"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 34 (2024), No. 1, 17 - 32

## FUZZY p-b-ALMOST COMPACT SPACES

#### ANJANA BHATTACHARYYA

**Abstract.** This paper deals with some applications of fuzzy p-b-open sets [9]. Here we introduce fuzzy p-b-almost compactness and characterize this concept via fuzzy nets and prefilterbases. We also introduce the notion of fuzzy regularly p-b-open set, for which finite intersection property characterizes fuzzy p-b-almost compactness. It is shown that fuzzy p-b-almost compactness implies fuzzy almost compactness [11] and the converse is true only in fuzzy p-b-regular spaces [9].

#### 1. Introduction

After the introduction of fuzzy compactness by Chang [10], many mathematicians have introduced and studied various types of fuzzy compactness. DiConcillio and Gerla [11] introduced fuzzy almost compactness. Afterwards, several weak forms of fuzzy compactness have been introduced and investigated. In this context we have to mention [1, 2, 3, 4, 5, 6, 7, 8]. In this paper we introduce the notion of fuzzy p-b-almost compactness, which is weaker than fuzzy almost compactness. We use fuzzy nets [16] and prefilterbases [13] to characterize fuzzy p-b-almost compactness using a finite intersection property, we introduce the notion of fuzzy regularly p-b-open set. It is shown that fuzzy p-b-almost compactness implies fuzzy almost compactness [11] and the converse is true only in fuzzy p-b-regular spaces [9].

**Keywords and phrases:** Fuzzy *p-b*-open set, fuzzy *p-b*-regular space, fuzzy regularly *p-b*-closed set, fuzzy *p-b*-almost compact set (space), *pb*-adherent point of a prefilterbase, *pb*-cluster point of a fuzzy net. **(2020) Mathematics Subject Classification:** 54A40, 03E72

### 2. Preliminaries

Throughout this paper,  $(X,\tau)$  or simply by X we shall mean a fuzzy topological space (abbreviated, fts). In 1965, L.A. Zadeh [17] introduced the notion of fuzzy set A, which is a function from a nonempty set X into the closed interval I = [0,1], i.e.,  $A \in I^X$ . The support of a fuzzy set A, denoted by suppA and is defined by suppA = $\{x \in X : A(x) \neq 0\}$  [17]. The fuzzy set with the singleton support  $\{x\} \subseteq X$  and the value  $t \ (0 < t \le 1)$  will be denoted by  $x_t$ .  $0_X$  and  $1_X$  are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement of a fuzzy set A in an fts X is denoted by  $1_X \setminus A$ and is defined by  $(1_X \setminus A)(x) = 1 - A(x)$ , for each  $x \in X$  [17]. For any two fuzzy sets A, B in X,  $A \leq B$  means  $A(x) \leq B(x)$ , for all  $x \in X$  [17], while AqB means A is quasi-coincident (q-coincident, for short) with B, i.e., there exists  $x \in X$  such that A(x) + B(x) > 1 [16]. The negation of these two statements will be denoted by  $A \not\leq B$  and AdB respectively. For a fuzzy set A, clA and intA will stand for fuzzy closure and fuzzy interior of A respectively [10]. A fuzzy set A in X is called a fuzzy neighbourhood (fuzzy nbd, for short) of a fuzzy point  $x_t$  if there exists a fuzzy open set G in X such that  $x_t \in G \leq A$  [16] . If, in addition, A is fuzzy open, then A is called fuzzy open nbd of  $x_t$ . A fuzzy set A is said to be a fuzzy q-nbd of a fuzzy point  $x_t$  in an fts X if there is a fuzzy open set U in X such that  $x_t qU \leq A$ . If, in addition, A is fuzzy open, then A is called a fuzzy open q-nbd of  $x_t$ [16].

A fuzzy set A in an fts  $(X, \tau)$  is called fuzzy preopen if  $A \leq int(clA)$  [15]. The complement of a fuzzy preopen set is called fuzzy preclosed [15]. The union (intersection) of all fuzzy preopen (respectively, fuzzy preclosed) sets contained in (respectively, containing) a fuzzy set A is called fuzzy preinterior (respectively, fuzzy preclosure) of A, denoted by pintA (respectively, pclA) [15].

Let  $(D, \geq)$  be a directed set and X be an ordinary set. Let J denote the collection of all fuzzy points in X. A function  $S: D \to J$  is called a fuzzy net in X [16]. It is denoted by  $\{S_n : n \in (D, \geq)\}$ . A nonempty family  $\mathcal{F}$  of fuzzy sets in X is called a prefilterbase on X if (i)  $0_X \notin \mathcal{F}$  and (ii) for any  $U, V \in \mathcal{F}$ , there exists  $W \in \mathcal{F}$  such that  $W \leq U \cap V$  [13].

# 3. Fuzzy p-b-open sets and fuzzy p-b-closed sets

In this section we recall some definitions and results from [9, 10, 11, 12, 14] for ready references. Also some properties of fuzzy p-b-open

sets are discussed here.

**Definition 3.1** [9]. A fuzzy set A in an fts  $(X, \tau)$  is called fuzzy p-b-open if  $A \leq cl(pint(clA))$ .

The complement of a fuzzy p-b-open set is called fuzzy p-b-closed.

The collection of all fuzzy p-b-open (respectively, fuzzy p-b-closed) sets in an fts X is denoted by FpbO(X) (respectively, FpbC(X)).

**Definition 3.2** [9]. Let  $(X, \tau)$  be an fts and  $A \in I^X$ . The fuzzy p-b-closure of A, denoted by pbclA, is defined by

$$pbclA = \bigwedge \{U \in I^X : A \leq U, U \in FpbC(X)\}$$

and the fuzzy p-b-interior of A, denoted by pbintA, is defined by

$$pbintA = \bigvee \{G : G \le A, G \in FpbO(X)\}.$$

**Definition 3.3** [9]. A fuzzy set A in an fts  $(X, \tau)$  is called fuzzy p-b-neighborhood (abbreviated, fuzzy p-b-nbd) of a fuzzy point  $x_t$  in X if there exists a fuzzy p-b-open set U in X such that  $x_t \in U \leq A$ . If, in addition, A is fuzzy p-b-open, then A is called fuzzy p-b-open nbd of  $x_t$ .

**Definition 3.4** [9]. A fuzzy set A in an fts  $(X, \tau)$  is called fuzzy p-b-neighborhood (abbreviated, fuzzy p-b-q-nbd) of a fuzzy point  $x_t$  in X if there exists a fuzzy p-b-open set U in X such that  $x_tqU \leq A$ . If, in addition, A is fuzzy p-b-open, then A is called fuzzy p-b-open q-nbd of  $x_t$ .

**Result 3.5** [9]. The union (respectively, the intersection) of any two fuzzy p-b-open (respectively, fuzzy p-b-closed) sets is also so.

**Result 3.6** [9].  $x_t \in pbclA$  if and only if every fuzzy p-b-open q-nbd U of  $x_t$ , UqA.

**Result 3.7**. pbcl(pbclA) = pbclA for any fuzzy set A in an fts  $(X, \tau)$ .

**Proof.** Let  $A \in I^X$ . Then A < pbclA implies

$$pbclA \le pbcl(pbclA)$$
 (1)

Conversely, let  $x_t \in pbcl(pbclA)$ . If possible, let  $x_t \notin pbclA$ . Then there exists  $U \in FPbO(X)$  such that

$$x_t q U$$
 and  $U q A$  (2)

But  $x_t \in pbcl(pbclA)$  implies Uq(pbclA). Then there exists  $y \in X$  such that U(y) + (pbclA)(y) > 1, i.e. U(y) + s > 1 where s = (pbclA)(y). Then  $y_s \in pbclA$  and  $y_sqU$  where  $U \in FPbO(X)$ . So by definition, UqA, which contradicts (2). So

$$pbcl(pbclA) \le pbclA$$
 (3)

Combining (1) and (3), we get the result.

**Result 3.8.**  $pbcl(A \lor B) = pbclA \lor pbclB$ , for any two fuzzy sets A, B in X.

**Proof**. It is clear that

$$pbclA \bigvee pbclB \subseteq pbcl(A \bigvee B) \tag{4}$$

Conversely, let  $x_t \in pbcl(A \vee B)$ . Then for any fuzzy p-b-open q-nbd U of  $x_t$ ,  $Uq(A \vee B)$ . Then there exists  $y \in X$  such that  $U(y) + max\{A(y), B(y)\} > 1$  and so either U(y) + A(y) > 1 implies that UqA or U(y) + B(y) > 1 implies that UqB, then either  $x_t \in pbclA$  or  $x_t \in pbclB$ . Consequently,  $x_t \in pbclA \vee pbclB$ .

**Result 3.9.** For any fuzzy set A in an fts  $(X, \tau)$ ,

- (i)  $pbcl(1_X \setminus A) = 1_X \setminus pbintA$ ,
- (ii)  $pbint(1_X \setminus A) = 1_X \setminus pbclA$ .

**Proof** (i). Let  $x_t \in pbcl(1_X \setminus A)$  for any  $A \in I^X$ . If possible, let  $x_t \notin 1_X \setminus pbintA$ . Then  $x_tqpbintA$ . Then there exists a fuzzy p-b-open set B in X with  $B \leq A$  such that  $x_tqB$ . Then B is a fuzzy p-b-open q-nbd of  $x_t$ . By assumption,  $Bq(1_X \setminus A)$  and this implies  $Aq(1_X \setminus A)$ , which is absurd.

Conversely, let  $x_t \in 1_X \setminus pbintA$  for any  $A \in I^X$ . Then  $x_t qpbintA$  and so  $x_t qU$  for any fuzzy p-b-open set U in X with  $U \leq A$ , therefore  $x_t \in 1_X \setminus U$ . But  $1_X \setminus U$  is a fuzzy p-b-closed set in X with  $1_X \setminus A \leq 1_X \setminus U$ . It follows that  $x_t \in pbcl(1_X \setminus A)$ .

(ii) Replacing A by  $1_X \setminus A$  in (i) we get the result.

**Definition 3.10**. Let A be a fuzzy set in an fts  $(X, \tau)$ . A collection  $\mathcal{U}$  of fuzzy sets in X is called a fuzzy cover of A if  $sup\{U(x): U \in \mathcal{U}\} = 1$ , for each  $x \in suppA$  [12]. If each member of  $\mathcal{U}$  is fuzzy open (respectively, fuzzy p-b-open), we call  $\mathcal{U}$  is fuzzy open [12] (respectively, fuzzy p-b-open) cover of A. In particular, if  $A = 1_X$ , we get the definition of fuzzy cover of X [10].

**Definition 3.11**. A fuzzy cover  $\mathcal{U}$  of a fuzzy set A in an fts  $(X, \tau)$  is said to have a finite (respectively, finite proximate) subcover  $\mathcal{U}_0$  if  $\mathcal{U}_0$  is a finite subcollection of  $\mathcal{U}$  such that  $\bigvee \mathcal{U}_0 \geq A$  [12] (respectively,  $\bigvee \{clU : U \in \mathcal{U}_0\} \geq A$  [14]). In particular, if  $A = 1_X$ , we get  $\bigvee \mathcal{U}_0 = 1_X$  (respectively,  $\bigvee \{clU : U \in \mathcal{U}_0\} = 1_X$  [11]).

**Definition 3.12** [11]. An fts  $(X, \tau)$  is called fuzzy almost compact space if every fuzzy open cover has a finite proximate subcover.

## 4. Characterizations of fuzzy p-b-almost compact spaces

In this section fuzzy p-b-almost compactness is introduced and studied by fuzzy p-b-open and fuzzy regularly p-b-open sets and characterize this space via fuzzy net and prefilterbase.

**Definition 4.1.** A fuzzy set A in an fts  $(X, \tau)$  is said to be a fuzzy p-b-almost compact set if every fuzzy p-b-open cover  $\mathcal{U}$  of A has a finite pb-proximate subcover, i.e., there exists a finite subcollection  $\mathcal{U}_0$  of  $\mathcal{U}$  such that  $\bigvee \{pbclU : U \in \mathcal{U}_0\} \geq A$ . If, in addition,  $A = 1_X$ , we say that the fts X is fuzzy p-b-almost compact space.

**Definition 4.2.** A fuzzy point  $x_t$  in an fts X is said to be in the pb-closure of a fuzzy set A in X, denoted by  $x_t \in pb$ -clA, if for every fuzzy p-b-open q-nbd U of  $x_t$ , pbclUqA.

**Definition 4.3**. Let  $x_t$  be a fuzzy point in an fts  $(X, \tau)$ . A pre-filterbase  $\mathcal{F}$  on X is called

- (a) pb-adhere at  $x_t$ , written as  $x_t \in pb$ -ad  $\mathcal{F}$ , if for each fuzzy p-b-open q-nbd U of  $x_t$  and each  $F \in \mathcal{F}$ , Fq(pbclU), i.e.,  $x_t \in pb$ -clF, for each  $F \in \mathcal{F}$ ;
- (b) pb-converge to  $x_t$ , written as  $\overrightarrow{\mathcal{F}pb}x_t$ , if to each fuzzy p-b-open q-nbd U of  $x_t$ , there corresponds some  $F \in \mathcal{F}$  such that  $F \leq pbclU$ .

**Definition 4.4.** Let  $x_t$  be a fuzzy point in an fts  $(X, \tau)$ . A fuzzy net  $\{S_n : n \in (D, \geq)\}$  is said to

- (a) pb-adhere at  $x_t$ , denoted by  $x_t \in pb$ -ad $(S_n)$ , if for each fuzzy p-b-open q-nbd U of  $x_t$  and each  $n \in D$ , there exists  $m \in D$  with  $m \ge n$  such that  $S_m qpbcl U$ ;
- (b) pb-converge to  $x_t$ , denoted by  $S_n \overrightarrow{pb} x_t$ , if for each fuzzy p-b-open q-nbd U of  $x_t$ , there exists  $m \in D$  such that  $S_n q pbcl U$ , for all  $n \geq m (n \in D)$ .

**Theorem 4.5**. For a fuzzy set A in an fts X, the following statements are equivalent:

- (a) A is a fuzzy p-b-almost compact set,
- (b) for every prefilterbase  $\mathcal{B}$  in X,  $[\bigwedge \{pbclB : B \in \mathcal{B}\}] \bigwedge A = 0_X$  implies that there exists a finite subcollection  $\mathcal{B}_0$  of  $\mathcal{B}$  such that  $\bigwedge \{pbintB : B \in \mathcal{B}_0\} \not\in A$ ,
- (c) for any family  $\mathcal{F}$  of fuzzy p-b-closed sets in X with  $\bigwedge \{F : F \in \mathcal{F}\} \bigwedge A = 0_X$ , there exists a finite subcollection  $\mathcal{F}_0$  of  $\mathcal{F}$  such that  $\bigwedge \{pbintF : F \in \mathcal{F}_0\} \not \in A$ ,
- (d) every prefilterbase on X, each member of which is q-coincident with A, pb-adheres at some fuzzy point in A.
  - **Proof** (a)  $\Rightarrow$  (b). Let  $\mathcal{B}$  be a prefilterbase in X such that

 $[\Lambda \{pbclB : B \in \mathcal{B}\}] \Lambda A = 0_X$ . Then for any  $x \in supp A$ ,  $[\Lambda \{pbclB : B \in \mathcal{B}\}] \Lambda A = 0_X$ .  $B \in \mathcal{B}$ (x) = 0 implies  $1 - [\Lambda \{pbclB(x) : B \in \mathcal{B}\}] = 1$ , hence  $\bigvee[(1_X \setminus pbclB)(x) : B \in \mathcal{B}] = 1$ , therefore  $\sup\{pbint(1_X \setminus B)(x) : B \in \mathcal{B}\}$  $B \in \mathcal{B}$  = 1, which implies  $\{pbint(1_X \setminus B) : B \in \mathcal{B}\}$  is a fuzzy p-b-open cover of A. By (a), there exists a finite pb-proximate subcover  $\{pbint(1_X \setminus B_1), pbint(1_X \setminus B_2), ..., pbint(1_X \setminus B_n)\}$  of it for

A. Thus  $A \leq \bigvee_{i=1}^{n} pbcl(pbint(1_{X} \setminus B_{i})) = \bigvee_{i=1}^{n} [1_{X} \setminus pbint(pbclB_{i})] = 1_{X} \setminus \bigwedge_{i=1}^{n} pbint(pbclB_{i})$ , hence  $\bigwedge_{i=1}^{n} pbint(pbclB_{i}) \leq 1_{X} \setminus A$ , which implies  $Aq \bigwedge_{i=1}^{n} pbint(pbclB_{i})$ . Then  $Aq \bigwedge_{i=1}^{n} pbintB_{i}$ .

(b)  $\Rightarrow$  (a). Let the condition (b) hold. Suppose that there exists a fuzzy p-b-open cover  $\mathcal{U}$  of A having no finite pb-proximate subcover for A. Then for every finite subcollection  $\mathcal{U}_0$  of  $\mathcal{U}$ , there exists  $x \in supp A$  such that  $sup\{pbclU(x) : U \in \mathcal{U}_0\} < A(x)$ , i.e.,  $1 - \sup\{(pbclU)(x) : U \in \mathcal{U}_0\} > 1 - A(x) \ge 0$ , which implies  $inf\{(1_X \setminus pbclU)(x) : U \in \mathcal{U}_0\} > 0. \text{ Thus } \{ \bigwedge (1_X \setminus pbclU) : \mathcal{U}_0\} \}$ 

is a finite subcollection of  $\mathcal{U}$  (= $\mathcal{B}$ , say) is a prefilterbase in X. If there exists a finite subcollection  $\{U_1, U_2, ..., U_n\}$  (say) of  $\mathcal{U}$  such that

 $\bigwedge_{i=1}^{n} pbint(1_{X} \setminus pbclU_{i}) \ dA, \text{ then } A \leq 1_{X} \setminus \bigwedge_{i=1}^{n} pbint(1_{X} \setminus pbclU_{i}) = \bigvee_{i=1}^{n} [1_{X} \setminus pbint(1_{X} \setminus pbclU_{i})] = \bigvee_{i=1}^{n} pbcl(pbclU_{i}) = \bigvee_{i=1}^{n} pbclU_{i} \text{ (by Re-} pbinch of the particular o$ 

sult 3.7). Thus  $\mathcal{U}$  has a finite pb-proximate subcover for A, which contradicts our hypothesis. Hence for every finite subcollection  $\{ \bigwedge (1_X \setminus pbclU), ..., \bigwedge (1_X \setminus pbclU) \} \text{ of } \mathcal{B}, \text{ where } \mathcal{U}_1, ..., \mathcal{U}_k \text{ are fi-}$  $U \in \mathcal{U}_1$ 

nite subset of  $\mathcal{U}$ , we have  $[\bigwedge_{U \in \mathcal{U}_1 \bigvee ... \bigvee \mathcal{U}_k} pbint(1_X \setminus pbclU)]qA$ . By(b),

 $[\bigwedge pbcl(1_X \setminus pbclU)] \bigwedge A \neq 0_X$ . Then there exists  $x \in supp A$ , such

that  $\inf_{U \in \mathcal{U}} [pbcl(1_X \setminus pbclU)](x) > 0$ . Then  $1 - \inf_{U \in \mathcal{U}} [pbcl(1_X \setminus pbclU)](x) < 1$ , hence  $\sup_{U \in \mathcal{U}} [1_X \setminus pbcl(1_X \setminus pbclU)](x) < 1$ , that implies  $\sup_{U \in \mathcal{U}} U(x) \leq 1$ 

 $\sup pbint(pbclU)(x) < 1$ , which contradicts that  $\mathcal{U}$  is a fuzzy p-b-open

cover of A.

(a)  $\Rightarrow$  (c). Let  $\mathcal{F}$  be a family of fuzzy p-b-closed sets in X such that  $\bigwedge \{F : F \in \mathcal{F}\} \bigwedge A = 0_X$ . Then for each  $x \in supp A$  and for each positive integer n, there exists some  $F_n \in \mathcal{F}$  such that  $F_n(x) < 1/n$ , hence  $1 - F_n(x) > 1 - 1/n$ . It follows that  $\sup_{F \in \mathcal{F}} [(1_X \setminus F)(x)] = 1$  and so

 $\{1_X \setminus F : F \in \mathcal{F}\}\$  is a fuzzy p-b-open cover of A. By (a), there exists a finite subcollection  $\mathcal{F}_0$  of  $\mathcal{F}$  such that  $A \leq \bigvee_{F \in \mathcal{F}_0} pbcl(1_X \setminus F)$ , therefore

$$1_X \setminus A \geq 1_X \setminus \bigvee_{F \in \mathcal{F}_0} pbcl(1_X \setminus F)$$

$$= \bigwedge_{F \in \mathcal{F}_0} (1_X \setminus pbcl(1_X \setminus F)) = \bigwedge_{F \in \mathcal{F}_0} pbintF.$$

Hence  $Aq(\bigwedge_{F \in \mathcal{F}_0} pbintF)$ , where  $\mathcal{F}_0$  is a finite subcollection of  $\mathcal{F}$ .

(c)  $\Rightarrow$  (b). Let  $\mathcal{B}$  be a prefilterbase in X such that  $[\bigwedge \{pbclB : B \in \mathcal{B}\}] \bigwedge A = 0_X$ . Then the family  $\mathcal{F} = \{pbclB : B \in \mathcal{B}\}$  is a family of fuzzy p-b-closed sets in X with  $(\bigwedge F) \bigwedge A = 0_X$ . By (c), there is a finite subcollection  $\mathcal{B}_0$  of  $\mathcal{B}$  such that  $[\bigwedge \{pbint(pbclB) : B \in \mathcal{B}_0\}] qA$ . Consequently,  $(\bigwedge pbintB) qA$ .

(a)  $\Rightarrow$  (d). Let  $\mathcal{F}$  be a prefilterbase in X, each member of which is q-coincident with A. If possible, let  $\mathcal{F}$  do not pb-adhere at any fuzzy point in A. Then for each  $x \in suppA$ , there exists  $n_x \in \mathbb{N}^*$  such that  $x_{1/n_x} \in A$ . Then there are a fuzzy p-b-open set  $U_{n_x}^x$  and a member  $F_{n_x}^x$  of  $\mathcal{F}$  such that  $x_{1/n_x}qU_{n_x}^x$  and  $pbclU_{n_x}^xqF_{n_x}^x$ . Thus  $U_{n_x}^x(x) > 1 - 1/n_x$  so that  $sup\{U_n^x(x) : n \in \mathbb{N}^*, n \geq n_x\} = 1$ . Thus  $\{U_n^x : n \in \mathbb{N}^*, n \geq n_x, x \in suppA\}$  forms a fuzzy p-b-open cover of A. By (a), there exist finitely many points  $x_1, x_2, ..., x_k \in suppA$  and

 $n_1, n_2, ..., n_k \in \mathbb{N}^*$  such that  $A \leq \bigvee_{i=1}^{n} pbclU_{n_{x_i}}^{x_i}$ . Choose  $F \in \mathcal{F}$  such that

$$F \leq \bigwedge_{i=1}^{k} F_{n_i}^{x_i}$$
. Then  $Fq[\bigvee_{i=1}^{k} pbclU_{n_{x_i}}^{x_i}]$ , i.e.,  $FqA$ , a contradiction.

(d)  $\Rightarrow$  (a). If possible, let there exist a fuzzy p-b-open cover  $\mathcal{U}$  of A such that for every finite subset  $\mathcal{U}_0$  of  $\mathcal{U}$ ,  $\bigvee \{pbclU : U \in \mathcal{U}_0\} \not\geq A$ . Then  $\mathcal{F} = \{1_X \setminus \bigvee_{U \in \mathcal{U}_0} pbclU : \mathcal{U}_0 \text{ is a finite subset of } \mathcal{U}\}$  is a prefilter-

base on X such that FqA, for each  $F \in \mathcal{F}$ . By (d),  $\mathcal{F}$  pb-adheres at

some fuzzy point  $x_t \in A$ . As  $\mathcal{U}$  is a fuzzy cover of A,  $\sup_{U \in \mathcal{U}} U(x) = 1$ , therefore there exists  $U_0 \in \mathcal{U}$  such that  $U_0(x) > 1 - t$ , hence  $x_t q U_0$ . As  $x_t \in pb$ -ad $\mathcal{F}$  and  $1_X \setminus pbclU_0 \in \mathcal{F}$ , we have  $pbclU_0q(1_X \setminus pbclU_0)$ , a contradiction.

**Theorem 4.6**. For a fuzzy set A in an fts X, the following implications hold :

- $(a)\Leftrightarrow(b)\Leftrightarrow(c)\Rightarrow(d)\Rightarrow(e)$ , where
- (a) every fuzzy net in A pb-adheres at some fuzzy point in A,
- (b) every fuzzy net in A has a pb-convergent fuzzy subnet,
- (c) every prefilterbase in A pb-adheres at some fuzzy point in A,
- (d) for every family  $\{B_{\alpha} : \alpha \in \Lambda\}$  of non-null fuzzy sets with  $[\bigwedge_{\alpha \in \Lambda} pb\text{-}clB_{\alpha}] \bigwedge A = 0_X$ , there is a finite subset  $\Lambda_0$  of  $\Lambda$  such that

$$\left(\bigwedge_{\alpha \in \Lambda_0} B_{\alpha}\right) \bigwedge A = 0_X,$$

(e) A is fuzzy p-b-almost compact set.

**Proof** (a)  $\Rightarrow$  (b). Let a fuzzy net  $\{S_n : n \in (D, \geq)\}$  in A where  $(D, \geq)$  is a directed set, pb-adhere at a fuzzy point  $x_{\alpha} \in A$ . Let  $Q_{x_{\alpha}}$  denote the set of the fuzzy p-b-closures of all fuzzy p-b-open q-nbds of  $x_{\alpha}$ . For any  $B \in Q_{x_{\alpha}}$ , we can choose some  $n \in D$  such that  $S_n q B$ . Let E denote the set of all ordered pairs (n, B) with the property that  $n \in D$ ,  $B \in Q_{x_{\alpha}}$  and  $S_n q B$ . Then  $(E, \gg)$  is a directed set where  $(m, C) \gg (n, B)$  if and only if  $m \geq n$  in D and  $C \leq B$ . Then  $T: (E, \gg) \to (X, \tau)$  given by  $T(n, B) = S_n$ , is a fuzzy subnet of  $\{S_n : n \in (D, \geq)\}$ . Let V be any fuzzy p-p-open q-nbd of  $x_{\alpha}$ . Then there is  $n \in D$  such that that  $(n, pbclV) \in E$  and hence  $S_n q(pbclV)$ . Now, for any  $(m, U) \gg (n, pbclV)$ ,  $T(m, U) = S_m q U \leq pbclV$ , which implies T(m, U)q(pbclV). Hence  $Tpbx_{\alpha}$ .

- (b)  $\Rightarrow$  (a). If a fuzzy net  $\{S_n : n \in (D, \geq)\}$  does not pb-adhere at a fuzzy point  $x_{\alpha}$ , then there is a fuzzy p-b-open q-nbd U of  $x_{\alpha}$  and an  $n \in D$  such that  $S_m q(pbclU)$ , for all  $m \geq n$ . Then obviously no fuzzy subnet of the fuzzy net can pb-converge to  $x_{\alpha}$ .
- (a)  $\Rightarrow$  (c). Let  $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$  be a prefilterbase in A. For each  $\alpha \in \Lambda$ , choose a fuzzy point  $x_{F_{\alpha}} \in F_{\alpha}$  and construct the fuzzy net  $S = \{x_{F_{\alpha}} : F_{\alpha} \in \mathcal{F}\}$  in A with  $(\mathcal{F}, \gg)$  as domain, where for two members  $F_{\alpha}, F_{\beta} \in \mathcal{F}, F_{\alpha} \gg F_{\beta}$  if and only if  $F_{\alpha} \leq F_{\beta}$ . By (a), the fuzzy net S pb-adheres at some fuzzy point  $x_t$   $(0 < t \leq 1) \in A$ . Then for any fuzzy p-b-open q-nbd U of  $x_t$  and any  $F_{\alpha} \in \mathcal{F}$ , there exists  $F_{\beta} \in \mathcal{F}$  such that  $F_{\beta} \gg F_{\alpha}$  and  $x_{F_{\beta}}q(pbclU)$ . Then  $F_{\beta}q(pbclU)$  and

hence  $F_{\alpha}q(pbclU)$ . Thus  $\mathcal{F}$  pb-adheres at  $x_t$ .

(c)  $\Rightarrow$  (a). Let  $\{S_n : n \in (D, \geq)\}$  be a fuzzy net in A. Consider the prefilterbase  $\mathcal{F} = \{T_n : n \in D\}$  generated by the net, where  $T_n = \{S_m : m \in D, m \geq n\}$ . By (c), there exists a fuzzy point  $a_\alpha \in A$  such that  $\mathcal{F}$  pb-adheres at  $a_\alpha$ . Then for each fuzzy p-b-open q-nbd U of  $a_\alpha$  and each  $F \in \mathcal{F}$ , Fq(pbclU), i.e.,  $(pbclU)qT_n$ , for all  $n \in D$ . Hence the given fuzzy net pb-adheres at  $a_\alpha$ .

(c)  $\Rightarrow$  (d). Let  $\mathcal{B} = \{B_{\alpha} : \alpha \in \Lambda\}$  be a family of fuzzy sets in X such that for every finite subset  $\Lambda_0$  of  $\Lambda$ ,  $(\bigwedge_{\alpha \in \Lambda_0} B_{\alpha}) \bigwedge_{\alpha \in \Lambda} A \neq 0_X$ . Then

 $\mathcal{F} = \{ (\bigwedge_{\alpha \in \Lambda_0} B_{\alpha}) \bigwedge A : \Lambda_0 \text{ is a finite subset of } \Lambda \} \text{ is a prefilterbase in } A.$ 

By (c),  $\mathcal{F}$  pb-adheres at some fuzzy point  $a_t \in A$   $(0 < t \le 1)$ . Then for each  $\alpha \in \Lambda$  and each fuzzy p-b-open q-nbd U of  $a_t$ ,  $B_{\alpha}q(pbclU)$ , i.e.,  $a_t \in pb$ - $clB_{\alpha}$ , for each  $\alpha \in \Lambda$ . Consequently,  $(\bigwedge pb$ - $clB_{\alpha}) \bigwedge A \ne 0_X$ .

(d)  $\Rightarrow$  (e). Let  $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$  be a fuzzy p-b-open cover of a fuzzy set A. Then by (d),  $A \bigwedge [\bigwedge_{\alpha \in \Lambda} (1_X \setminus U_{\alpha})] = A \bigwedge [1_X \setminus \bigvee_{\alpha \in \Lambda} U_{\alpha}] = 0_X$ . If

for some  $\alpha \in \Lambda$ ,  $1_X \setminus pbclU_\alpha = 0_X$ , then we are done. If  $1_X \setminus pbclU_\alpha$   $(=B_\alpha, \text{ say}) \neq 0_X$ , then for each  $\alpha \in \Lambda$ ,  $\mathcal{B} = \{B_\alpha : \alpha \in \Lambda\}$  is a family of non-null fuzzy sets. We show that  $\bigwedge pb-clB_\alpha \leq \bigwedge (1_X \setminus U_\alpha)$ .

In fact, let  $x_t$  (0 <  $t \le 1$ ) be a fuzzy point such that  $x_t \in pb$ - $clB_{\alpha} = pb$ - $cl(1_X \setminus pbclU_{\alpha})$ . If  $x_tqU_{\alpha}$ , then  $pbclU_{\alpha}q(1_X \setminus pbclU_{\alpha})$ , which is absurd. Hence  $x_tqU_{\alpha}$ , therefore  $x_t \in 1_X \setminus U_{\alpha}$ . Then  $[\bigwedge_{\alpha \in \Lambda} pb$ -

 $clB_{\alpha}] \bigwedge A \leq A \bigwedge [\bigwedge_{\alpha \in \Lambda} (1_X \setminus U_{\alpha})] = 0_X$ . By (d), there exists a finite

subset  $\Lambda_0$  of  $\Lambda$  such that  $\left[\bigwedge_{\alpha \in \Lambda_0} B_{\alpha}\right] \bigwedge A = 0_X$ , i.e.,  $A \leq 1_X \setminus \bigwedge_{\alpha \in \Lambda_0} B_{\alpha} =$ 

 $\bigvee_{\alpha\in\Lambda_0}(1_X\setminus B_\alpha)=\bigvee_{\alpha\in\Lambda_0}pbclU_\alpha \text{ and (e) follows.}$ 

**Definition 4.7**. A fuzzy set A in an fts  $(X, \tau)$  is said to be fuzzy regularly p-b-open if A = pbint(pbclA). The complement of such a set is called fuzzy regularly p-b-closed.

**Definition 4.8**. A fuzzy point  $x_{\alpha}$  in X is said to be a fuzzy pb-cluster point of a prefilterbase  $\mathcal{B}$  if  $x_{\alpha} \in pbclB$ , for all  $B \in \mathcal{B}$ . If, in addition,  $x_{\alpha} \in A$ , for a fuzzy set A, then  $\mathcal{B}$  is said to have a fuzzy pb-cluster point in A.

**Theorem 4.9**. A fuzzy set A in an fts  $(X, \tau)$  is fuzzy p-b-almost compact if and only if for each prefilterbase  $\mathcal{F}$  in X which is such that for each set of finitely many members  $F_1, F_2, ..., F_n$  from  $\mathcal{F}$  and for any fuzzy regularly p-b-closed set C containing A, one has  $(F_1 \wedge ... \wedge F_n)qC$ ,  $\mathcal{F}$  has a fuzzy pb-cluster point in A.

**Proof.** Let A be fuzzy p-b-almost compact set and suppose  $\mathcal{F}$  be a prefilterbase in X such that

$$\left[\bigwedge \{pbclF : F \in \mathcal{F}\}\right] \bigwedge A = 0_X \tag{5}$$

Let  $x \in supp A$ . Consider any  $n \in \mathbb{N}^*$  such that 1/n < A(x), i.e.,  $x_{1/n} \in A$ . By (5),  $x_{1/n} \notin pbclF_x^n$ , for some  $F_x^n \in \mathcal{F}$ . Then there exists a fuzzy p-b-open q-nbd  $U_x^n$  of  $x_{1/n}$  such that  $U_x^n q F_x^n$ . Now  $U_x^n(x) > 1 - 1/n$  for every  $n \in \mathbb{N}^*$ , therefore  $\sup\{U_x^n(x) : 1/n < A(x), n \in \mathbb{N}^*\} = 1$ , hence  $\mathcal{U} = \{U_x^n : x \in supp A, n \in \mathbb{N}^*\}$  forms a fuzzy p-b-open cover of A such that for  $U_x^n$ , there exists  $F_x^n \in \mathcal{F}$  with  $U_x^n q F_x^n$ . Since A is fuzzy p-b-almost compact, there exist finitely many mem-

bers 
$$U_{x_1}^{n_1}, ., ., U_{x_k}^{n_k}$$
 of  $\mathcal{U}$  such that  $A \leq \bigvee_{i=1}^k pbclU_{x_i}^{n_i} = pbcl(\bigvee_{i=1}^k U_{x_i}^{n_i})(=U,$ 

say) (by Result 3.8) . Now  $F_{x_1}^{n_1}, ..., F_{x_k}^{n_k} \in \mathcal{F}$  such that  $U_{x_i}^{n_i} q F_{x_i}^{n_i}$  for i=1,2,...,k. Now U is a fuzzy regularly p-b-closed set containing A such that  $Uq(F_{x_1}^{n_1} \bigwedge ... \bigwedge F_{x_k}^{n_k})$ .

Conversely, let  $\mathcal{B}$  be a prefilterbase in X having no fuzzy pb-cluster point in A. Then by hypothesis, there is a fuzzy regularly p-b-closed set C containing A such that for some finite subcollection  $\mathcal{B}_0$  of  $\mathcal{B}$ ,  $(\bigwedge \mathcal{B}_0) qC$ . Then  $(\bigwedge \mathcal{B}_0) qA$ . By Theorem 4.5 (b)  $\Rightarrow$  (a), A is fuzzy p-b-almost compact set.

From Theorem 4.5, Theorem 4.6 and Theorem 4.9, we obtain characterizations of fuzzy p-b-almost compact space, as follows.

**Theorem 4.10**. For an fts X, the following statements are equivalent:

- (a) X is fuzzy p-b-almost compact,
- (b) every fuzzy net in X pb-adheres at some fuzzy point in X,
- (c) every fuzzy net in X has a pb-convergent fuzzy subnet,
- (d) every prefilterbase in X pb-adheres at some fuzzy point in X,
- (e) for every family  $\{B_{\alpha}: \alpha \in \Lambda\}$  of non-null fuzzy sets with  $[\bigwedge_{\alpha \in \Lambda} pb$

 $clB_{\alpha}] = 0_X$ , there is a finite subset  $\Lambda_0$  of  $\Lambda$  such that  $(\bigwedge_{\alpha \in \Lambda_0} B_{\alpha}) = 0_X$ ,

(f) for every prefilterbase  $\mathcal{B}$  in X with  $\bigwedge \{pbclB : B \in \mathcal{B}\} = 0_X$ , there

is a finite subcollection  $\mathcal{B}_0$  of  $\mathcal{B}$  such that  $\bigwedge \{pbintB : B \in \mathcal{B}_0\} = 0_X$ , (g) for any family  $\mathcal{F}$  of fuzzy p-b-closed sets in X with  $\bigwedge \mathcal{F} = 0_X$ , there exists a finite subcollection  $\mathcal{F}_0$  of  $\mathcal{F}$  such that  $\bigwedge \{pbintF : F \in \mathcal{F}_0\} = 0_X$ .

**Theorem 4.11.** An fts X is fuzzy p-b-almost compact if and only if for any collection  $\{F_{\alpha} : \alpha \in \Lambda\}$  of fuzzy p-b-open sets in X having finite intersection property  $\bigwedge \{pbclF_{\alpha} : \alpha \in \Lambda\} \neq 0_X$ .

**Proof.** Let X be fuzzy p-b-almost compact space and  $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$  be a collection of fuzzy p-b-open sets in X with finite intersection property. Suppose  $\bigwedge \{pbclF_{\alpha} : \alpha \in \Lambda\} = 0_X$ . Then  $\{1_X \setminus pbclF_{\alpha} : \alpha \in \Lambda\}$  is a fuzzy p-b-open cover of X. By hypothesis, there exists a finite subset  $\Lambda_0$  of  $\Lambda$  such that  $1_X = \bigvee \{pbcl(1_X \setminus pbclF_{\alpha}) : \alpha \in \Lambda_0\} = \bigvee \{1_X \setminus pbint(pbclF_{\alpha}) : \alpha \in \Lambda_0\} \leq \bigvee \{1_X \setminus F_{\alpha} : \alpha \in \Lambda_0\} = 1_X \setminus \bigwedge_{\alpha \in \Lambda_0} F_{\alpha} \Rightarrow \bigwedge_{\alpha \in \Lambda_0} F_{\alpha} = 0_X$  which contradicts the fact that  $\mathcal{F}$  has finite intersection property.

Conversely, suppose that X is not fuzzy p-b-almost compact space. Then there is a fuzzy p-b-open cover  $\mathcal{F} = \{F_{\alpha} : \alpha \in \Lambda\}$  of X such that for every finite subset  $\Lambda_0$  of  $\Lambda$ ,  $\bigvee \{pbclF_{\alpha} : \alpha \in \Lambda_0\} \neq 1_X$ . Then  $1_X \setminus \bigvee \{pbclF_{\alpha} : \alpha \in \Lambda_0\} \neq 0_X$ , therefore  $\bigwedge_{\alpha \in \Lambda_0} (1_X \setminus pbclF_{\alpha}) \neq 0_X$ , for

every finite subset  $\Lambda_0$  of  $\Lambda$ . Thus  $\{1_X \setminus pbclF_\alpha : \alpha \in \Lambda\}$  is a collection of fuzzy p-b-open sets with finite intersection property. By hypothesis,  $\bigwedge_{\alpha \in \Lambda} pbcl(1_X \setminus pbclF_\alpha) \neq 0_X$ , i.e.,  $1_X \setminus \bigvee_{\alpha \in \Lambda} pbint(pbclF_\alpha) \neq 0_X$ , therefore

 $\bigvee_{\alpha \in \Lambda} \begin{array}{l} \stackrel{\bullet}{\bigvee} pbint(pbclF_{\alpha}) \neq 1_{X}. \text{ Hence } \bigvee_{\alpha \in \Lambda} F_{\alpha} \neq 1_{X}, \text{ which is a contradiction as } \mathcal{F} \text{ is a fuzzy } p\text{-}b\text{-open cover of } X. \end{array}$ 

**Definition 4.12**. Let  $\{S_n : n \in (D, \geq)\}$  be a fuzzy net of fuzzy p-b-open sets in X, i.e., for each member n of a directed set  $(D, \geq)$ ,  $S_n$  is a fuzzy p-b-open set in X. A fuzzy point  $x_\alpha$  in X is said to be a fuzzy pb-cluster point of the fuzzy net if for every  $n \in D$  and every fuzzy p-b-open q-nbd V of  $x_\alpha$ , there exists  $m \in D$  with  $m \geq n$  such that  $S_m qV$ .

**Theorem 4.13**. An fts X is fuzzy p-b-almost compact if and only if every fuzzy net of fuzzy p-b-open sets in X has a fuzzy pb-cluster point in X.

**Proof.** Let  $\mathcal{U} = \{S_n : n \in (D, \geq)\}$  be a fuzzy net of fuzzy p-b-open sets in a fuzzy p-b-almost compact space X. For each  $n \in D$ , let us put  $F_n = pbcl[\bigvee \{S_m : m \in D \text{ and } m \geq n\}]$ . Then  $\mathcal{F} = \{F_n : n \in D\}$ 

is a family of fuzzy p-b-closed sets in X with the condition that for every finite subcollection  $\mathcal{F}_0$  of  $\mathcal{F}$ ,  $\bigwedge \{pbintF : F \in \mathcal{F}_0\} \neq 0_X$ . By Theorem 4.10 (a) $\Rightarrow$  (g),  $\bigwedge_{n \in D} F_n \neq 0_X$ . Let  $x_{\alpha} \in \bigwedge_{n \in D} F_n$ . Then  $x_{\alpha} \in F_n$ ,

for all  $n \in D$ . Thus for any fuzzy p-b-open q-nbd A of  $x_{\alpha}$  and any  $n \in D$ ,  $Aq[\bigvee\{S_m : m \geq n\}]$  and so there exists some  $m \in D$  with  $m \geq n$  and  $AqS_m$ , hence  $x_{\alpha}$  is a fuzzy pb-cluster point of  $\mathcal{U}$ .

Conversely, let  $\mathcal{F}$  be a collection of fuzzy  $p\text{-}b\text{-}\mathrm{closed}$  sets in X with the condition that for every finite subcollection  $\mathcal{F}_0$  of  $\mathcal{F}$ ,  $\bigwedge\{pbintF: F \in \mathcal{F}_0\} \neq 0_X$ . Let  $\mathcal{F}^*$  denote the family of all finite intersections of members of  $\mathcal{F}$  directed by the relation '>' such that for  $F_1, F_2 \in \mathcal{F}^*$ ,  $F_1 \gg F_2$  if and only if  $F_1 \leq F_2$ . Let  $F^* = pbintF$ , for each  $F \in \mathcal{F}^*$ . Then  $F^* \neq 0_X$ . Consider the fuzzy net  $\mathcal{U} = \{F^*: F \in (\mathcal{F}^*, \gg)\}$  of non-null fuzzy p-b-open sets of X. By hypothesis,  $\mathcal{U}$  has a fuzzy pb-cluster point, say  $x_\alpha$ . We claim that  $x_\alpha \in \bigwedge \mathcal{F}$ . In fact, let  $F \in \mathcal{F}$  be arbitrary and A be any fuzzy p-b-open q-nbd of  $x_\alpha$ . Since  $F \in \mathcal{F}^*$  and  $x_\alpha$  is a fuzzy pb-cluster point of  $\mathcal{U}$ , there exists  $G \in \mathcal{F}^*$  such that  $G \gg F$  (i.e.,  $G \leq F$ ) and  $G^*qA$ , therefore GqA, hence FqA. It follows that  $x_\alpha \in pbclF = F$ , for each  $F \in \mathcal{F}$ , hence  $x_\alpha \in \bigwedge \mathcal{F}$ , in particular  $\bigwedge \mathcal{F} \neq 0_X$ . By Theorem 4.10 (g) $\Rightarrow$  (a), X is fuzzy p-b-almost compact space.

**Definition 4.14.** A fuzzy cover  $\mathcal{U}$  by fuzzy p-b-closed sets of an fts  $(X, \tau)$  will be called a fuzzy pb-cover of X if for each fuzzy point  $x_{\alpha}$   $(0 < \alpha < 1)$  in X, there exists  $U \in \mathcal{U}$  such that U is a fuzzy p-b-open  $\mathbb{C}$  nbd of  $x_{\alpha}$ .

**Theorem 4.15**. An fts  $(X, \tau)$  is fuzzy p-b-almost compact if and only if every fuzzy pb-cover of X has a finite subcover.

**Proof.** Let X be fuzzy p-b-almost compact space and  $\mathcal{U}$  be any fuzzy pb-cover of X. Then for each  $n \in \mathbb{N}^*$  (the set of all natural numbers) with n > 1, there exist  $U_x^n \in \mathcal{U}$  and a fuzzy p-b-open set  $V_x^n$  in X such that  $x_{1-1/n} \leq V_x^n \leq U_x^n$ . Then  $V_x^n(x) \geq 1 - 1/n$  for every n, hence  $\sup\{V_x^n(x): n \in \mathbb{N}^*\} = 1$ , therefore  $\mathcal{V} = \{V_x^n: x \in X, n \in \mathbb{N}^*, n > 1\}$  is a fuzzy p-b-open cover of X. As X is fuzzy p-b-almost compact, there exist finitely many points  $x_1, x_2, ..., x_m \in X$  and  $n_1, n_2, ..., n_m \in N \setminus \{1\}$ 

such that 
$$1_X = \bigvee_{k=1}^m pbclV_{x_k}^{n_k} \leq \bigvee_{k=1}^m pbclU_{x_k}^{n_k} = \bigvee_{k=1}^m U_{x_k}^{n_k}$$
.  
Conversely, let  $\mathcal{U}$  be fuzzy  $p$ - $b$ -open cover of  $X$ . For any fuzzy point

Conversely, let  $\mathcal{U}$  be fuzzy p-b-open cover of X. For any fuzzy point  $x_{\alpha}$  (0 <  $\alpha$  < 1) in X, as  $\sup_{U \in \mathcal{U}} U(x) = 1$ , there exists  $U_{x_{\alpha}} \in \mathcal{U}$  such that  $U_{x_{\alpha}}(x) \geq \alpha$  (0 <  $\alpha$  < 1). Then  $\mathcal{V} = \{pbclU : U \in \mathcal{U}\}$  is a fuzzy

pb-cover of X and the rest is clear.

The following theorem gives a necessary condition for an fts to be fuzzy p-b-almost compact.

**Theorem 4.16**. If an fts X is fuzzy p-b-almost compact, then every prefilterbase on X with at most one pb-adherent point is pb-convergent.

**Proof.** Let  $\mathcal{F}$  be a prefilterbase with at most one pb-adherent point in a fuzzy p-b-almost compact fts X. Then by Theorem 4.10,  $\mathcal{F}$  has at least one pb-adherent point in X. Let  $x_{\alpha}$  be the unique pb-adherent point of  $\mathcal{F}$  and if possible, let  $\mathcal{F}$  do not pb-converge to  $x_{\alpha}$ . Then for some fuzzy p-b-open q-nbd U of  $x_{\alpha}$  and for each  $F \in \mathcal{F}$ ,  $F \not\leq pbclU$ , so that  $F \bigwedge \{1_X \setminus pbclU\} \neq 0_X$ . Then  $\mathcal{G} = \{F \bigwedge (1_X \setminus pbclU) : F \in \mathcal{F}\}$  is a prefilterbase in X and hence has a pb-adherent point  $y_t$  (say) in X. Now pbclUqG, for all  $G \in \mathcal{G}$  so that  $x_{\alpha} \neq y_t$ . Again, for each fuzzy p-b-open q-nbd V of  $y_t$  and each  $F \in \mathcal{F}$ ,  $pbclVq(F \bigwedge (1_X \setminus pbclU))$ , hence pbclVqF and it follows that  $y_t$  is a fuzzy pb-adherent point of  $\mathcal{F}$ , where  $x_{\alpha} \neq y_t$ . This contradicts the fact that  $x_{\alpha}$  is the only fuzzy pb-adherent point of  $\mathcal{F}$ .

Some results on fuzzy p-b-almost compactness of an fts are given by the following theorem.

**Theorem 4.17**. Let  $(X, \tau)$  be an fts and  $A \in I^X$ . Then the following statements are true :

- (a) If A is fuzzy p-b-almost compact, then so is pbclA,
- (b) Union of two fuzzy *p-b*-almost compact sets is also so,
- (c) If X is fuzzy p-b-almost compact, then every fuzzy regularly p-b-closed set A in X is fuzzy p-b-almost compact.

**Proof** (a). Let  $\mathcal{U}$  be a fuzzy p-b-open cover of pbclA. Then  $\mathcal{U}$  is also a fuzzy p-b-open cover of A. As A is fuzzy p-b-almost compact, there exists a finite subcollection  $\mathcal{U}_0$  of  $\mathcal{U}$  such that  $A \leq \bigvee \{pbclU : U \in \mathcal{U}_0\} = pbcl\{\bigvee U : U \in \mathcal{U}_0\}$ , hence

$$pbclA \leq pbcl\{pbcl[\bigvee \{U: U \in \mathcal{U}_0\}]\} = pbcl\{\bigvee U: U \in \mathcal{U}_0\} = \bigvee \{pbclU: U \in \mathcal{U}_0\}.$$

The claim follows.

- (b). Obvious.
- (c). Let  $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$  be a fuzzy p-b-open cover of a fuzzy regularly p-b-closed set A in X. Then for each  $x \notin supp A$ ,  $A(x) = 0 \Rightarrow (1_X \setminus A)(x) = 1 \Rightarrow \mathcal{U} \bigvee \{(1_X \setminus A)\}$  is a fuzzy p-b-open cover of X. Since X is fuzzy p-b-almost compact, there are finitely many members  $U_1, U_2, ..., U_n$  in  $\mathcal{U}$  such that  $1_X = (pbclU_1 \bigvee ... \bigvee pbclU_n) \bigvee pbcl(1_X \setminus A)$ . We claim that  $pbint A \leq pbclU_1 \bigvee ... \bigvee pbclU_n$ . If not, there exists a fuzzy point  $x_t \in pbint A$ ,

but  $x_t \notin (pbclU_1 \bigvee ... \bigvee pbclU_n)$ , i.e.,  $t > max\{(pbclU_1)(x), ..., (pbclU_n)(x)\}$ . As  $1_X = (pbclU_1 \bigvee ... \bigvee pbclU_n) \bigvee pbcl(1_X \setminus A)$ ,  $[pbcl(1_X \setminus A)](x) = 1$ , which implies 1 - pbintA(x) = 1, hence pbintA(x) = 0, which implies  $x_t \notin pbintA$ , a contradiction. Hence  $A = pbcl(pbintA) \leq pbcl(pbclU_1 \bigvee ... \bigvee pbclU_n) = pbclU_1 \bigvee ... \bigvee pbclU_n$  (by Result 3.7 and Result 3.8), therefore A is fuzzy p-b-almost compact set.

# 5. Mutual Relationships between two types of fuzzy almost compactness

Here we establish the mutual relationship between fuzzy almost compactness [11] and fuzzy p-b-almost compactness. Then it is shown that fuzzy p-b-almost compactness implies fuzzy almost compactness, but converse is true in fuzzy p-b-regular space [9]. It is also established that fuzzy p-b-almost compactness remains invariant under fuzzy p-b-irresolute function [9].

Since for any fuzzy set A in an fts X,  $pbclA \leq clA$  (as every fuzzy closed set is fuzzy p-b-closed [9]), we can state the following theorem easily.

**Theorem 5.1**. Every fuzzy p-b-compact space is fuzzy almost compact.

To get the converse we have to recall the following definition and theorem for ready references.

**Definition 5.2** [9]. An fts  $(X, \tau)$  is said to be fuzzy p-b-regular if for each fuzzy p-b-closed set F in X and each fuzzy point  $x_{\alpha}$  in X with  $x_{\alpha}q(1_X \setminus F)$ , there exists a fuzzy open set U in X and a fuzzy p-b-open set V in X such that  $x_{\alpha}qU$ ,  $F \leq V$  and UqV.

**Theorem 5.3** [9]. An fts  $(X, \tau)$  is fuzzy p-b-regular iff every fuzzy p-b-closed set is fuzzy closed.

**Theorem 5.4**. A fuzzy p-b-regular, fuzzy almost compact space X is fuzzy p-b-almost compact.

**Proof.** Let  $\mathcal{U}$  be a fuzzy p-b-open cover of a fuzzy p-b-regular, fuzzy almost compact space X. Then by Theorem 5.3,  $\mathcal{U}$  is a fuzzy open cover of X. As X is fuzzy almost compact, there is a finite subcollection  $\mathcal{U}_0$  of  $\mathcal{U}$  such that  $\bigvee\{clU:U\in\mathcal{U}_0\}=\bigvee\{pbclU:U\in\mathcal{U}_0\}$  (by Theorem 5.3) =  $1_X$ , hence X is a fuzzy p-b-almost compact space. Next we recall the following definition and theorem for ready references.

**Definition 5.5** [9]. A function  $f: X \to Y$  is said to be fuzzy p-b-irresolute if the inverse image of every fuzzy p-b-open set in Y is

fuzzy p-b-open in X.

**Theorem 5.6** [9]. For a function  $f: X \to Y$ , the following statements are equivalent:

- (i) f is fuzzy p-b-irresolute,
- (ii)  $f(pbclA) \leq pbcl(f(A))$ , for all  $A \in I^X$ ,
- (iii) for each fuzzy point  $x_{\alpha}$  in X and each fuzzy p-b-open q-nbd V of  $f(x_{\alpha})$  in Y, there exists a fuzzy p-b-open q-nbd U of  $x_{\alpha}$  in X such that f(U) < V.

**Theorem 5.7**. Fuzzy p-b-irresolute image of a fuzzy p-b-almost compact space is fuzzy p-b-almost compact.

**Proof.** Let  $f: X \to Y$  be fuzzy p-b-irresolute surjective function from a fuzzy p-b-almost compact space X onto an fts Y, and let  $\mathcal{V}$ be a fuzzy p-b-open cover of Y. Let  $x \in X$  and f(x) = y. Since  $\sup\{V(y):V\in\mathcal{V}\}=1$ , for each  $n\in\mathbb{N}^*$  (the set of all natural numbers), there exists some  $V_x^n \in \mathcal{V}$  with  $V_x^n(y) > 1 - 1/n$  and so  $y_{1/n}qV_x^n$ . By fuzzy p-b-irresoluteness of f, by Theorem 5.6 (i) $\Rightarrow$  (iii),  $f(U_x^n) \le V_x^n$ , for some fuzzy p-b-open set  $U_x^n$  in X q-coincident with  $x_{1/n}$ . Since  $U_x^n(x) > 1 - 1/n$ ,  $\sup\{U_x^n(x) : n \in \mathbb{N}^*\} = 1$ . Then  $\mathcal{U} = \{U_x^n : n \in \mathbb{N}^*, x \in X\}$  is a fuzzy p-b-open cover of X. By fuzzy p-

*b*-almost compactness of  $X, \bigvee_{i=1}^{\kappa} pbclU_{x_i}^{n_i} = 1_X$ , for some finite subcollection

tion 
$$\{U_{x_1}^{n_1},...,U_{x_k}^{n_k}\}$$
 of  $\mathcal{U}$ . Then  $1_Y = f(\bigvee_{i=1}^k pbclU_{x_i}^{n_i}) = \bigvee_{i=1}^k f(pbclU_{x_i}^{n_i}) \le \bigvee_{i=1}^k pbcl(f(U_{x_i}^{n_i}))$  (by Theorem 5.6 (i)  $\Rightarrow$  (ii))  $\le \bigvee_{i=1}^k pbclV_{x_i}^{n_i} \Rightarrow Y$  is fuzzy

$$\bigvee_{i=1}^{\kappa} pbcl(f(U_{x_i}^{n_i})) \text{ (by Theorem 5.6 (i) } \Rightarrow \text{(ii)}) \leq \bigvee_{i=1}^{\kappa} pbclV_{x_i}^{n_i} \Rightarrow Y \text{ is fuzzy } p-b\text{-almost compact space.}$$

#### 6. Conclusion

This paper is a continuation of [9]. The main goal of this paper is to establish the various results of fuzzy p-b-open sets and fuzzy covering properties. We further want to establish the inter-relations of various types of fuzzy covering properties.

# 7. Acknowledgement

I express my sincere gratitude to referee for the valuable remarks on this paper.

### References

- [1] Bhattacharyya, Anjana; **Fuzzy almost**  $p^*$ -compact space, Journal of Mathematics and Statistical Science, Vol. 4, Issue 2, (2018), 76-88.
- [2] Bhattacharyya, Anjana; Regular  $\beta$ -Compactness in Fuzzy Setting, Bull. Cal. Math. Soc., Vol. 110, No. 3 (2018), 191-216.
- [3] Bhattacharyya, Anjana; Fuzzy Almost s\*-Compact Space, Analele UniversitÇŽÅ£ii Oradea Fasc. Matematica, Tom XXV (2018), No.1, 73-88.
- [4] Bhattacharyya, Anjana; Fuzzy  $\gamma$ -almost compactness and fuzzy regular  $\gamma$ -compactness, The Journal of Fuzzy Mathematics, Vol. 28, No. 3 (2020), 613-634.
- [5] Bhattacharyya, Anjana; Fuzzy p\*-precompact topological spaces, "Vasile Alecsandri" University of BacÇŽu, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics, Vol. 33, No.1 (2023), 59-74.
- [6] Bhattacharyya, Anjana; Fuzzy pre  $\beta$ -compact space, South East Asian J. of Mathematics and Mathematical Sciences, Vol. 19, No.2 (2023), 403-416.
- [7] Bhattacharyya, Anjana; α-Precompact space in fuzzy topological space, J. of Ramanujan Society of Mathematics and Mathematical Sciences, Vol. 11, No. 1 (2023), 145-158.
- [8] Bhattacharyya, Anjana; Fuzzy  $\alpha$ -b-almost compact space, Annals of Fuzzy Mathematics and Informatics, Vol. 27, No. 2 (2024), 191-204.
- [9] Bhattacharyya, Anjana; A New Type of Fuzzy Preopen Set and Its Applications (Communicated).
- [10] Chang, C.L.; Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [11] DiConcillio, A. and Gerla, G.; Almost compactness in fuzzy topological spaces, Fuzzy Sets and Systems, 13 (1984), 187-192.
- [12] Ganguly, S. and Saha, S.; A note on compactness in fuzzy setting, Fuzzy Sets and Systems, 34 (1990), 117-124.
- [13] Lowen, R.; Convergence in fuzzy topological spaces, General Topology and Its Appl., 10 (1979), 147-160.
- [14] Mukherjee, M.N. and Sinha, S.P.; Almost compact fuzzy sets in fuzzy topological spaces, Fuzzy Sets and Systems, 38 (1990), 389-396.
- [15] Nanda, S.; Strongly compact fuzzy topological spaces, Fuzzy Sets and Systems, 42 (1991), 259-262.
- [16] Pu, Pao Ming and Liu, Ying Ming; Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math Anal. Appl. 76 (1980), 571-599.
- [17] Zadeh, L.A.; Fuzzy Sets, Inform. Control, 8 (1965), 338-353.

Victoria Institution (College), Faculty, Department of Mathematics, 78 B, A.P.C. Road, Kolkata-700009, India e-mail: anjanabhattacharyya@hotmail.com