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G(m)−INVARIANTS AND HOMOTOPY INVARIANTS
OF PARTIAL PARALLELIZABLE MANIFOLDS

COSTACHE APREUTESEI

Abstract. Using a partial and global frame of tangent bundle TM ,
we construct some G(M)−invariants [M ×Rk] and homotopy classes
ck(M) corresponding to [M ×Rk], k = 1, 2, ..., p0. Some properties of
the partial parallelizable and parallelizable manifolds are obtain with
the aid of partial trivial structures in tangent bundles and certain
homotopy classes.

1. Introduction

The concept of a partial parallelizable manifold (p.p.m.) is funda-
mental in this paper. It is inspired from [1],...,[5]. For to obtain in
G(m)−invariants and homotopy invariants of a p.p.m. we use [5] and
partial trivial structure (p.t.s.) in tangent vector bundle. We can ob-
tain some properties of p.p.m. using the theory of vector bundles and
parallelizable Grassmann manifolds are presented in [6], [7], [8], [9],
..., [15], [16].
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2. Partial parallelizable structures on manifolds and
partial trivial structures in tangent bundles

These results belongs of manifolds endowed with vector fields. Anal-
ysis of partial trivial manifolds arose in connection with the study
of vector fields on manifolds. Our idea is to replace the tangent
vector fields on a differentiable manifold M with the subbundle of
TM spanned by these fields. We look p.p.m. as a generalization of
parallelizable manifolds. The geometrical objects considered in this
paper are of C∞−classes, the morphisms are of constant rank and
manifolds are paracompact manifolds. We present a construction of
G(M)−invariants [M ×Rk] and homotopy classes ck(M) ∈ [M,Gk] of
a p.p.m. (M,ρp).

Let M be a paracompact manifold of dimension m, TM its tan-
gent vector bundle, and p a fixed natural number, 1 ≤ p < m. Let
Pp = (X1, X2, ..., Xp) be a global partial frame (g.p.f.) of TM (i.e.
X1(x), ..., Xp(x) are independent vectors, ∀x ∈M).

Definition 2.1. The couple (M,ρp) is called a partial parallelizable
manifold (p.p.m.).

To justify this term we consider two arbitrary vector fields v =
p∑

i≡1

viXi, w =

p∑
k=1

wkXk. Then fields v and w are identically if and

only if vi = wi, i = 1, 2, ..., p.
We suppose that the topology of M is induced by its differentiable

structure.
Consider the group G(M) of the global diffeomorphisms of M on

M . An action ϕ ∈ G(M) induce a bijection ϕ′ on vector fields defined
by:

ϕ′(X)(ϕ(x)) = (ϕ(x);ϕ′x(X(x))),

where ϕ′x denotes the differential of ϕ at x ∈ M . Then, the action of
G(M) on ρp is defined by the relation:

(1) (ϕ, ϕ′)(ρp(x)) = (ϕ(x);ϕ′2(X1(x)), ..., ϕ′2(Xp(x))).

Now, let Ex(ρp) be the vector subspace of TM spanned by ρp(x) =
(X1(x), ..., Xp(x)) for x ∈ M . Then E(ρp) = ∪x∈NEx(ρp) is the total
space of a vector bundle over M , ξ(ρp) = (E(ρp),Π

p,M) where Πp is
the projection of ξ(ρp). Since ρp is a global frame of ξ(ρp) and M a
paracompact manifold, the exact sequence

O −→ E(ρp) −→ TM −→ TM/E(ρp) −→ 0
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gives the vector bundle isomorphisms TM ' E(ρp) ⊕ TM/E(ρp) '
(M ×Rp)⊕ TM/E(ρp), where E(ρp) 'M ×Rp.

Conversely: let (ei), i = 1, 2, ..., p, be the canonical base of Rp

and r = {(x, ei) | x ∈ M} the global frame of trivial bundle Op =
(M×Rp →M). Then, r is a global partial frame of TM . An arbitrary

vector field E(ρp)−valued X has the representation X =

p∑
i=1

λiXi,

where λi are real functions. With the precedent notations, we have
the following

Lemma 2.1. Let (M,ρ) be a paracompact, partial parallelizable man-
ifold. Then, there is a trivial vector subbundle E(ρp) of TM . Con-
versely, if TM admits a trivial vector subbundle, then M is a partial
parallelizable manifold. In this condition, the structure of TM is given
by the isomorphism TM ' (M ×Rp)⊕ TM/E(ρp).

Corollary 2.1. The set [M ×Rp] = {E(ρp) is the subbundle of TM
generated by ρp} is a G(M)−invariant.

Proof. If ρ̃p 6= ρp and E(ρ̃p) is the subbundle generated by ρ̃p =
(ϕ, ϕ′)(ρp), ϕ ∈ G(M) then E(ρp) ' E(ρ̃p) 'M ×Rp.

Definition 2.2. The trivial subbundle E(ρp) ' M × Rp is called a
partial trivial structure of TM . TM is called a partial trivial vector
bundle (p.t.b.).

The partial parallelism of M is equivalent to a partial trivialization
of TM . Hence, lemma 2.1 transfer some result from theory of partial
parallelizable manifold (M,ρp) in the study of partial trivial bundle
TM .

Analysis of excepted case p = m. In this situation, M is a paralleliz-
able manifold. Let ρm = (X1, X2, ..., Xm) be a global frame of TM .
Then E(ρm) = TM 'M ×Rm.

Let ρ̂m, Ê(ρm) be the equivalence classes of ρm and E(ρm) defined

by G(M)−actions. Finally, we have Ê(ρm) = gm(ρ̂m) where gm is a
bijection given by lemma 2.1.
Remark. Similarly, we consider G(M)−invariants [M × Rk] =
{E(ρ′k)/E(ρ′k) is isomorphic to E(ρk), (ρ, ρ′)(ρk) = ρ′k, where ρ1 ⊂
ρ2 ⊂ ... ⊂ ρp, ϕ ∈ G(M)}.

Now, we consider the set Ak = {σk | σk is an arbitrar g.p.f. of
TM}. We have two ways of viewing an element σk ∈ Ak, 1 ≤ k ≤ p.
It is a global partial frame of TM , and σk is a partial parallelism of
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M . Action of G(M) on Ak is given by the relation (2.1). Denote λ
this equivalence relation and let σ̂k be the equivalence class of σk. Let

Ê(σk) be the equivalence class of E(σk) relative to G(M)−actions. In

this way the class Ê(ρk) correspond to ρ̂k. Group G(M) actions on
the frames of trivial vector bundle Θk = (M × Rk → M) through
E(M) ' Θk and the relation (2.1). Consider the fibre bundle F (ρk) =
E(ρk) ⊕ Θk. Interpreting Whitney sum of two vector bundles that a
fiber product [[11], p. 15], the action of G(M) on frames of F (ρk) is
defined by the following relation

(2) (ϕ, ϕ′)(sk) = ((ϕ, ϕ′)(ρk), (ϕ, ϕ′)(λk)), ϕ ∈ G(M),

where sk, λk are global frames of F (ρk), corresponding to action (2.2).
Precedent consideration and lemma 2.1 give the following

Theorem 2.1. Let (M,ρp) be a C∞−differentiable, paracompact, par-
tial
parallelizable manifold. Then (M,ρp) admit the equivalence classes

ρ̂k, Ê(ρk), Ě(ρk), k = 1, 2, ..., p. Each of these classes determines the
remained classes.

3. G(M)−invariants of partial parallelizable manifold

In this section we produce certain invariants at the action of G(M).

Theorem 3.1. Let (M,ρp) be a C∞−differentiable, paracompact and
partial parallelizable manifold. Then, there exist and are unique deter-
mined certain G(M)−invariants [M ×Rk] of (M,ρp), 1 ≤ k ≤ kp.

Proof. For an arbitrary fixed natural number k, 1 ≤ k ≤ p and the
set ρ1 ⊂ ρ2 ⊂ ... ⊂ ρk ⊂ ... ⊂ ρp,, we consider the vector bun-
dle over M , ξ(ρk) = (E(ρk),Πk,M), where Πk is its projection. If

ρ̃k = (ϕ, ϕ′)(ρk), ϕ ∈ G(M) is a g.p.f. of TM , ρ̃k 6= ρk, then ρ̃k
spanned a vector subbundle of TM , ξ(ρ̃k) = (E(ρ̃k), Π̃k,M). Now,
we consider the equivalence class [M × Rk] which is composed only
of isomorphic trivial subbundles of TM : E(ρk), E(ρ̃k),... Since each
subbundle E(ρk), E(ρ̃k),... isisomorphic with M × Rk, we denote:
[M × Rk] = {E(ϕ, ϕ′)(ρk) | ρk = (Xi1 , .., Xik) ⊂ ρp, ϕ ∈ G(M)}.
Since k is arbitrary, the couple (M,ρp) admits the equivalence class
[M × Rs], [M × R2], ..., [M × Rp]. These classes are determined in
unique way by ρ1 ⊂ ρ2 ⊂ ... ⊂ ρp, respectively.

Remark. The class [M ×Rk] is an invariant to action of G(M) and
to selection of ρk, ρ̃k, if ρ̃k = (ϕ, ϕ′)(ρk), ϕ ∈ G(M), k = 1, 2, ..., p.
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Definition 3.1. The class [M × Rk] is called a G(M)−invariant of
M,ρp, k = 1, ..., p.

Analysis of excepted case p = m. Since M is a parallelizable man-
ifold there is a global frame ρm of TM . Then, the equivalence class
[M × Rm] = {E((ϕ, ϕ′)(ρm)) | ρm = (X1, ..., Xm), ϕ ∈ G(M)} is an
G(M)−invariant of (M,ρm). Therefore (M,ρm) admits the invariants
[M ×R1], [M ×R2], ..., [M ×Rm].

4. Homotopy invariants of partial parallelizable
manifolds

Let Gs be the Grassmann variety consisting of the set of s−subspace
of R∞, s = k, p,m − p,m. In this section we will demonstrate some
homotopy properties of p.p.m. (M,ρp).

Theorem 4.1. Let (M,ρp) a C∞−differentiable paracompact and
partial parallelizable manifold. There exist some homotopy classes
ck(M), cm−k(M), Cm(M) of the partial parallelizable manifold (M,ρp).

Proof. We obtain the classes cx(M) by [M ×Rx] and some bijections.
Denote Vectk(M) the set of isomorphism classes of vector bundles over
M and of fiber Rk.

Let [M,Gk] be the set of homotopy classes of maps f : M → Gk.
There is a bijection fk :Vectk(M) → [M,Gk] for each k = 1, 2, ..., p
[8]. For the sake of simplicity, we denote this theorem by the symbol
(H.C.) (=homotopy calssification).

Let fk be a fixed bijection, fk :Vectk(M) → [M,Gk]. Since fk is
a bijection, the invariant [M × Rk] has associated with it a unique
homotopy class ck(M) ∈ [M,Gk] defined by the relation ck(M) =
fk([M ×Rk]), k = 1, 2, .., p.

Similarly, we obtain cm−k(M) = fm−k([M × Rm−k]), cm(M) =
fm([M × Rk]) which are the homotopy classes corresponding to
[M × Rm−k], [M × Rm] through the bijection fm−k :Vectm−k(M) →
[M,Gm−k], fm :Vectm(M) → [M,Gm], respectively. It is clear that
these classes are well-defined for fk : fm−k, fm fixed bijections.

Remark. Since fs :Vects(m) → [M,Gs], s = k,m − k,m are bijec-
tions, precedent relations also give G(M)−invariants [M ×Rs] apply-
ing to cs(M).

We describe the transformations of classes c∗(m) → c̃∗(m) relative

to transformations ρ∗ → ρ̃∗ and f∗ → f̃∗, where ρ∗, ρ̃∗ are g.p.f. and

f∗, f̃∗ are bijections given by theorem (H.C.).
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We can formulate the following

Theorem 4.2. Let (M,ρp) be a partial parallelizable manifold and
1 ≤ k ≤ p. Then:

1) The classes ck(M), cm−k(M), cm(M) are G(M)−invariants;
2) These classes satisfy the relations (4.1), (4.2);
3) All these classes are homotopy invariants for fixed maps f, g.

Proof. 1) Let f, g ∈ ck(M), F : M × [0, 1] → Gk a homotopy of
maps f, g and ϕ ∈ G(M). Then, the map H : M × [0, 1] → Gk,
H(x, t) = Ht(x) = Ft(ϕ(x)) = F (ϕ(x), t), x ∈ M , is a homotopy of
f ◦ϕ, g ◦ϕ. Consequently, f ◦ϕ, g ◦ϕ ∈ ck(m). Similarly, results that
cm−k(M) and cm(M) are G(M)−invariants.

2) Since fk, gk are bijections, fk 6= gk, by relations c′k(m) =
gk({E(ρk)}), ck(M) = fk({E(ρk)}) we obtain

(3) ck(M) = fkg
−1
k (c′k(m)).

This method can be applied for the classes cm−k(M), cm(M) too. Then
result the relations

(4) cm−k(M) = fm−k(c′m−k(M), cm(M) = fmg
−1
m (c′m(M))),

where f∗ and g∗ are bijections given by the theorem (H.C.).
3) Using the definitions of ck(M), cm−k(M), cm(M) for fixed bijec-

tions fk, fm−k, fm, the result follows.

Definition 4.1. For fk, fm−k, fm fixed, the classes ck(M), cm−k(M),
cm(M) are called homotopy invariants of (M,ρp), corresponding to
G(M)− invariants [M × Rk], [m × Rm−k], [m × Rm], respectively;
k = 1, 2, ..., p.

Remark. Since we use only g.p.f. (ϕ, ϕ′)(ρk), ϕ ∈ G(M), k =
1, 2, ..., p, and classes {E(ρk)}, the precedent result is natural. The
set Γk(M) = {c′k(M)c′k(M) = gkf

−1
k (ck(M)),∀gk, fk} is independent

of gk, fk.
Our present goal is to establish a relation between homotopy invari-

ants ck(M), cm−k(M) and cm(M).
We have two ways to interpret an element E(ρk) ∈ [M ×Rk]:
1) It is a vector subbundle of TM , and
2) E(ρk) is a vector bundle over M , k = 1, 2, ..., k.
Convention: If E is a vector bundle over M , [E] denotes the set of

trivial subbundles of TM isomorphic to E, and {E} denotes the class
of vector bundles over M isomorphic to E. (It is clear that [E] 6= {E}).
Hence, [E] and {E} are distinct classes.
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We will identify the direct sum of two vector bundles with its cou-
ple of term, i.e. E(ρk) ⊕ TM/E(ρk) ↔ (E(ρk), TM/E(ρk)). In the
following result the subbundle E(ρk) is considered only that a vector
bundle, k = 1, 2, ..., p.

Theorem 4.3. Let (M,ρp) be a C∞−differentiable, paracom-
pact partial parallelizable manifold, TM its tangent vector bun-
dle, and ck(M) = [hk] where hk : M → Gk is a con-
stant map. Then, between the homotopy classes cm(M), ck(M),
cm−k(M) there are the relations cm(M) = (ck(M), cm−k(M)). Con-
versely: if between these homotopy classes there exist the relations
cm(M) = (ck(M), cm−k(M)), then {TM} = ({E(ρk)}, {TM/E(ρk)}),
k = 1, 2, ..., p.

Proof. Step I. One consider the Whitney sum that a fiber prod-
uct of two vector bundle [[11], p. 16] and the relation be-
tween bijections fm = fk ⊕ fm−k = (fk, fm−k). Then we have
cm(M) = fm({TM}) = (fk ⊕ fm−k)({E(ρk) ⊕ TM(E(ρk))}) =
(fk({E(ρk)}), fm−k({TM/E(ρk)})) = (ck(M), cm−k(M)).

Step II. Let ρk = (Xi1 , Xi2 , ..., Xik), ρp = (X1, X2, ..., Xp) be a par-
tial and global frame of TM . Now, for an arbitrary fixed k, using a sim-
ilar argument from the step I, we have cm(M) = (cm(M), cm−k(M)).
Reciprocal affirmation results by the identification of maps: f−1k ⊕
f−1m−k = (f−1k , f−1m−k) and a similar precedent calculation.

Except case: parallelizable manifold, p = m. Now, {TM} = {M ×
Rk}. Therefore, cs(M) = fs({M × Rs}), cm−s(M) = fm−s({M ×
Rm−s}) and cm(M) = (cs(M), cm−s(M)), s = 1, 2, ...,m− 1.

Remark. Therefore, some results of the p.p.m. are obtained with
the aid of the p.t.s. in TM and bijections Vecs(M) → [M,Gs], s =
1, 2, ...,m− 1.

4.1. A characterization of partial parallelizable manifolds. In
this sections we obtain a fundamental relation between partial paral-
lelism of (M,ρp) and homotopy class cp(M).

For a vector bundle Ep over M , we denote p =dimension of fiber of
Ep.

Theorem 4.4. Let M be a C∞− differentiable, paracompact manifold
and f ∗γp the trivial induced bundle of γp under a map f : M → Gp.

1) Then M is a partial parallelizable manifold if and only if there
exists a subbundle Ep of TM , where Ep and f ∗γp are isomorphic.
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In these conditions, the structure of TM is given by isomorphisms
TM ' f ∗γp ⊕ TM/Ep ' (M ×Rp)⊕ TM/Ep.

2) If the subbundle Ep defines a partial trivial structure in TM , then
Ep and f ∗γp define same homotopy class cp(M).

Proof. 1) Because M is a paracompact manifold, the vector bundle
Ep is isomorphic to f ∗γp for a map f : M → Gp [[11], p. 31]. We
remark that two isomorphic vector bundle are simultaneous trivial. It
is well known that a vector bundle is trivial if and only if this admit a
global frame. Let σp be a global frame of Ep. Then the couple (M,σp)
denotes a partial parallelizable manifold.

Conversely: Let (M,σp) be a partial parallelizable manifold. Us-
ing the partial global frame σp, we can construct a trivial bundle,
E(sigmap) of TM (lemma 2.1). Therefore, E(σp) is a trivial bundle,
E(σp) 'M×Rp. Since (M) is a paracompact manifold, we use the re-
sult [11]: Vector bundle E(σp) is isomorphic to induced vector bundle
h∗σp for some map h : M → Gp. Thus, E(σp) 'M ×Rp ' h∗σp. Via
the lemma 2.1 and precedent results, we have TM ' f ∗γp⊕TM/Ep '
(M ×Rp)⊕ TM/Ep.

2) Now, we use the definition of the class cp(M) = f([M × Rp])
where fp : M → Gp is a bijection (theorem (H.C.)). If the subbundle
Ep defines a partial structure in TM , then Ep ' M ×Rp. Evidently,
cp(M) = fp({f ∗γp}) = fp({Ep}).

Remark. There exists a similar result for each couple (Ek, f
∗γk)

where k is a fixed index of set (1, 2, ..., p).

Corollary 4.2. If ck(M) = [hk] where hk : M → Gk is a constant
map and h∗kγk is a subbundle of TM , then M is a partial parallelizable
manifold, k = 1, 3, ..., p.

Proof. For ck(M) = [hk], where hk : M → Gk is a constant map. it is
obvious that Ek = h∗kγk 'M ×Rk. Statement follows.

5. Associated equivalence classes to a partial trivial
structure

In this section E(ρk) is viewed as a vector bundle. Let {E(ρk)}
be the isomorphism class of vector bundle E(ρk), 1 ≤ k ≤ p. Since
ρk is a global frame of E(ρk), it follows that E(ρk) is isomorphic to
M × Rk and {E(ρk)} = {M × Rk}. By theorem (H.C.), there is a
bijection fk :Vectk(M)→ [M,Gk]. Then fk({E(ρk)}) = ck(M). Using
the bijection gk given by lemma 2.1, we get
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Lemma 5.1. Let (M,ρp) be a C∞−differentiable, paracompatc partial
parallelizable manifold. There exist following logical equivalences

ρ̂k
gk←→ {E(ρk)} = {M ×Rk} fk←→ ck(M), k = 1, 2, ..., p.

Now, we suppose that ck(M) = [hk], where hk : M → Gk is a
constant map. Then, the induced bundle of γk under hk, h

∗
kγk, is

a trivial bundle, h∗γk ' M × Rk. This result is independent from
hk ∈ ck(M). Indeed, let sk : M → Gk be a map from ck(M) where
sk 6=constant map. Since M is a paracompact manifold and hk, sk ∈
ck(M), we have the isomorphisms of vector bundle h∗kγk ' s∗kγk '
M ×Rk [[11], p. 29]. Then, for isomorphism classes of vector bundles
overs M there is the result

Lemma 5.2. Let (M,ρp) be a C∞−differentiable, paracompact and
partial parallelizable manifold. Suppose that ck(M) = [hk] where hk :
M → Gk is a constant map. Then {h∗kγk} = {s∗kγk} = {M × Rk} =
f−1k (ck(M)) where f−1k is the inverse of fk.

Following result is an immediat corollary of the lemmas 5.1 and 5.2.

Theorem 5.1. Let (M,ρp) be a C∞−differentiable, paracompact and
partial parallelizable manifold. There are the logical equivalences

ρ̂kgk ←→ {E(ρk)} fk←→ ck(M)
f−1
k←→ {h∗kγk}

where ck(M) = [hk], hk : M → Gk is constant map, 1 ≤ k ≤ p.

Remark. Lemma 2.1 and precedent results give a homotopy descrip-
tion for partial trivial structure in tangent bundle TM using the class
ck(M).

In the following examples ρk can be interpreted as a p.t.s. in tangent
vector bundle or as a parallelism on manifold.

1) Let N be a parallelizable manifold, p =dimN and M a differ-
entiable manifold. If fp = (X1, ..., Xp) is a global frame of tangent
bundle TN , then ρp defines a integrable partial trivial structure in
T (M ×N). Also, ρk = (Xi1 , ..., Xik) ⊆ ρp is a partial trivial structure
in T (M × N), k = 1, 2, ..., p. In the case k = p maximal integral
manifold is N .

Also, we deduce certain particular cases.
2) M×Sl admits a integrable partial structure and Sl is the maximal

integral manifold, k = 1, 3, 7. For k =odd, k 6= 1, 3, 7, M × Sk is a
p.p.m.

3) Let Gp(Rn) be the Grassmann manifold of all linear p−subspaces
of Rn. The only parallelizable Grassmann manifolds are G1(R

2),
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G1(R
4), G4(R

3), G1(R
8), G7(R

8) ([6], [16]). If M is differentiable man-
ifold, then M ×G1(R

2),M ×G1(R
4),M ×G4(R

3),M ×G1(R
8),M ×

G7(R
8) are endowed with integrable partial trivial structures.

4) Consider a Lie group Gr, r =dimGr, and M a differentiable
manifold. The manifold T (M × Gα) is endowed with an integrable
partial trivial structure defined by a partial and global frame ρω =
(X1, ..., Xr) of TGr. The integral maximal manifold is Gr. There exist
partial trivial structures defined by partial and global frame ρk ⊂ ρω,
1 ≤ k < r.

5) Evidently, an analogous result is given for the manifolds M × T k

and M ×Rk.
6) If there exists a regular vector field X on a manifold M , then

ρs = {X} defines an integrable partial structure in TM .
7) Let G be a Lie transformation group on a C∞−manifold M ,

dimM = m and dimG = n. Consider the space χ(M) of C∞−vector
fields on M and G =Lie algebra of G. Group G is a parallelizable
manifold and therefore there exist partial trivial structure in the vector
bundle TM .
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