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REMARKS ON GENERALIZATIONS OF
TOPOLOGICAL SPACES VIA PROPERTIES OF
CLOSURE FUNCTIONS

SHYAMAPADA MODAK, TAKASHI NOIRI

Abstract. The fixed points of a closure function are known as
closed sets in the corresponding generalized closure space and their
complements are called open sets. We identify among the combina-
tions of usual properties of a closure function some that are sufficient
(but not necessary, as we show through counterexamples) in order to
obtain that the family of open sets is a specific generalization of the
notion of topology (namely, weak structure, minimal structure, gen-
eralized topology in the sense of Csaszar, supratopology, generalized
topology in the sense of Lugojan M-structure). The properties of
other operators associated to a closure function (interior, exterior and
boundary operators) are also investigated.

1. INTRODUCTION AND PRELIMINARIES

Let Z be a nonempty set, 22 be the collection of all subsets of Z and
cl : 22 — 27 be a set-valued function, called here closure functions,
also known as generalized closure operator. We call c/(A), the closure
of A for each A € 27 and the pair (Z, cl) is called a generalized closure
space.

Keywords and phrases: Generalized closure space, minimal struc-
ture, generalized topology.
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Definition 1. The closure function cl : 22 — 2% in a generalized
closure space (Z,cl) is called:

(a) grounded if O = cl(),

(b) isotonic if A C B implies cl(A) C cl(B),

(c) extensive if cl(A) D A for all A € 27,

(d) subadditive if cl(A) Ucl(B) D cl(AU B),

(e) idempotent if cl(A) = cl(cl(A)),

(f) additive if cl(AU B) = cl(A) U cl(B).

Note that closure function ¢l is isotonic if and only if ¢l is supraadi-
tive, i.e. cl(AU B) D cl(A) U cl(B). Therefore every closure function
is isotonic and that every isotonic and subadditive closure function is
additive.

A Cech closure operator (also known in General topology as pre-
closure operator) is defined by three properties: grounded, extensive
and additive.

A Kuratowski closure operator is an idempotent Clech closure op-
erator. Pervin [14] had shown that, a closure function ¢l : 27 — 27
is a Kuratowski closure operator if and only if it satisfies the single
axiom: AU cl(A)U (cl(B)) = cl(AU B)\ cl(D) for any A, B € 27.

A set F' € 27 is said to be closed in the generalized closure space
(Z,cl) if F = cl(F) holds (similar type of closed set has been defined
in [17]). F is said to be open if Z \ F is closed i.e. cl(Z\ F)=Z\F.
We denote clop(Z) as the collection of all open sets in a generalized
closure space (Z, cl).

However, if a closure function ¢l satisfies the conditions (a), (c¢) and
(f) then the space (Z, cl) is called a closure space and it was introduced
by Cech [2]. The author Chattopadhyay and Thron [3] and Modak
and Islam [12] have studied this type of closure spaces.

Through this paper, we shall discuss about the properties of gener-
alized closure functions and find out the boundary points and exterior
points of a set in the generalized closure space.

2. PROPERTIES OF CLOSURE FUNCTIONS

Theorem 2. For a generalized closure space (Z,cl), the closure func-
tion cl is grounded if and only if Z € clop(Z).

Proof. Suppose cl(0) = (. Then cl(Z\Z) = Z\ Z implies Z € clop(Z).
Conversely suppose that Z € clop(Z). Then cl(Z\ Z) = Z\ Z
implies cl(0) = 0. n
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Theorem 3. Let (Z,cl) be a generalized closure space. If the closure
function cl is extensive, then () € clop(Z).
Proof. Given that Z C cl(Z). Then Z C cl(Z) C Z implies Z = cl(Z).
Hence cl(Z\0)=Z\0,s0 0 € clop(Z). &

The converse of Theorem 3 does not hold in general:
Example 4. Let Z = {o01,00,03}. Define cl : 22 — 27 by
@) =0, cd(Z2) = Z, cd({o}) = Z, c({o2}) = {02}, cl({o3}) =
{os}, cl({o1,02}) = {o1,02}, cl({o1,05}) = {o1,02}, cl({02,03}) =

{02,03}. Here O € clop(Z), but the closure function cl is not exten-
swe, since {01,035} € cl({o1,03}).

Theorem 5. If the closure function cl of a generalized closure
space (Z,cl) is isotonic and extensive, then for {V; : i € J} C
clop(Z), UV; € clop(Z).

Proof. Note that cl(Z \ JVi) C cl(Z \ V), for each i. Then cl(Z \
UVi) € (Z\V;), for each i, This implies that c[(Z\JV;) C N(Z\V;) =

)

(Z\UV;). Thus we have cl(Z\|JV;) € (Z\UUV) € c(Z\|UV;) (due
to exéensive). Therefore, |JV; € lclop(Z). ] l Z

Corollary 6. If the closure function cl of a generalized closure
space (Z,cl) is isotonic and extensive, then for {V; : i € N} C
clop(Z), UV; € clop(Z).

ieN

For the converse of Theorem 5, we discuss following:
Example 7. Let Z = {o1,00,03}. Define cl : 272 — 27 by
@) =0, cd(Z2) = Z, d({or}) = Z, c({o2}) = {02}, cl({o3}) =
{os}, c({o1,02}) = {o1,02}, cl({or,03}) = {o1,02}, cl({02,05}) =
{02,03}. Here O € clop(Z), but the closure function cl is not ex-
tensive, since {o1,03} ¢ cl({o1,03}). Again, the function cl is not
isotonic, since for {os} C {o1,03}, cl({os} € cl({o1,05}).

Theorem 8. Let (Z,cl) be a generalized closure space. If the closure
k
function cl is extensive and subadditive, then (Vi € clop(Z) for

every Vi, Va, ..., Vi € clop(Z). -

Proof. Z\N\Vi C c(Z\N\Vi) = c(U(Z\V})) C cl(Z\V})U....Ucl(Z\
Vo) =(Z\V)U..U(Z\V,) =Z\(Vi. Therefore, cl(Z\ Vi) =
Z\Vi-n
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For the converse of Theorem 8, we give the following example.

Example 9. In Ezample 4, since clop(Z) = {Z,0,{o01},{0s}, {01, 02},
{01,03}}, clop(Z) is closed under finite intersection. But the closure
function cl is not extensive.

Example 10. Let Z = {01, 09,03}, cl(0) =0, cl({01}) = {o1, 02},

cd({o2}) = Aoz,03;, cl({os}) = Hoz0s}, cd({o,00}) =
Z, c({o2,03}) = Z, c({o1,03}) = {o1,03}, cl(Z) = Z. Here
the closure function cl is not subadditive because: cl({os} U {o3}) =

cl({o2,03}) = Z € cl({o2}) Ucl({03}) = {02,03}. However clop(Z) =
{Z,0,{02}}, clop(Z) is closed under finite intersection.

Theorem 11. If the closure function cl of a generalized closure space
k

(Z,cl) is additive, then (| U; € clop(Z) for every Uy, Uy, ..., Uy €

clop(Z). -

Proof. For the subcollection {U;, Us,....,Ux} of clop(Z), cl(Z \
k k k

'D1 U;)) = Cl(L:Jl(Z \U;)) = (Z\U)U ..U (Z\Uy) = (Z\ Dl U;).

k
Thus (\ U; € clop(Z). 1
i=1

In Theorem 11, the condition is sufficient and it is followed by the
following example:

Example 12. In Example 4, the closure function cl is not additive
but finite intersections of the members of clop(Z) belongs to clop(Z).

Theorem 13. Let (Z,cl) be a generalized closure space. If cl is iso-
tonic and subadditive, then (\V; € clop(Z) for every Vi, Vs, ..., Vi €
clop(Z).

Proof. If ¢l is isotonic and subadditive, then it is additive. Thus the
proof is obvious by Theorem 11. §

In the following example, we shall discuss the converse of Theorem
13:

Example 14. Let Z = {01,09,03}, cl(0) = 0, cl({o1}) = {01, 02},

d({o2}) = Ao2,03}, c({os}) = A{o2,03}, cl{or,02}) =
Z, c({oq,03}) = Z, cl({o1,03}) = {o1,03}, cl(Z) = Z. Then
clop(Z) = {0, Z, {os}}. Here, the closure function cl is neither
isotonic nor subadditive because: {o3} C {o1,03} but cl({os}) ¢

cl({or,03}) and cl({o2} U{os}) € cl({o2}) Ucl({os}).
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3. APPLICATIONS OF clop(Z)

Definition 15. A collection F of subsets of a nonempty set Z is called

(1) a weak structure [4] (denoted by W) if ) € F,

(2) a minimal structure [15] (denoted by mz) if O, Z € F,

(3) a generalized topology [5](denoted by p) if 0 € F and F is closed
under arbitrary unions,

(4) a supratopology (9] (denoted by ) if Z € F and F is closed
under arbitrary unions,

(5) a generalized topology [8] if 0, Z € F and F is closed under
arbitrary unions,

(6) an M-structure [1] if 0,Z € F and F is closed under finite

ntersections.

There are some mathematical relations among the above mathemat-
ical structures (see [13])

Theorem 16. For the closure function cl of a generalized closure
space (Z,cl), the following properties hold:

(1) If cl is extensive, then clop(Z) is a weak structure,

(2) If cl is extensive and grounded, then clop(Z) is a minimal struc-
ture,

(3) If cl is extensive and isotonic, then clop(Z) is a generalized
topology (in the sense of Csaszar),

(4) If cl is isotonic, extensive and grounded, then clop(Z) is a
supratopology,

(5) If cl is isotonic, extensive and grounded, then clop(Z) is a gen-
eralized topology (in the sense of Lugojan),

(6) If cl is subadditive, extensive and grounded, then clop(Z) is an
M-structure,

(7) If cl is isotonic, extensive, grounded and subadditive, then
clop(Z) is a topology.

Proof. (1) Obvious from Theorem 3.
(2) Obvious from Theorem 2 and Theorem 3.
(3) Obvious from Theorem 3 and Theorem 5.
(4) Obvious from Theorem 2 and Theorem 5.
(5) Obvious from Theorem 2, Theorem 3 and Theorem 5.
(6) Obvious from Theorem 2, Theorem 3 and Theorem 11.
(7) Obvious from Theorem 2, Theorem 3, Theorem 5 and Theorem
11. n
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Note that the closure operator associated to a minimal structure
my is the intersection of all supersets of a given set that are my
closed, i.e. are complements of sets in mz. This closure has been
discussed in [10, 11, 15] and it is induced by the grounded, isotonic
and extensive closure function. More closure functions have been
considered in [16, 7, 6, 17].

Interrelations between various mathematical structures induced
from closure function have been shown in Diagram 1.

‘ Extensive, Grounded, Isotonic, Subadditive ‘ ‘ Isotonic, Extensive, Grounded ‘ Extensive, Isotonic

Topology === Generalized Topology(Lugojan) == Generalized Topology(Csazar)

M-Structure === Minimal Structure === Weak Structure

Subadditive, Extensive, Grounded ‘ Extensive, Grounded

FiGurk 1. Diagram 1

Boundary points:
The conjugate of the closure function ¢l : 22 — 27 is called the
interior function int : 22 — 2% and defined as:

int(A)=Z\c(Z\ A).

Lemma 17. Let A and B be two subsets of a generalized closure space
(Z,cl). Then:

(1) int(A) C A, if the closure function cl is extensive.

(2) for A C B, int(A) C int(B), if the closure function cl is iso-
tonic.

(3) int(Z \ int(Z)) =0, if the closure function is grounded.

Definition 18. Let A be a subset of a generalized closure space (Z,cl),
bd(A) = cl(A)Ncl(Z \ A) is said to be boundary of A.

Theorem 19. Let A be a subset of a generalized closure space (Z,cl),
the following statements hold:

(1) cl(A) = int(A) Ubd(A).

(2) bd(A) =bd(Z \ A).

(8) Z \ bd(A) =int(A) Uint(Z \ A).

(4) bd(A) = cl(A) \ int(A) = cl(Z\ A) \ int(Z \ A).

(5) bd(A) is the set of all x € Z such that © ¢ int(A) and x ¢
int(Z\ A).

(6) AUDbd(A) C cl(A), if the closure function cl is extensive.
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(7) int(A) € A\ bd(A) C cl(A) if the closure function cl is expand-
mg.

(8) for closed set A, AUbd(A) C A, when the closure function cl is
ertensive.

(9) A is open if and only if ANbd(A) = 0, when the closure function
15 extensive.

Proof. (1) bd(A) Uint(A) = [cl(A) Ncl(Z \ A)| U (int(A)) = [cl(A) N
(Z \ int(A))]Uint(A) = cl(A).

(2) bd(Z \ A) = cl(Z\ A)Ncl(A) = bd(A).

(3) Z\bd(A) = Z\[cl(A)Ncl(Z\ A)] = [Z\cl(A)]U[Z\cl(Z\ A)] =
int(Z\ A) Uint(A).

(4) The first equation: bd(A) = cl(A)Ncl(Z\ A) = cl(A) N (Z\
int(A)) = cl(A) \ int(A).

Second part: We know that bd(A) = bd(Z \ A). Then we replaced
A by Z \ A in the above relation and we get bd(A) = bd(Z \ A) =
cd(Z\ A)\int(Z\ A).

(5) bd(A) = cl(A)Nc(Z\A) =c(A)N(Z \int(A)) = [Z \int(X \
A) N [Z\int(A)]. Then for z € bd(A), z € [Z \ int(X \ A)] and
x € [Z \int(A)]. Thus z ¢ int(Z \ A) and = ¢ int(A). The converse
is true. Therefore, bd(A) is the set of all x € X such that = ¢ int(A)
and z ¢ int(Z \ A).

(6) Since bd(A) C cl(A), then AUbd(A) C cl(A) (since the closure
function is extensive).

(7) By (6) cl(A) D AUbd(A). Then cl(Z\ A) D (Z\ A)Ubd(Z\ A).
Thus Z \ int(A) 2 (Z\ A)Ubd(A), and int(A) C [Z\(Z\ A)|N(Z\
bd(A)) = AN(Z\ bd(A)) = A\ bd(A).

(8) We have bd(A)UA C cl(A) = A as Ais closed. Thus, bd(A) C A.
(9) Suppose that ANbd(A) = 0. Then AN [cl(A)Ncl(Z\ A)] =
and hence ANcl(Z\ A) = 0. This implies that AN[Z\int(A)] = 0, and
hence A\ int(A) = 0. So A Cint(A), and A = int(A) (from Lemma
17). Therefore, Z\ A =cl(Z\ A) and Z \ A is closed. Therefore, A is

open.

Conversely, suppose A is open in (Z,cl). By (4), AN bd(A) =
ANel(A) \ int(A)] = A\ int(A) = ) because A is open. 1

Exterior points

2
C

Definition 20. Let E be a subset of a generalized closure space (Z,cl).
The ext(E) = int(Z \ E) is said to be exterior of E.

Theorem 21. For subsets E and F' of a generalized closure space
(Z,cl), the following properties hold:
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(1) ext(E) is open.

(2) ext(E) = int(Z\ E) = Z\ cl(E).

(3) ext(ext(E)) = int(cl(E)).

(4) if E C F, then ext(E) O ext(F), when the closure function cl
18 1sotonic.

(5) ext(E U F) C ext(E) Uext(F), when the closure function cl is
1sotonic.

(6) ext(ENF) D ext(E) Next(F), when the closure function cl is
1sotonic.

(7) ext(0) = Z when the closure function cl is grounded.

(8) ext(Z) =), when the closure function cl is extensive.

(9) ext[Z \ ext(E)] C ext(E), when the closure function cl is exten-
sive.

(10) int(E) C ext(ext(E)), when the closure function cl is extensive

and isotonic.
(11) Z = int(E) U ext(E) Ubd(E).

Proof. (1) Obvious and omitted.
(2) Obvious and hence omitted.
(3) ext(ext(E)) = ext|Z\ cl(E)] = int[Z\ (Z \ cl(F))] = int(cl(E)).
(4) Since (Z\E) D (Z\F)as E C F. Thenint(Z\ E) D int(Z\ F)
(by Lemma 17).
(5) Obvious from (4
) Obvious from (4
) ext(D) = int(Z \ 0) = Z \ cl(0) = Z, since the closure function
cl is grounded.

).
(6 )-
(7
(8) By (2), ext(Z) = Z \ cl(Z) = 0.
9) ext[Z\ext( )| = ext|Z\int(Z\ E)] = int[Z\ (Z\int(Z\E))| =
int(int(Z \ E)) Cint(Z \ F) (Lemma 17)= ext(FE).

(10) int(E) C int(cl(F)) (from Lemma 17) = int[Z \ int(Z \ E)| =
int(Z \ ext(E)) = ext(ext(E)).

(11) By Theorem 19(1), we have int(E)Uext(F)Ubd(E) = cl(E)U
ext(E) =c(E)U(Z\c(E))=2Z.1
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