f*vi)
where k is a fixed index of set (1,2, ..., p).

Corollary 4.2. If c,(M) = [hy] where hy, : M — Gy is a constant
map and hjyy is a subbundle of TM, then M s a partial parallelizable
manifold, k= 1,3, ...,p.

Proof. For ¢,(M) = [hy], where hy : M — G, is a constant map. it is
obvious that Ej, = hjy, ~ M x R*. Statement follows. &

5. ASSOCIATED EQUIVALENCE CLASSES TO A PARTIAL TRIVIAL
STRUCTURE

In this section E(py) is viewed as a vector bundle. Let {FE(px)}
be the isomorphism class of vector bundle E(py), 1 < k < p. Since
pr is a global frame of E(py), it follows that F(pg) is isomorphic to
M x R¥ and {E(pr)} = {M x RF}. By theorem (H.C.), there is a
bijection fi :Vecty (M) — [M,Gy]. Then fr,({E(pr)}) = cx(M). Using
the bijection g, given by lemma 2.1, we get
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Lemma 5.1. Let (M, p,) be a C®°—differentiable, paracompatc partial
parallelizable manifold. There exist following logical equivalences

D <25 {B(p)} = {M x RF} L5 o (M), k=1,2,...,p.

Now, we suppose that c,(M) = [hy], where hy : M — Gy is a
constant map. Then, the induced bundle of 7, under hy, hjvi, is
a trivial bundle, h*y, ~ M x RF. This result is independent from
hi € c(M). Indeed, let s, : M — Gy be a map from cx(M) where
s, #constant map. Since M is a paracompact manifold and hy, s €
cg(M), we have the isomorphisms of vector bundle A}y, ~ siy, =~
M x R¥ [[11], p. 29]. Then, for isomorphism classes of vector bundles
overs M there is the result

Lemma 5.2. Let (M, p,) be a C®—differentiable, paracompact and
partial parallelizable manifold. Suppose that ¢, (M) = [hg] where hy, :
M — Gy is a constant map. Then {hivi} = {siw} = {M x RF} =
fio Hew(M)) where f ' is the inverse of fi..

Following result is an immediat corollary of the lemmas 5.1 and 5.2.

Theorem 5.1. Let (M, p,) be a C®—differentiable, paracompact and
partial parallelizable manifold. There are the logical equivalences

- Fol o
P {B(pr)} 7 (M) € {hin}
where ¢, (M) = [hg], hy, - M — Gy, is constant map, 1 < k < p.

Remark. Lemma 2.1 and precedent results give a homotopy descrip-
tion for partial trivial structure in tangent bundle T'M using the class

In the following examples pj can be interpreted as a p.t.s. in tangent
vector bundle or as a parallelism on manifold.

1) Let N be a parallelizable manifold, p =dimN and M a differ-
entiable manifold. If f, = (Xj,...,X,) is a global frame of tangent
bundle T'N, then p, defines a integrable partial trivial structure in
T(M x N). Also, pp = (Xi,, ..., Xi,) C pp is a partial trivial structure
in T(M x N), k = 1,2,....,p. In the case k = p maximal integral
manifold is N.

Also, we deduce certain particular cases.

2) M x S' admits a integrable partial structure and S is the maximal
integral manifold, k¥ = 1,3,7. For k =odd, k # 1,3,7, M x S*¥ is a
p.p.m.

3) Let Gp(R™) be the Grassmann manifold of all linear p—subspaces
of R". The only parallelizable Grassmann manifolds are G;(R?),
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G1(RY), G4(R?), G1(R®), G7(R®) ([6], [16]). If M is differentiable man-
ifOld, then M x Gl(RQ), M x Gl(R4), M x G4(R3),M X Gl(R8>,M X
G7(R?) are endowed with integrable partial trivial structures.

4) Consider a Lie group G,, r =dimG,, and M a differentiable
manifold. The manifold T(M x Ga) is endowed with an integrable
partial trivial structure defined by a partial and global frame pw =
(X1, ..., X;) of TG,. The integral maximal manifold is G,.. There exist
partial trivial structures defined by partial and global frame py C pw,
1<k<r.

5) Evidently, an analogous result is given for the manifolds M x T*
and M x RF.

6) If there exists a regular vector field X on a manifold M, then
ps = {X} defines an integrable partial structure in T'M.

7) Let G be a Lie transformation group on a C°°—manifold M,
dimM = m and dimG = n. Consider the space x(M) of C'*°—vector
fields on M and G =Lie algebra of G. Group G is a parallelizable
manifold and therefore there exist partial trivial structure in the vector

bundle T'M.
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