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Faculty of Sciences
Scientific Studies and Research
Series Mathematics and Informatics
Vol. 34 (2024), No. 1, 47 - 56

REMARKS ON GENERALIZATIONS OF
TOPOLOGICAL SPACES VIA PROPERTIES OF

CLOSURE FUNCTIONS

SHYAMAPADA MODAK, TAKASHI NOIRI

Abstract. The fixed points of a closure function are known as
closed sets in the corresponding generalized closure space and their
complements are called open sets. We identify among the combina-
tions of usual properties of a closure function some that are sufficient
(but not necessary, as we show through counterexamples) in order to
obtain that the family of open sets is a specific generalization of the
notion of topology (namely, weak structure, minimal structure, gen-
eralized topology in the sense of Csaszar, supratopology, generalized
topology in the sense of Lugojan M -structure). The properties of
other operators associated to a closure function (interior, exterior and
boundary operators) are also investigated.

1. Introduction and Preliminaries

Let Z be a nonempty set, 2Z be the collection of all subsets of Z and
cl : 2Z → 2Z be a set-valued function, called here closure functions,
also known as generalized closure operator. We call cl(A), the closure
of A for each A ∈ 2Z and the pair (Z, cl) is called a generalized closure
space.
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Definition 1. The closure function cl : 2Z → 2Z in a generalized
closure space (Z, cl) is called:

(a) grounded if ∅ = cl(∅),
(b) isotonic if A ⊆ B implies cl(A) ⊆ cl(B),
(c) extensive if cl(A) ⊇ A for all A ∈ 2Z,
(d) subadditive if cl(A) ∪ cl(B) ⊇ cl(A ∪B),
(e) idempotent if cl(A) = cl(cl(A)),
(f) additive if cl(A ∪B) = cl(A) ∪ cl(B).

Note that closure function cl is isotonic if and only if cl is supraadi-
tive, i.e. cl(A ∪ B) ⊇ cl(A) ∪ cl(B). Therefore every closure function
is isotonic and that every isotonic and subadditive closure function is
additive.

A Čech closure operator (also known in General topology as pre-
closure operator) is defined by three properties: grounded, extensive
and additive.

A Kuratowski closure operator is an idempotent Čech closure op-
erator. Pervin [14] had shown that, a closure function cl : 2Z → 2Z

is a Kuratowski closure operator if and only if it satisfies the single
axiom: A ∪ cl(A) ∪ (cl(B)) = cl(A ∪B) \ cl(∅) for any A,B ∈ 2Z .

A set F ∈ 2Z is said to be closed in the generalized closure space
(Z, cl) if F = cl(F ) holds (similar type of closed set has been defined
in [17]). F is said to be open if Z \ F is closed i.e. cl(Z \ F ) = Z \ F .
We denote clop(Z) as the collection of all open sets in a generalized
closure space (Z, cl).

However, if a closure function cl satisfies the conditions (a), (c) and
(f) then the space (Z, cl) is called a closure space and it was introduced
by Čech [2]. The author Chattopadhyay and Thron [3] and Modak
and Islam [12] have studied this type of closure spaces.

Through this paper, we shall discuss about the properties of gener-
alized closure functions and find out the boundary points and exterior
points of a set in the generalized closure space.

2. Properties of closure functions

Theorem 2. For a generalized closure space (Z, cl), the closure func-
tion cl is grounded if and only if Z ∈ clop(Z).

Proof. Suppose cl(∅) = ∅. Then cl(Z\Z) = Z\Z implies Z ∈ clop(Z).
Conversely suppose that Z ∈ clop(Z). Then cl(Z \ Z) = Z \ Z

implies cl(∅) = ∅.
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Theorem 3. Let (Z, cl) be a generalized closure space. If the closure
function cl is extensive, then ∅ ∈ clop(Z).

Proof. Given that Z ⊆ cl(Z). Then Z ⊆ cl(Z) ⊆ Z implies Z = cl(Z).
Hence cl(Z \ ∅) = Z \ ∅, so ∅ ∈ clop(Z).

The converse of Theorem 3 does not hold in general:

Example 4. Let Z = {o1, o2, o3}. Define cl : 2Z → 2Z by
cl(∅) = ∅, cl(Z) = Z, cl({o1}) = Z, cl({o2}) = {o2}, cl({o3}) =
{o3}, cl({o1, o2}) = {o1, o2}, cl({o1, o3}) = {o1, o2}, cl({o2, o3}) =
{o2, o3}. Here ∅ ∈ clop(Z), but the closure function cl is not exten-
sive, since {o1, o3} * cl({o1, o3}).

Theorem 5. If the closure function cl of a generalized closure
space (Z, cl) is isotonic and extensive, then for {Vi : i ∈ J} ⊆
clop(Z),

⋃
i

Vi ∈ clop(Z).

Proof. Note that cl(Z \
⋃
i

Vi) ⊆ cl(Z \ Vi), for each i. Then cl(Z \⋃
i

Vi) ⊆ (Z\Vi), for each i. This implies that cl(Z\
⋃
i

Vi) ⊆
⋂
i

(Z\Vi) =

(Z \
⋃
i

Vi). Thus we have cl(Z \
⋃
i

Vi) ⊆ (Z \
⋃
i

Vi) ⊆ cl(Z \
⋃
i

Vi) (due

to extensive). Therefore,
⋃
i

Vi ∈ clop(Z).

Corollary 6. If the closure function cl of a generalized closure
space (Z, cl) is isotonic and extensive, then for {Vi : i ∈ N} ⊆
clop(Z),

⋃
i∈N

Vi ∈ clop(Z).

For the converse of Theorem 5, we discuss following:

Example 7. Let Z = {o1, o2, o3}. Define cl : 2Z → 2Z by
cl(∅) = ∅, cl(Z) = Z, cl({o1}) = Z, cl({o2}) = {o2}, cl({o3}) =
{o3}, cl({o1, o2}) = {o1, o2}, cl({o1, o3}) = {o1, o2}, cl({o2, o3}) =
{o2, o3}. Here ∅ ∈ clop(Z), but the closure function cl is not ex-
tensive, since {o1, o3} * cl({o1, o3}). Again, the function cl is not
isotonic, since for {o3} ⊆ {o1, o3}, cl({o3} * cl({o1, o3}).

Theorem 8. Let (Z, cl) be a generalized closure space. If the closure

function cl is extensive and subadditive, then
k⋂

i=1

Vi ∈ clop(Z) for

every V1, V2, ...., Vk ∈ clop(Z).

Proof. Z \
⋂
Vi ⊆ cl(Z \

⋂
Vi) = cl(

⋃
(Z \Vi)) ⊆ cl(Z \V1)∪ .....∪cl(Z \

Vn) = (Z \ V1) ∪ .... ∪ (Z \ Vn) = Z \
⋂
Vi. Therefore, cl(Z \

⋂
Vi) =

Z \
⋂
Vi.



50 S. MODAK, T. NOIRI

For the converse of Theorem 8, we give the following example.

Example 9. In Example 4, since clop(Z) = {Z, ∅, {o1}, {o3}, {o1, o2},
{o1, o3}}, clop(Z) is closed under finite intersection. But the closure
function cl is not extensive.

Example 10. Let Z = {o1, o2, o3}, cl(∅) = ∅, cl({o1}) = {o1, o2},
cl({o2}) = {o2, o3}, cl({o3}) = {o2, o3}, cl({o1, o2}) =
Z, cl({o2, o3}) = Z, cl({o1, o3}) = {o1, o3}, cl(Z) = Z. Here
the closure function cl is not subadditive because: cl({o2} ∪ {o3}) =
cl({o2, o3}) = Z * cl({o2}) ∪ cl({o3}) = {o2, o3}. However clop(Z) =
{Z, ∅, {o2}}, clop(Z) is closed under finite intersection.

Theorem 11. If the closure function cl of a generalized closure space

(Z, cl) is additive, then
k⋂

i=1

Ui ∈ clop(Z) for every U1, U2, . . . , Uk ∈

clop(Z).

Proof. For the subcollection {U1, U2, ...., Uk} of clop(Z), cl(Z \
k⋂

i=1

Ui)) = cl(
k⋃

i=1

(Z \ Ui) = (Z \ U1) ∪ .... ∪ (Z \ Uk) = (Z \
k⋂

i=1

Ui).

Thus
k⋂

i=1

Ui ∈ clop(Z).

In Theorem 11, the condition is sufficient and it is followed by the
following example:

Example 12. In Example 4, the closure function cl is not additive
but finite intersections of the members of clop(Z) belongs to clop(Z).

Theorem 13. Let (Z, cl) be a generalized closure space. If cl is iso-
tonic and subadditive, then

⋂
Vi ∈ clop(Z) for every V1, V2, ...., Vk ∈

clop(Z).

Proof. If cl is isotonic and subadditive, then it is additive. Thus the
proof is obvious by Theorem 11.

In the following example, we shall discuss the converse of Theorem
13:

Example 14. Let Z = {o1, o2, o3}, cl(∅) = ∅, cl({o1}) = {o1, o2},
cl({o2}) = {o2, o3}, cl({o3}) = {o2, o3}, cl({o1, o2}) =
Z, cl({o2, o3}) = Z, cl({o1, o3}) = {o1, o3}, cl(Z) = Z. Then
clop(Z) = {∅, Z, {o2}}. Here, the closure function cl is neither
isotonic nor subadditive because: {o3} ⊆ {o1, o3} but cl({o3}) *
cl({o1, o3}) and cl({o2} ∪ {o3}) * cl({o2}) ∪ cl({o3}).
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3. Applications of clop(Z)

Definition 15. A collection F of subsets of a nonempty set Z is called
(1) a weak structure [4] (denoted by W) if ∅ ∈ F ,
(2) a minimal structure [15] (denoted by mZ) if ∅, Z ∈ F ,
(3) a generalized topology [5](denoted by µ) if ∅ ∈ F and F is closed

under arbitrary unions,
(4) a supratopology [9] (denoted by τ ∗) if Z ∈ F and F is closed

under arbitrary unions,
(5) a generalized topology [8] if ∅, Z ∈ F and F is closed under

arbitrary unions,
(6) an M-structure [1] if ∅, Z ∈ F and F is closed under finite

intersections.

There are some mathematical relations among the above mathemat-
ical structures (see [13])

Theorem 16. For the closure function cl of a generalized closure
space (Z, cl), the following properties hold:

(1) If cl is extensive, then clop(Z) is a weak structure,
(2) If cl is extensive and grounded, then clop(Z) is a minimal struc-

ture,
(3) If cl is extensive and isotonic, then clop(Z) is a generalized

topology (in the sense of Csaszar),
(4) If cl is isotonic, extensive and grounded, then clop(Z) is a

supratopology,
(5) If cl is isotonic, extensive and grounded, then clop(Z) is a gen-

eralized topology (in the sense of Lugojan),
(6) If cl is subadditive, extensive and grounded, then clop(Z) is an
M-structure,

(7) If cl is isotonic, extensive, grounded and subadditive, then
clop(Z) is a topology.

Proof. (1) Obvious from Theorem 3.
(2) Obvious from Theorem 2 and Theorem 3.
(3) Obvious from Theorem 3 and Theorem 5.
(4) Obvious from Theorem 2 and Theorem 5.
(5) Obvious from Theorem 2, Theorem 3 and Theorem 5.
(6) Obvious from Theorem 2, Theorem 3 and Theorem 11.
(7) Obvious from Theorem 2, Theorem 3, Theorem 5 and Theorem

11.
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Note that the closure operator associated to a minimal structure
mZ is the intersection of all supersets of a given set that are mZ

closed, i.e. are complements of sets in mZ . This closure has been
discussed in [10, 11, 15] and it is induced by the grounded, isotonic
and extensive closure function. More closure functions have been
considered in [16, 7, 6, 17].

Interrelations between various mathematical structures induced
from closure function have been shown in Diagram 1.

Boundary points:
The conjugate of the closure function cl : 2Z → 2Z is called the

interior function int : 2Z → 2Z and defined as:

int(A) = Z \ cl(Z \ A).

Lemma 17. Let A and B be two subsets of a generalized closure space
(Z, cl). Then:

(1) int(A) ⊆ A, if the closure function cl is extensive.
(2) for A ⊆ B, int(A) ⊆ int(B), if the closure function cl is iso-

tonic.
(3) int(Z \ int(Z)) = ∅, if the closure function is grounded.

Definition 18. Let A be a subset of a generalized closure space (Z, cl),
bd(A) = cl(A) ∩ cl(Z \ A) is said to be boundary of A.

Theorem 19. Let A be a subset of a generalized closure space (Z, cl),
the following statements hold:

(1) cl(A) = int(A) ∪ bd(A).
(2) bd(A) = bd(Z \ A).
(3) Z \ bd(A) = int(A) ∪ int(Z \ A).
(4) bd(A) = cl(A) \ int(A) = cl(Z \ A) \ int(Z \ A).
(5) bd(A) is the set of all x ∈ Z such that x /∈ int(A) and x /∈

int(Z \ A).
(6) A ∪ bd(A) ⊆ cl(A), if the closure function cl is extensive.
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(7) int(A) ⊆ A \ bd(A) ⊆ cl(A) if the closure function cl is expand-
ing.

(8) for closed set A, A∪ bd(A) ⊆ A, when the closure function cl is
extensive.

(9) A is open if and only if A∩bd(A) = ∅, when the closure function
is extensive.

Proof. (1) bd(A) ∪ int(A) = [cl(A) ∩ cl(Z \ A)] ∪ (int(A)) = [cl(A) ∩
(Z \ int(A))] ∪ int(A) = cl(A).

(2) bd(Z \ A) = cl(Z \ A) ∩ cl(A) = bd(A).
(3) Z \bd(A) = Z \ [cl(A)∩cl(Z \A)] = [Z \cl(A)]∪ [Z \cl(Z \A)] =

int(Z \ A) ∪ int(A).
(4) The first equation: bd(A) = cl(A) ∩ cl(Z \ A) = cl(A) ∩ (Z \

int(A)) = cl(A) \ int(A).
Second part: We know that bd(A) = bd(Z \ A). Then we replaced

A by Z \ A in the above relation and we get bd(A) = bd(Z \ A) =
cl(Z \ A) \ int(Z \ A).

(5) bd(A) = cl(A)∩ cl(Z \A) = cl(A)∩ (Z \ int(A)) = [Z \ int(X \
A)] ∩ [Z \ int(A)]. Then for x ∈ bd(A), x ∈ [Z \ int(X \ A)] and
x ∈ [Z \ int(A)]. Thus x /∈ int(Z \ A) and x /∈ int(A). The converse
is true. Therefore, bd(A) is the set of all x ∈ X such that x /∈ int(A)
and x /∈ int(Z \ A).

(6) Since bd(A) ⊆ cl(A), then A ∪ bd(A) ⊆ cl(A) (since the closure
function is extensive).

(7) By (6) cl(A) ⊇ A∪ bd(A). Then cl(Z \A) ⊇ (Z \A)∪ bd(Z \A).
Thus Z \ int(A) ⊇ (Z \A) ∪ bd(A), and int(A) ⊆ [Z \ (Z \A)] ∩ (Z \
bd(A)) = A ∩ (Z \ bd(A)) = A \ bd(A).

(8) We have bd(A)∪A ⊆ cl(A) = A as A is closed. Thus, bd(A) ⊆ A.
(9) Suppose that A ∩ bd(A) = ∅. Then A ∩ [cl(A) ∩ cl(Z \ A)] = ∅,

and hence A∩cl(Z\A) = ∅. This implies that A∩[Z\int(A)] = ∅, and
hence A \ int(A) = ∅. So A ⊆ int(A), and A = int(A) (from Lemma
17). Therefore, Z \A = cl(Z \A) and Z \A is closed. Therefore, A is
open.

Conversely, suppose A is open in (Z, cl). By (4), A ∩ bd(A) =
A ∩ [cl(A) \ int(A)] = A \ int(A) = ∅ because A is open.

Exterior points

Definition 20. Let E be a subset of a generalized closure space (Z, cl).
The ext(E) = int(Z \ E) is said to be exterior of E.

Theorem 21. For subsets E and F of a generalized closure space
(Z, cl), the following properties hold:
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(1) ext(E) is open.
(2) ext(E) = int(Z \ E) = Z \ cl(E).
(3) ext(ext(E)) = int(cl(E)).
(4) if E ⊆ F , then ext(E) ⊇ ext(F ), when the closure function cl

is isotonic.
(5) ext(E ∪ F ) ⊆ ext(E) ∪ ext(F ), when the closure function cl is

isotonic.
(6) ext(E ∩ F ) ⊇ ext(E) ∩ ext(F ), when the closure function cl is

isotonic.
(7) ext(∅) = Z, when the closure function cl is grounded.
(8) ext(Z) = ∅, when the closure function cl is extensive.
(9) ext[Z \ ext(E)] ⊆ ext(E), when the closure function cl is exten-

sive.
(10) int(E) ⊆ ext(ext(E)), when the closure function cl is extensive

and isotonic.
(11) Z = int(E) ∪ ext(E) ∪ bd(E).

Proof. (1) Obvious and omitted.
(2) Obvious and hence omitted.
(3) ext(ext(E)) = ext[Z \ cl(E)] = int[Z \ (Z \ cl(E))] = int(cl(E)).
(4) Since (Z \E) ⊇ (Z \F ) as E ⊆ F . Then int(Z \E) ⊇ int(Z \F )

(by Lemma 17).
(5) Obvious from (4).
(6) Obvious from (4).
(7) ext(∅) = int(Z \ ∅) = Z \ cl(∅) = Z, since the closure function

cl is grounded.
(8) By (2), ext(Z) = Z \ cl(Z) = ∅.
(9) ext[Z \ext(E)] = ext[Z \int(Z \E)] = int[Z \(Z \int(Z \E))] =

int(int(Z \ E)) ⊆ int(Z \ E) (Lemma 17)= ext(E).
(10) int(E) ⊆ int(cl(E)) (from Lemma 17) = int[Z \ int(Z \E)] =

int(Z \ ext(E)) = ext(ext(E)).
(11) By Theorem 19(1), we have int(E)∪ ext(E)∪ bd(E) = cl(E)∪

ext(E) = cl(E) ∪ (Z \ cl(E)) = Z.
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