"Vasile Alecsandri" University of Bacău Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics Vol. 34 (2024), No. 1, 47 - 56

REMARKS ON GENERALIZATIONS OF TOPOLOGICAL SPACES VIA PROPERTIES OF CLOSURE FUNCTIONS

SHYAMAPADA MODAK, TAKASHI NOIRI

Abstract. The fixed points of a closure function are known as closed sets in the corresponding generalized closure space and their complements are called open sets. We identify among the combinations of usual properties of a closure function some that are sufficient (but not necessary, as we show through counterexamples) in order to obtain that the family of open sets is a specific generalization of the notion of topology (namely, weak structure, minimal structure, generalized topology in the sense of Csaszar, supratopology, generalized topology in the sense of Lugojan M-structure). The properties of other operators associated to a closure function (interior, exterior and boundary operators) are also investigated.

1. Introduction and Preliminaries

Let Z be a nonempty set, 2^Z be the collection of all subsets of Z and $cl: 2^Z \to 2^Z$ be a set-valued function, called here closure functions, also known as generalized closure operator. We call cl(A), the closure of A for each $A \in 2^Z$ and the pair (Z, cl) is called a generalized closure space.

Keywords and phrases: Generalized closure space, minimal structure, generalized topology.

(2020) Mathematics Subject Classification: 554A05.

Definition 1. The closure function $cl: 2^Z \to 2^Z$ in a generalized closure space (Z, cl) is called:

- (a) grounded if $\emptyset = cl(\emptyset)$,
- (b) isotonic if $A \subseteq B$ implies $cl(A) \subseteq cl(B)$,
- (c) extensive if $cl(A) \supseteq A$ for all $A \in 2^{\mathbb{Z}}$,
- (d) subadditive if $cl(A) \cup cl(B) \supseteq cl(A \cup B)$,
- (e) idempotent if cl(A) = cl(cl(A)),
- (f) additive if $cl(A \cup B) = cl(A) \cup cl(B)$.

Note that closure function cl is isotonic if and only if cl is supraaditive, i.e. $cl(A \cup B) \supseteq cl(A) \cup cl(B)$. Therefore every closure function is isotonic and that every isotonic and subadditive closure function is additive.

A Čech closure operator (also known in General topology as preclosure operator) is defined by three properties: grounded, extensive and additive.

A Kuratowski closure operator is an idempotent $\check{C}ech$ closure operator. Pervin [14] had shown that, a closure function $cl: 2^Z \to 2^Z$ is a Kuratowski closure operator if and only if it satisfies the single axiom: $A \cup cl(A) \cup (cl(B)) = cl(A \cup B) \setminus cl(\emptyset)$ for any $A, B \in 2^Z$.

A set $F \in 2^{\mathbb{Z}}$ is said to be closed in the generalized closure space (Z, cl) if F = cl(F) holds (similar type of closed set has been defined in [17]). F is said to be open if $Z \setminus F$ is closed i.e. $cl(Z \setminus F) = Z \setminus F$. We denote clop(Z) as the collection of all open sets in a generalized closure space (Z, cl).

However, if a closure function cl satisfies the conditions (a), (c) and (f) then the space (Z, cl) is called a closure space and it was introduced by \check{C} ech [2]. The author Chattopadhyay and Thron [3] and Modak and Islam [12] have studied this type of closure spaces.

Through this paper, we shall discuss about the properties of generalized closure functions and find out the boundary points and exterior points of a set in the generalized closure space.

2. Properties of closure functions

Theorem 2. For a generalized closure space (Z, cl), the closure function cl is grounded if and only if $Z \in clop(Z)$.

Proof. Suppose $cl(\emptyset) = \emptyset$. Then $cl(Z \setminus Z) = Z \setminus Z$ implies $Z \in clop(Z)$. Conversely suppose that $Z \in clop(Z)$. Then $cl(Z \setminus Z) = Z \setminus Z$ implies $cl(\emptyset) = \emptyset$.

Theorem 3. Let (Z, cl) be a generalized closure space. If the closure function cl is extensive, then $\emptyset \in clop(Z)$.

Proof. Given that $Z \subseteq cl(Z)$. Then $Z \subseteq cl(Z) \subseteq Z$ implies Z = cl(Z). Hence $cl(Z \setminus \emptyset) = Z \setminus \emptyset$, so $\emptyset \in clop(Z)$.

The converse of Theorem 3 does not hold in general:

Example 4. Let $Z = \{o_1, o_2, o_3\}$. Define $cl : 2^Z \to 2^Z$ by $cl(\emptyset) = \emptyset$, cl(Z) = Z, $cl(\{o_1\}) = Z$, $cl(\{o_2\}) = \{o_2\}$, $cl(\{o_3\}) = \{o_3\}$, $cl(\{o_1, o_2\}) = \{o_1, o_2\}$, $cl(\{o_1, o_3\}) = \{o_1, o_2\}$, $cl(\{o_2, o_3\}) = \{o_2, o_3\}$. Here $\emptyset \in clop(Z)$, but the closure function cl is not extensive, since $\{o_1, o_3\} \nsubseteq cl(\{o_1, o_3\})$.

Theorem 5. If the closure function cl of a generalized closure space (Z, cl) is isotonic and extensive, then for $\{V_i : i \in J\} \subseteq clop(Z), \bigcup V_i \in clop(Z)$.

Proof. Note that $cl(Z \setminus \bigcup_i V_i) \subseteq cl(Z \setminus V_i)$, for each i. Then $cl(Z \setminus \bigcup_i V_i) \subseteq (Z \setminus V_i)$, for each i. This implies that $cl(Z \setminus \bigcup_i V_i) \subseteq \bigcap_i (Z \setminus V_i) = (Z \setminus \bigcup_i V_i)$. Thus we have $cl(Z \setminus \bigcup_i V_i) \subseteq (Z \setminus \bigcup_i V_i) \subseteq cl(Z \setminus \bigcup_i V_i)$ (due to extensive). Therefore, $\bigcup_i V_i \in clop(Z)$.

Corollary 6. If the closure function cl of a generalized closure space (Z, cl) is isotonic and extensive, then for $\{V_i : i \in \mathbb{N}\} \subseteq clop(Z), \bigcup_{i \in \mathbb{N}} V_i \in clop(Z).$

For the converse of Theorem 5, we discuss following:

Example 7. Let $Z = \{o_1, o_2, o_3\}$. Define $cl : 2^Z \to 2^Z$ by $cl(\emptyset) = \emptyset$, cl(Z) = Z, $cl(\{o_1\}) = Z$, $cl(\{o_2\}) = \{o_2\}$, $cl(\{o_3\}) = \{o_3\}$, $cl(\{o_1, o_2\}) = \{o_1, o_2\}$, $cl(\{o_1, o_3\}) = \{o_1, o_2\}$, $cl(\{o_2, o_3\}) = \{o_2, o_3\}$. Here $\emptyset \in clop(Z)$, but the closure function cl is not extensive, since $\{o_1, o_3\} \nsubseteq cl(\{o_1, o_3\})$. Again, the function cl is not isotonic, since for $\{o_3\} \subseteq \{o_1, o_3\}$, $cl(\{o_3\} \nsubseteq cl(\{o_1, o_3\}))$.

Theorem 8. Let (Z, cl) be a generalized closure space. If the closure function cl is extensive and subadditive, then $\bigcap_{i=1}^k V_i \in clop(Z)$ for every $V_1, V_2, ..., V_k \in clop(Z)$.

Proof. $Z \setminus \bigcap V_i \subseteq cl(Z \setminus \bigcap V_i) = cl(\bigcup (Z \setminus V_i)) \subseteq cl(Z \setminus V_1) \cup \cup cl(Z \setminus V_n) = (Z \setminus V_1) \cup \cup (Z \setminus V_n) = Z \setminus \bigcap V_i$. Therefore, $cl(Z \setminus \bigcap V_i) = Z \setminus \bigcap V_i$.

For the converse of Theorem 8, we give the following example.

Example 9. In Example 4, since $clop(Z) = \{Z, \emptyset, \{o_1\}, \{o_3\}, \{o_1, o_2\}, \{o_1, o_3\}\}, clop(Z)$ is closed under finite intersection. But the closure function cl is not extensive.

Example 10. Let $Z = \{o_1, o_2, o_3\}$, $cl(\emptyset) = \emptyset$, $cl(\{o_1\}) = \{o_1, o_2\}$, $cl(\{o_2\}) = \{o_2, o_3\}$, $cl(\{o_3\}) = \{o_2, o_3\}$, $cl(\{o_1, o_2\}) = Z$, $cl(\{o_2, o_3\}) = Z$, $cl(\{o_1, o_3\}) = \{o_1, o_3\}$, cl(Z) = Z. Here the closure function cl is not subadditive because: $cl(\{o_2\} \cup \{o_3\}) = cl(\{o_2, o_3\}) = Z \nsubseteq cl(\{o_2\}) \cup cl(\{o_3\}) = \{o_2, o_3\}$. However $clop(Z) = \{Z, \emptyset, \{o_2\}\}$, clop(Z) is closed under finite intersection.

Theorem 11. If the closure function cl of a generalized closure space (Z, cl) is additive, then $\bigcap_{i=1}^k U_i \in clop(Z)$ for every $U_1, U_2, \ldots, U_k \in clop(Z)$.

Proof. For the subcollection
$$\{U_1, U_2,, U_k\}$$
 of $clop(Z), cl(Z \setminus \bigcap_{i=1}^k U_i)) = cl(\bigcup_{i=1}^k (Z \setminus U_i) = (Z \setminus U_1) \cup \cup (Z \setminus U_k) = (Z \setminus \bigcap_{i=1}^k U_i).$
Thus $\bigcap_{i=1}^k U_i \in clop(Z)$.

In Theorem 11, the condition is sufficient and it is followed by the following example:

Example 12. In Example 4, the closure function cl is not additive but finite intersections of the members of clop(Z) belongs to clop(Z).

Theorem 13. Let (Z, cl) be a generalized closure space. If cl is isotonic and subadditive, then $\bigcap V_i \in clop(Z)$ for every $V_1, V_2, ..., V_k \in clop(Z)$.

Proof. If cl is isotonic and subadditive, then it is additive. Thus the proof is obvious by Theorem 11. \blacksquare

In the following example, we shall discuss the converse of Theorem 13:

Example 14. Let $Z = \{o_1, o_2, o_3\}$, $cl(\emptyset) = \emptyset$, $cl(\{o_1\}) = \{o_1, o_2\}$, $cl(\{o_2\}) = \{o_2, o_3\}$, $cl(\{o_3\}) = \{o_2, o_3\}$, $cl(\{o_1, o_2\}) = Z$, $cl(\{o_2, o_3\}) = Z$, $cl(\{o_1, o_3\}) = \{o_1, o_3\}$, cl(Z) = Z. Then $clop(Z) = \{\emptyset, Z, \{o_2\}\}$. Here, the closure function cl is neither isotonic nor subadditive because: $\{o_3\} \subseteq \{o_1, o_3\}$ but $cl(\{o_3\}) \nsubseteq cl(\{o_1, o_3\})$ and $cl(\{o_2\} \cup \{o_3\}) \nsubseteq cl(\{o_2\}) \cup cl(\{o_3\})$.

3. Applications of clop(Z)

Definition 15. A collection \mathcal{F} of subsets of a nonempty set Z is called

- (1) a weak structure [4] (denoted by W) if $\emptyset \in \mathcal{F}$,
- (2) a minimal structure [15] (denoted by m_Z) if \emptyset , $Z \in \mathcal{F}$,
- (3) a generalized topology [5] (denoted by μ) if $\emptyset \in \mathcal{F}$ and \mathcal{F} is closed under arbitrary unions,
- (4) a supratopology [9] (denoted by τ^*) if $Z \in \mathcal{F}$ and \mathcal{F} is closed under arbitrary unions,
- (5) a generalized topology [8] if \emptyset , $Z \in \mathcal{F}$ and \mathcal{F} is closed under arbitrary unions,
- (6) an \mathcal{M} -structure [1] if $\emptyset, Z \in \mathcal{F}$ and \mathcal{F} is closed under finite intersections.

There are some mathematical relations among the above mathematical structures (see [13])

Theorem 16. For the closure function cl of a generalized closure space (Z, cl), the following properties hold:

- (1) If cl is extensive, then clop(Z) is a weak structure,
- (2) If cl is extensive and grounded, then clop(Z) is a minimal structure.
- (3) If cl is extensive and isotonic, then clop(Z) is a generalized topology (in the sense of Csaszar),
- (4) If cl is isotonic, extensive and grounded, then clop(Z) is a supratopology,
- (5) If cl is isotonic, extensive and grounded, then clop(Z) is a generalized topology (in the sense of Lugojan),
- (6) If cl is subadditive, extensive and grounded, then clop(Z) is an \mathcal{M} -structure,
- (7) If cl is isotonic, extensive, grounded and subadditive, then clop(Z) is a topology.

Proof. (1) Obvious from Theorem 3.

- (2) Obvious from Theorem 2 and Theorem 3.
- (3) Obvious from Theorem 3 and Theorem 5.
- (4) Obvious from Theorem 2 and Theorem 5.
- (5) Obvious from Theorem 2, Theorem 3 and Theorem 5.
- (6) Obvious from Theorem 2, Theorem 3 and Theorem 11.
- (7) Obvious from Theorem 2, Theorem 3, Theorem 5 and Theorem 11. \blacksquare

Note that the closure operator associated to a minimal structure m_Z is the intersection of all supersets of a given set that are m_Z closed, i.e. are complements of sets in m_Z . This closure has been discussed in [10, 11, 15] and it is induced by the grounded, isotonic and extensive closure function. More closure functions have been considered in [16, 7, 6, 17].

Interrelations between various mathematical structures induced from closure function have been shown in Diagram 1.

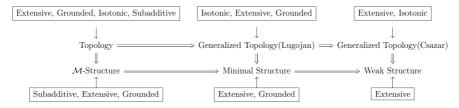


Figure 1. Diagram 1

Boundary points:

The conjugate of the closure function $cl: 2^Z \to 2^Z$ is called the interior function $int: 2^Z \to 2^Z$ and defined as:

$$int(A) = Z \setminus cl(Z \setminus A).$$

Lemma 17. Let A and B be two subsets of a generalized closure space (Z, cl). Then:

- (1) $int(A) \subseteq A$, if the closure function cl is extensive.
- (2) for $A \subseteq B$, $int(A) \subseteq int(B)$, if the closure function cl is isotonic.
 - (3) $int(Z \setminus int(Z)) = \emptyset$, if the closure function is grounded.

Definition 18. Let A be a subset of a generalized closure space (Z, cl), $bd(A) = cl(A) \cap cl(Z \setminus A)$ is said to be boundary of A.

Theorem 19. Let A be a subset of a generalized closure space (Z, cl), the following statements hold:

- $(1) cl(A) = int(A) \cup bd(A).$
- (2) $bd(A) = bd(Z \setminus A)$.
- (3) $Z \setminus bd(A) = int(A) \cup int(Z \setminus A)$.
- (4) $bd(A) = cl(A) \setminus int(A) = cl(Z \setminus A) \setminus int(Z \setminus A)$.
- (5) bd(A) is the set of all $x \in Z$ such that $x \notin int(A)$ and $x \notin int(Z \setminus A)$.
 - (6) $A \cup bd(A) \subseteq cl(A)$, if the closure function cl is extensive.

- (7) $int(A) \subseteq A \setminus bd(A) \subseteq cl(A)$ if the closure function cl is expanding.
- (8) for closed set A, $A \cup bd(A) \subseteq A$, when the closure function cl is extensive.
- (9) A is open if and only if $A \cap bd(A) = \emptyset$, when the closure function is extensive.
- Proof. (1) $bd(A) \cup int(A) = [cl(A) \cap cl(Z \setminus A)] \cup (int(A)) = [cl(A) \cap (Z \setminus int(A))] \cup int(A) = cl(A)$.
 - $(2) \ bd(Z \setminus A) = cl(Z \setminus A) \cap cl(A) = bd(A).$
- $(3) \ Z \setminus bd(A) = Z \setminus [cl(A) \cap cl(Z \setminus A)] = [Z \setminus cl(A)] \cup [Z \setminus cl(Z \setminus A)] = int(Z \setminus A) \cup int(A).$
- (4) The first equation: $bd(A) = cl(A) \cap cl(Z \setminus A) = cl(A) \cap (Z \setminus int(A)) = cl(A) \setminus int(A)$.

Second part: We know that $bd(A) = bd(Z \setminus A)$. Then we replaced A by $Z \setminus A$ in the above relation and we get $bd(A) = bd(Z \setminus A) = cl(Z \setminus A) \setminus int(Z \setminus A)$.

- (5) $bd(A) = cl(A) \cap cl(Z \setminus A) = cl(A) \cap (Z \setminus int(A)) = [Z \setminus int(X \setminus A)] \cap [Z \setminus int(A)]$. Then for $x \in bd(A)$, $x \in [Z \setminus int(X \setminus A)]$ and $x \in [Z \setminus int(A)]$. Thus $x \notin int(Z \setminus A)$ and $x \notin int(A)$. The converse is true. Therefore, bd(A) is the set of all $x \in X$ such that $x \notin int(A)$ and $x \notin int(Z \setminus A)$.
- (6) Since $bd(A) \subseteq cl(A)$, then $A \cup bd(A) \subseteq cl(A)$ (since the closure function is extensive).
- (7) By (6) $cl(A) \supseteq A \cup bd(A)$. Then $cl(Z \setminus A) \supseteq (Z \setminus A) \cup bd(Z \setminus A)$. Thus $Z \setminus int(A) \supseteq (Z \setminus A) \cup bd(A)$, and $int(A) \subseteq [Z \setminus (Z \setminus A)] \cap (Z \setminus bd(A)) = A \cap (Z \setminus bd(A)) = A \setminus bd(A)$.
 - (8) We have $bd(A) \cup A \subseteq cl(A) = A$ as A is closed. Thus, $bd(A) \subseteq A$.
- (9) Suppose that $A \cap bd(A) = \emptyset$. Then $A \cap [cl(A) \cap cl(Z \setminus A)] = \emptyset$, and hence $A \cap cl(Z \setminus A) = \emptyset$. This implies that $A \cap [Z \setminus int(A)] = \emptyset$, and hence $A \setminus int(A) = \emptyset$. So $A \subseteq int(A)$, and A = int(A) (from Lemma 17). Therefore, $Z \setminus A = cl(Z \setminus A)$ and $Z \setminus A$ is closed. Therefore, A is open.

Conversely, suppose A is open in (Z, cl). By (4), $A \cap bd(A) = A \cap [cl(A) \setminus int(A)] = A \setminus int(A) = \emptyset$ because A is open.

Exterior points

Definition 20. Let E be a subset of a generalized closure space (Z, cl). The $ext(E) = int(Z \setminus E)$ is said to be exterior of E.

Theorem 21. For subsets E and F of a generalized closure space (Z, cl), the following properties hold:

- (1) ext(E) is open.
- (2) $ext(E) = int(Z \setminus E) = Z \setminus cl(E)$.
- (3) ext(ext(E)) = int(cl(E)).
- (4) if $E \subseteq F$, then $ext(E) \supseteq ext(F)$, when the closure function cl is isotonic.
- (5) $ext(E \cup F) \subseteq ext(E) \cup ext(F)$, when the closure function cl is isotonic.
- (6) $ext(E \cap F) \supseteq ext(E) \cap ext(F)$, when the closure function cl is isotonic.
 - (7) $ext(\emptyset) = Z$, when the closure function cl is grounded.
 - (8) $ext(Z) = \emptyset$, when the closure function cl is extensive.
- (9) $ext[Z \setminus ext(E)] \subseteq ext(E)$, when the closure function cl is extensive.
- (10) $int(E) \subseteq ext(ext(E))$, when the closure function cl is extensive and isotonic.
 - (11) $Z = int(E) \cup ext(E) \cup bd(E)$.

Proof. (1) Obvious and omitted.

- (2) Obvious and hence omitted.
- $(3) \ ext(ext(E)) = ext[Z \setminus cl(E)] = int[Z \setminus (Z \setminus cl(E))] = int(cl(E)).$
- (4) Since $(Z \setminus E) \supseteq (Z \setminus F)$ as $E \subseteq F$. Then $int(Z \setminus E) \supseteq int(Z \setminus F)$ (by Lemma 17).
 - (5) Obvious from (4).
 - (6) Obvious from (4).
- (7) $ext(\emptyset) = int(Z \setminus \emptyset) = Z \setminus cl(\emptyset) = Z$, since the closure function cl is grounded.
 - (8) By (2), $ext(Z) = Z \setminus cl(Z) = \emptyset$.
- (9) $ext[Z \setminus ext(E)] = ext[Z \setminus int(Z \setminus E)] = int[Z \setminus (Z \setminus int(Z \setminus E))] = int(int(Z \setminus E)) \subseteq int(Z \setminus E)$ (Lemma 17)= ext(E).
- (10) $int(E) \subseteq int(cl(E))$ (from Lemma 17) = $int[Z \setminus int(Z \setminus E)] = int(Z \setminus ext(E)) = ext(ext(E))$.
- (11) By Theorem 19(1), we have $int(E) \cup ext(E) \cup bd(E) = cl(E) \cup ext(E) = cl(E) \cup (Z \setminus cl(E)) = Z$.

Acknowledgement: The authors are acknowledging the referees for their suggestions to improve the paper.

REFERENCES

- [1] A. Al-Omari and T. Noiri, Generalized closed sets in ideal *M*-spaces, Jordan J. Math. Stat., 4(3), (2011), 171–183.
- [2] E. Čech, **Topological spaces**, rev. ed. (Publ. House Czech. Acad. Sc. Prague, English transi. Wiley), New York, 1966.

- [3] K. Chattopadhyay and W. J. Thron, Extension of closure spaces, Can. J. Math., 29(6), (1976), 1277–1286.
- [4] A. Csaszar, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(1-2), (2007), 29–35.
- [5] A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96, (2002), 351–357.
- [6] S. R. Ghosh and H. Dasgupta, Connectedness in monotone spaces, Bull. Malays. Math. Sci. Soc., 27 (2), (2004), 129–148.
- [7] Y. Lei and J. Zhang, Closure system and its semantics, Axioms, 10, 198, (2021), 1–30.
- [8] S. Lugojan, Generalized topology, Stud. Cerc. Mat., 34, (1982), 348–360.
- [9] A. S. Mashhour, A. A. Allan, F. S. Mahmoud and F. H. Khedr, On surpratopological spaces, Indian J. Pure Appl. Math., 14(4), (1983), 502–510.
- [10] S. Modak, **Dense sets in weak structure and minimal structure**, Commun. Korean Math. Soc. 28 (3), (2013), 589–596.
- [11] S. Modak, Minimal spaces with a mathematical structure, J. Ass. Arab Univ Basic Appl. Sci., 22, (2017), 98–101.
- [12] S. Modak and M. M. Islam, New operators in ideal topological spaces and their closure spaces, Aksaray J. Sci. Eng., 3(2), (2019), 112–128.
- [13] S. Modak and T. Noiri, A Note on Mathematical Structures, Bol. Soc. Paran. Mat., 37 (1), (2019), 63–69.
- [14] W. J. Pervin, Foundation of General Topology, Academic Press, New York, 1984
- [15] V. Popa and T. Noiri, **On M-continuous functions**, Anal. Univ. "Dunărea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor., Fasc. II 18 (23), (2000), 31–41.
- [16] E. Przemska, A unified treatment of generalized closed sets in topological spaces, Tatra Mt. Math. Publ. 85, (2023), 121–154.
- [17] A. Rieser, Čech closure spaces: A unified framework for discrete and continuous homotopy, Topology and its Applications 296, (2021), 1–41.

University of Gour Banga, Department of Mathematics, P.O. Mokdumpure, Malda 732 103, INDIA e-mail: spmodak2000@yahoo.co.in

2949-1 Shiokita-cho, Hinagu Yatsushiro-shi Kumomoto-ken, 869-5142, JAPAN e-mail: t.noiri@nifty.com